To see the other types of publications on this topic, follow the link: Single-dot spectroscopy.

Journal articles on the topic 'Single-dot spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Single-dot spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Surowiecka, K., A. Wysmołek, R. Stępniewski, R. Bożek, K. Pakuła, and J. M. Baranowski. "Single GaN/AlGaN Quantum Dot Spectroscopy." Acta Physica Polonica A 112, no. 2 (2007): 233–36. http://dx.doi.org/10.12693/aphyspola.112.233.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bonadeo, N. H., Gang Chen, D. Gammon, and D. G. Steel. "Single Quantum Dot Nonlinear Optical Spectroscopy." physica status solidi (b) 221, no. 1 (2000): 5–18. http://dx.doi.org/10.1002/1521-3951(200009)221:1<5::aid-pssb5>3.0.co;2-h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Babinski, Adam, S. Awirothananon, J. Lapointe, Z. Wasilewski, S. Raymond, and M. Potemski. "Single-dot spectroscopy in high magnetic fields." Physica E: Low-dimensional Systems and Nanostructures 26, no. 1-4 (2005): 190–93. http://dx.doi.org/10.1016/j.physe.2004.08.050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Weis, J., R. J. Haug, K. von Klitzing, and K. Ploog. "Transport spectroscopy on a single quantum dot." Semiconductor Science and Technology 9, no. 11S (1994): 1890–96. http://dx.doi.org/10.1088/0268-1242/9/11s/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Dias, Eva A., Amy F. Grimes, Douglas S. English, and Patanjali Kambhampati. "Single Dot Spectroscopy of Two-Color Quantum Dot/Quantum Shell Nanostructures." Journal of Physical Chemistry C 112, no. 37 (2008): 14229–32. http://dx.doi.org/10.1021/jp806621q.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

H kanson, Ulf, Jonas Persson, Filip Persson, Hans Svensson, Lars Montelius, and Mikael K.-J. Johansson. "Nano-aperture fabrication for single quantum dot spectroscopy." Nanotechnology 14, no. 6 (2003): 675–79. http://dx.doi.org/10.1088/0957-4484/14/6/321.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, D. "Small aperture fabrication for single quantum dot spectroscopy." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16, no. 6 (1998): 3891. http://dx.doi.org/10.1116/1.590429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bockelmann, U., Ph Roussignol, A. Filoramo, W. Heller, and G. Abstreiter. "Time resolved spectroscopy of single quantum dot structures." Solid-State Electronics 40, no. 1-8 (1996): 541–44. http://dx.doi.org/10.1016/0038-1101(95)00286-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Li, Bin, Guo-Feng Zhang, Rui-Yun Chen, et al. "Research progress of single quantum-dot spectroscopy and exciton dynamics." Acta Physica Sinica 71, no. 6 (2022): 067802. http://dx.doi.org/10.7498/aps.71.20212050.

Full text
Abstract:
Colloidal semiconductor quantum dots (QDs) have strong light absorption, continuously adjustable narrowband emission, and high photoluminescence quantum yields, thereby making them promising materials for light-emitting diodes, solar cells, detectors, and lasers. Single-QD photoluminescence spectroscopy can remove the ensemble average to reveal the structure information and exciton dynamics of QD materials at a single-particle level. The study of single-QD spectroscopy can provide guidelines for rationally designing the QDs and giving the mechanism basis for QD-based applications. We can also
APA, Harvard, Vancouver, ISO, and other styles
10

Gerardot, B. D., S. Seidl, P. A. Dalgarno, et al. "Contrast in transmission spectroscopy of a single quantum dot." Applied Physics Letters 90, no. 22 (2007): 221106. http://dx.doi.org/10.1063/1.2743750.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Multiexciton Spectroscopy of a Single Self-Assembled Quantum Dot." Physical Review Letters 80, no. 22 (1998): 4991–94. http://dx.doi.org/10.1103/physrevlett.80.4991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

de Vasconcellos, S. Michaelis, A. Pawlis, C. Arens, et al. "Exciton spectroscopy on single CdSe/ZnSe quantum dot photodiodes." Microelectronics Journal 40, no. 2 (2009): 215–17. http://dx.doi.org/10.1016/j.mejo.2008.07.055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Haug, R. J., R. H. Blick, and T. Schmidt. "Transport spectroscopy of single and coupled quantum-dot systems." Physica B: Condensed Matter 212, no. 3 (1995): 207–12. http://dx.doi.org/10.1016/0921-4526(95)00033-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Bonadeo, N. H., A. S. Lenihan, Gang Chen, et al. "Single quantum dot states measured by optical modulation spectroscopy." Applied Physics Letters 75, no. 19 (1999): 2933–35. http://dx.doi.org/10.1063/1.125177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Dekel, E., D. Gershoni, E. Ehrenfreund, D. Spektor, J. M. Garcia, and P. M. Petroff. "Optical spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 2, no. 1-4 (1998): 694–700. http://dx.doi.org/10.1016/s1386-9477(98)00142-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Seidl, S., A. Högele, M. Kroner, et al. "Modulation spectroscopy on a single self assembled quantum dot." physica status solidi (a) 204, no. 2 (2007): 381–89. http://dx.doi.org/10.1002/pssa.200673956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Ester, Patrick, Stefan Stufler, Steffen Michaelis de Vasconcellos, Max Bichler, and Artur Zrenner. "High resolution photocurrent-spectroscopy of a single quantum dot." physica status solidi (c) 3, no. 11 (2006): 3722–25. http://dx.doi.org/10.1002/pssc.200671572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Mintairov, Alexander, Yan Tang, James Merz, Vadim Tokranov, and Serge Oktyabrsky. "Single dot near-field spectroscopy for photonic crystal microcavities." physica status solidi (c) 2, no. 2 (2005): 845–49. http://dx.doi.org/10.1002/pssc.200460326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Dialynas, G. E., N. Chatzidimitriou, S. Kalliakos, et al. "Single dot spectroscopy on InAs/GaAs piezoelectric quantum dots." physica status solidi (a) 205, no. 11 (2008): 2566–68. http://dx.doi.org/10.1002/pssa.200780190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Yamanishi, Junsuke, Hidemasa Yamane, Yoshitaka Naitoh, Yan Jun Li, and Yasuhiro Sugawara. "Local spectroscopic imaging of a single quantum dot in photoinduced force microscopy." Applied Physics Letters 120, no. 16 (2022): 161601. http://dx.doi.org/10.1063/5.0088634.

Full text
Abstract:
Analysis of environmentally sensitive materials is essential for developing and optimizing nanostructured photochemical materials and devices. Photoinduced force microscopy (PiFM) is a promising local spectroscopic technique to visualize nanoscale local optical responses by measuring the optical forces between the scanning tip and sample. In this study, we examined isolated single quantum dots (QDs) with ligands on a gold substrate via PiFM under ultra-high vacuum to characterize the QD adsorption state on the basis of the optical force. The strong self-consistent optical interaction through t
APA, Harvard, Vancouver, ISO, and other styles
21

Layek, Arunasish, Vikas Arora, Sameer Sapra, and Arindam Chowdhury. "Unraveling the dual emission of single quantum-dot by single particle spectroscopy." Journal of Physics: Conference Series 2349, no. 1 (2022): 012026. http://dx.doi.org/10.1088/1742-6596/2349/1/012026.

Full text
Abstract:
Two-color emissive 0D–2D quantum-dot quantum-well (QD-QW) heteronanocrystals has created profound research activities. First multicolor emission in the visible region has been reported by Peng and co-workers in CdSe(core)–ZnS(barrier)-CdSe(shell) (core-barrier-shell) based heteronanostructures where the both CdSe phases (core and the shell) are emissive and tuneable as well. Owing to this enhanced and tuneable functionality, the QD-QW systems colloidal nanocrystals has fuelled their optical and imaging applications. Single particle spectroscopy has taken a giant step toward unravelling the fea
APA, Harvard, Vancouver, ISO, and other styles
22

Ates, S., S. M. Ulrich, A. Ulhaq, et al. "Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy." Nature Photonics 3, no. 12 (2009): 724–28. http://dx.doi.org/10.1038/nphoton.2009.215.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Fu, Ming, Lihua Qian, Hua Long, et al. "Tunable plasmon modes in single silver nanowire optical antennas characterized by far-field microscope polarization spectroscopy." Nanoscale 6, no. 15 (2014): 9192–97. http://dx.doi.org/10.1039/c4nr01497a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xu, C. Shan, Hahkjoon Kim, Haw Yang, and Carl C. Hayden. "Multiparameter Fluorescence Spectroscopy of Single Quantum Dot−Dye FRET Hybrids." Journal of the American Chemical Society 129, no. 36 (2007): 11008–9. http://dx.doi.org/10.1021/ja074279w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Batteh, E. T., Jun Cheng, Gang Chen, et al. "Coherent nonlinear optical spectroscopy of single quantum dot excited states." Applied Physics Letters 84, no. 11 (2004): 1928–30. http://dx.doi.org/10.1063/1.1667280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Koberling, Felix, Alf Mews, and Thomas Basché. "Single-dot spectroscopy of CdS nanocrystals and CdS/HgS heterostructures." Physical Review B 60, no. 3 (1999): 1921–27. http://dx.doi.org/10.1103/physrevb.60.1921.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sychugov, Ilya, Robert Juhasz, Augustinas Galeckas, Jan Valenta, and Jan Linnros. "Single dot optical spectroscopy of silicon nanocrystals: low temperature measurements." Optical Materials 27, no. 5 (2005): 973–76. http://dx.doi.org/10.1016/j.optmat.2004.08.046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Podemski, Paweł, Aleksander Maryński, Paweł Wyborski, Artem Bercha, Witold Trzeciakowski, and Grzegorz Sęk. "Single dot photoluminescence excitation spectroscopy in the telecommunication spectral range." Journal of Luminescence 212 (August 2019): 300–305. http://dx.doi.org/10.1016/j.jlumin.2019.04.058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Wolpert, Christian, Christian Dicken, Lijuan Wang, et al. "Ultrafast coherent spectroscopy of a single self-assembled quantum dot." physica status solidi (b) 249, no. 4 (2012): 721–30. http://dx.doi.org/10.1002/pssb.201100776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Vanmaekelbergh, Daniel, and Marianna Casavola. "Single-Dot Microscopy and Spectroscopy for Comprehensive Study of Colloidal Nanocrystals." Journal of Physical Chemistry Letters 2, no. 16 (2011): 2024–31. http://dx.doi.org/10.1021/jz200713j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Schmidt, T., R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth. "Spectroscopy of the Single-Particle States of a Quantum-Dot Molecule." Physical Review Letters 78, no. 8 (1997): 1544–47. http://dx.doi.org/10.1103/physrevlett.78.1544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Kanno, Takashi, Hiroshi Sugimoto, Anna Fucikova, Jan Valenta, and Minoru Fujii. "Single-dot spectroscopy of boron and phosphorus codoped silicon quantum dots." Journal of Applied Physics 120, no. 16 (2016): 164307. http://dx.doi.org/10.1063/1.4965986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Toda, Y., and Y. Arakawa. "Near-field spectroscopy of a single InGaAs self-assembled quantum dot." IEEE Journal of Selected Topics in Quantum Electronics 6, no. 3 (2000): 528–33. http://dx.doi.org/10.1109/2944.865108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Takemoto, Kazuya, Yoshiki Sakuma, Shinichi Hirose та ін. "Single InAs/InP quantum dot spectroscopy in 1.3–1.55μm telecommunication band". Physica E: Low-dimensional Systems and Nanostructures 26, № 1-4 (2005): 185–89. http://dx.doi.org/10.1016/j.physe.2004.08.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Sugisaki, Mitsuru, Hong-Wen Ren, Selvakumar V. Nair, et al. "Imaging and single dot spectroscopy of InP self-assembled quantum dots." Journal of Luminescence 87-89 (May 2000): 40–45. http://dx.doi.org/10.1016/s0022-2313(99)00213-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Kroner, M., S. Rémi, A. Högele, et al. "Resonant saturation laser spectroscopy of a single self-assembled quantum dot." Physica E: Low-dimensional Systems and Nanostructures 40, no. 6 (2008): 1994–96. http://dx.doi.org/10.1016/j.physe.2007.09.150.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Pistol, M. E., P. Castrillo, D. Hessman, et al. "Band-filling in InP dots: Single dot spectroscopy and carrier dynamics." Solid-State Electronics 40, no. 1-8 (1996): 357–61. http://dx.doi.org/10.1016/0038-1101(95)00328-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shtrichman, I., C. Metzner, B. D. Gerardot, W. V. Schoenfeld, and P. M. Petroff. "Optical spectroscopy of single quantum dot molecules under applied electric field." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 119–22. http://dx.doi.org/10.1016/s1386-9477(01)00500-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Beham, Evelin, Artur Zrenner, Frank Findeis, Max Bichler, and Gerhard Abstreiter. "Level bleaching in a single quantum dot observed by photocurrent spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 13, no. 2-4 (2002): 139–42. http://dx.doi.org/10.1016/s1386-9477(01)00505-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Berkovits, R., M. Abraham, and Y. Avishai. "AC conductance of an interacting quantum dot: single-electron-level spectroscopy." Journal of Physics: Condensed Matter 5, no. 13 (1993): L175—L182. http://dx.doi.org/10.1088/0953-8984/5/13/005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Wolpert, Christian, Lijuan Wang, Armando Rastelli, Oliver G. Schmidt, Harald Giessen, and Markus Lippitz. "Transient absorption spectroscopy of a single lateral InGaAs quantum dot molecule." physica status solidi (b) 249, no. 4 (2012): 731–36. http://dx.doi.org/10.1002/pssb.201100783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Heldmaier, Matthias, Claus Hermannstädter, Marcus Witzany, et al. "Growth and spectroscopy of single lateral InGaAs/GaAs quantum dot molecules." physica status solidi (b) 249, no. 4 (2012): 710–20. http://dx.doi.org/10.1002/pssb.201100800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yamada, Takumi, Kenichi Cho, Ryota Sato, Masaki Saruyama, Toshiharu Teranishi, and Yoshihiko Kanemitsu. "Photoluminescence Properties of Lead Halide Perovskite Nanocrystals Revealed By Single-Dot Spectroscopy." ECS Meeting Abstracts MA2024-02, no. 51 (2024): 3555. https://doi.org/10.1149/ma2024-02513555mtgabs.

Full text
Abstract:
Lead halide perovskites have attracted much attention as a new class of optoelectronic device materials because of their outstanding optical, electronic, and transport properties [1,2]. In addition, halide perovskite nanocrystals (NCs), which can be synthesized by simple chemical methods, show near unity photoluminescence (PL) quantum yields, with keeping the superior optoelectronic properties of their bulk counterparts [3,4]. Because of the small orbital degeneracy of the band edge, PL properties of halide perovskite NCs are governed by the formation and recombination dynamics of excitons, tr
APA, Harvard, Vancouver, ISO, and other styles
44

Srinivasan, Kartik, Oskar Painter, Andreas Stintz, and Sanjay Krishna. "Single quantum dot spectroscopy using a fiber taper waveguide near-field optic." Applied Physics Letters 91, no. 9 (2007): 091102. http://dx.doi.org/10.1063/1.2775811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Filikhin, I., E. Deyneka, and B. Vlahovic. "Single-electron levels of InAs/GaAs quantum dot: Comparison with capacitance spectroscopy." Physica E: Low-dimensional Systems and Nanostructures 31, no. 1 (2006): 99–102. http://dx.doi.org/10.1016/j.physe.2005.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Sato, Tomohiko, Toshihiko Nakaoka, Makoto Kudo, and Yasuhiko Arakawa. "Magneto-optical single dot spectroscopy of GaSb/GaAs type II quantum dots." Physica E: Low-dimensional Systems and Nanostructures 32, no. 1-2 (2006): 152–54. http://dx.doi.org/10.1016/j.physe.2005.12.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Li, J. J., and K. D. Zhu. "Coherent optical spectroscopy due to lattice vibrations in a single quantum dot." European Physical Journal D 59, no. 2 (2010): 305–8. http://dx.doi.org/10.1140/epjd/e2010-00157-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Makino, T., R. André, J. M. Gérard, et al. "Single quantum dot spectroscopy of CdSe/ZnSe grown on vicinal GaAs substrates." Applied Physics Letters 82, no. 14 (2003): 2227–29. http://dx.doi.org/10.1063/1.1565700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Valenta, Jan, Anna Fucikova, František Vácha, et al. "Light-Emission Performance of Silicon Nanocrystals Deduced from Single Quantum Dot Spectroscopy." Advanced Functional Materials 18, no. 18 (2008): 2666–72. http://dx.doi.org/10.1002/adfm.200800397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Chen, Zhanghai, L. H. Bai, S. H. Huang, et al. "SPIN-RESOLVED MAGNETO-OPTICAL STUDY OF CdSe SINGLE QUANTUM DOT." International Journal of Modern Physics B 21, no. 08n09 (2007): 1549–54. http://dx.doi.org/10.1142/s0217979207043178.

Full text
Abstract:
We report on the magneto-optical study of spin polarized energetic fine structures for exciton complex in single CdSe quantum dot (QD) by using micro- photoluminescence (micro-PL) spectroscopy. The zero-field splitting of exciton luminescence peak arisen from the anisotropic exchange interaction of carriers in the QDs was observed. The g-factors for exciton and negatively-charged exciton, i.e. trion in a single QD were determined by fitting the magnetic field dependence of the corresponding PL peaks. By exciting the single QD with circularly polarized light of σ- and σ+ polarization, the spin-
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!