To see the other types of publications on this topic, follow the link: Single particle scattering spectroscopy.

Books on the topic 'Single particle scattering spectroscopy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 17 books for your research on the topic 'Single particle scattering spectroscopy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

International, Workshop on New Opportunities in Single Crystal Spectroscopy with Neutrons (2001 Révfülöp Hungary). Proceedings of the International Workshop on New Opportunities in Single Crystal Spectroscopy with Neutrons: April 19-22, 2001, Balaton (Révfülöp), Hungary. Budapest: Kiadja a Központi Fizikai Kutató Intézet, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), ScienceDirect (Online, ed. Single molecule tools: Super-resolution, particle tracking, multiparameter and force based methods. San Diego, CA: Academic Press/Elsevier, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tsukuba Satellite Symposium on Single Molecule and Tip-Enhanced Raman Scattering (2006 Tsukuba Kenkyū Gakuen Toshi, Japan). SM-TERS 2006, Tsukuba Satellite Symposium on Single Molecule and Tip-enhanced Raman Scattering: Extended abstracts : August 17-19, 2006, AIST Tsukuba Center Auditorium, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan. Tsukuba, Japan: AIST, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Furst, Eric M., and Todd M. Squires. Light scattering microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.003.0005.

Full text
Abstract:
The fundamentals and best practices of passive microrheology using dynamic light scattering and diffusing wave spectroscopy are discussed. The principles of light scattering are introduced and applied in both the single and multiple scattering regimes, including derivations of the light and field autocorrelation functions. Applications to high-frequency microrheology and polymer dynamics are presented, including inertial corrections. Methods to treat gels and other non-ergodic samples, including multi-speckle and optical mixing designs are discussed. Dynamic light scattering (DLS) is a well established method for measuring the motion of colloids, proteins and macromolecules. Light scattering has several advantages for microrheology, especially given the availability of commercial instruments, the relatively large sample volumes that average over many probes, and the sensitivity of the measurement to small particle displacements, which can extend the range of length and timescales probed beyond those typically accessed by the methods of multiple particle tracking and bulk rheology.
APA, Harvard, Vancouver, ISO, and other styles
5

Press, W. Single-Particle Rotations in Molecular Crystals. Springer, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aroca, Ricardo, Yukihiro Ozaki, and Katrin Kneipp. Frontiers of Surface-Enhanced Raman Scattering: Single Nanoparticles and Single Cells. Wiley & Sons, Incorporated, John, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Morawetz, Klaus. Scattering on a Single Impurity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0004.

Full text
Abstract:
Evolution of a many-body system consists of permanent collisions among particles. Looking at the motion of a single particle, one can identify encounters by which a particle abruptly changes the direction of flight, these are seen as true collisions, and small-angle encounters, which in sum act as an applied force rather than randomising collisions. The scattering on impurities is used to introduce the mentioned mechanisms and, in particular, to show how they affect each other. Point impurities are assumed, i.e. impurities the potential of which is restricted to a single atomic site of the crystal lattice. In this case interaction potentials never overlap and many-body effects are due to nonlocal character of the quantum particle. To introduce elementary components of the formalism, in this chapter we first describe the interaction of an electron with a single impurity. Lippman–Schwinger equations are derived and the physics behind the collision delay, dissipativeness and optical theorems is explored.
APA, Harvard, Vancouver, ISO, and other styles
8

Frontiers Of Surfaceenhanced Raman Scattering Singlenanoparticles And Single Cells. John Wiley & Sons Inc, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morawetz, Klaus. Multiple Impurity Scattering. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0005.

Full text
Abstract:
Furnished with basic ideas about the scattering on a single impurity, the motion of a particle scattered by many randomly distributed impurities is approached. In spite of having a single particle only, this system already belongs to many-body physics as it combines randomising effects of high-angle collisions with mean-field effects due to low-angle collisions. The averaged wave function leads to the Dyson equation. Various approximations are systematically introduced and discussed ranging from Born, averaged T-matrix to coherent potential approximation. The effective medium and the effective mass as wave function renormalisations are discussed and the various approximations are accurately compared.
APA, Harvard, Vancouver, ISO, and other styles
10

Lattman, Eaton E., Thomas D. Grant, and Edward H. Snell. Shape Reconstructions from Small Angle Scattering Data. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199670871.003.0004.

Full text
Abstract:
This chapter discusses recovering shape or structural information from SAXS data. Key to any such process is the ability to generate a calculated intensity from a model, and to compare this curve with the experimental one. Models for the particle scattering density can be approximated as pure homogenenous geometric shapes. More complex particle surfaces can be represented by spherical harmonics or by a set of close-packed beads. Sometimes structural information is known for components of a particle. Rigid body modeling attempts to rotate and translate structures relative to one another, such that the resulting scattering profile calculated from the model agrees with the experimental SAXS data. More advanced hybrid modelling procedures aim to incorporate as much structural information as is available, including modelling protein dynamics. Solutions may not always contain a homogeneous set of particles. A common case is the presence of two or more conformations of a single particle or a mixture of oligomeric species. The method of singular value decomposition can extract scattering for conformationally distinct species.
APA, Harvard, Vancouver, ISO, and other styles
11

Boothroyd, Andrew T. Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.001.0001.

Full text
Abstract:
The book contains a comprehensive account of the theory and application of neutron scattering for the study of the structure and dynamics of condensed matter. All the principal experimental techniques available at national and international neutron scattering facilities are covered. The formal theory is presented, and used to show how neutron scattering measurements give direct access to a variety of correlation and response functions which characterize the equilibrium properties of bulk matter. The determination of atomic arrangements and magnetic structures by neutron diffraction and neutron optical methods is described, including single-crystal and powder diffraction, diffuse scattering from disordered structures, total scattering, small-angle scattering, reflectometry, and imaging. The principles behind the main neutron spectroscopic techniques are explained, including continuous and time-of-flight inelastic scattering, quasielastic scattering, spin-echo spectroscopy, and Compton scattering. The scattering cross-sections for atomic vibrations in solids, diffusive motion in atomic and molecular fluids, and single-atom and cooperative magnetic excitations are calculated. A detailed account of neutron polarization analysis is given, together with examples of how polarized neutrons can be exploited to obtain information about structural and magnetic correlations which cannot be obtained by other methods. Alongside the theoretical aspects, the book also describes the essential practical information needed to perform experiments and to analyse and interpret the data. Exercises are included at the end of each chapter to consolidate and enhance understanding of the material, and a summary of relevant results from mathematics, quantum mechanics, and linear response theory, is given in the appendices.
APA, Harvard, Vancouver, ISO, and other styles
12

Zhou, S. Y., and A. Lanzara. The electronic structure of epitaxial graphene—A view from angle-resolved photoemission spectroscopy. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.14.

Full text
Abstract:
This article analyzes the electronic structure of epitaxial graphene using angle-resolved photoemission spectroscopy (ARPES). It first describes how the carbon atoms in graphene are arranged before discussing the growth and characterization of graphene samples. It then considers the electronic structure of epitaxial graphene, along with the gap opening in single-layer epitaxial graphene. It also examines possible mechanisms for the gap opening in graphene, including quantum confinement, mixing of the states between the Brillouin zone corner K points induced by scattering, and hybridization of the valence and conduction bands caused by symmetry breaking in carbon sublattices. Clear deviations from the conical dispersions are observed near the Diracpoint energy, which can be interpreted as a gap opening attributed to graphene–substrate interaction. Graphene–substrate interaction is thus a promising route for engineering the bandgap in graphene.
APA, Harvard, Vancouver, ISO, and other styles
13

Saito, R., A. Jorio, J. Jiang, K. Sasaki, G. Dresselhaus, and M. S. Dresselhaus. Optical properties of carbon nanotubes and nanographene. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.1.

Full text
Abstract:
This article examines the optical properties of single-wall carbon nanotubes (SWNTs) and nanographene. It begins with an overview of the shape of graphene and nanotubes, along wit the use of Raman spectroscopy to study the structure and exciton physics of SWNTs. It then considers the basic definition of a carbon nanotube and graphene, focusing on the crystal structure of graphene and the electronic structure of SWNTs, before describing the experimental setup for confocal resonance Raman spectroscopy. It also discusses the process of resonance Raman scattering, double-resonance Raman scattering, and the Raman signals of a SWNT as well as the dispersion behavior of second-order Raman modes, the doping effect on the Kohn anomaly of phonons, and the elastic scattering of electrons and photons. The article concludes with an analysis of excitons in SWNTs and outlines future directions for research.
APA, Harvard, Vancouver, ISO, and other styles
14

Yang, Jinlong, and Qunxiang Li. Theoretical simulations of scanning tunnelling microscope images and spectra of nanostructures. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533046.013.15.

Full text
Abstract:
This article presents theoretical simulations of scanning tunnelling microscope (STM) images and spectra of nanostructures. It begins with an overview of the theories of STM and scanning tunnelling spectroscopy (STS), focusing on four main approaches: the perturbation or Bardeen approach, the Tersoff–Hamann approach and its extension, the scattering theory or Landauer–Bütticker approach, and the non-equilibrium Green's function or Keldysh approach. It then considers conventional STM and STS experimental investigations of various systems including clean surfaces, ad-atoms, single molecules, self-assembled monolayers, and nanostructures. It also discusses STM activities that go beyond conventional STM images and STS, such as functionalized STM tip, inelastic spectroscopy identification, manipulation, molecular electronics and molecular machines.
APA, Harvard, Vancouver, ISO, and other styles
15

Horing, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.

Full text
Abstract:
Chapter 5 introduces single-particle retarded Green’s functions, which provide the probability amplitude that a particle created at (x, t) is later annihilated at (x′,t′). Partial Green’s functions, which represent the time development of one (or a few) state(s) that may be understood as localized but are in interaction with a continuum of states, are discussed and applied to chemisorption. Introductions are also made to the Dyson integral equation, T-matrix and the Dirac delta-function potential, with the latter applied to random impurity scattering. The retarded Green’s function in the presence of random impurity scattering is exhibited in the Born and self-consistent Born approximations, with application to Ando’s semi-elliptic density of states for the 2D Landau-quantized electron-impurity system. Important retarded Green’s functions and their methods of derivation are discussed. These include Green’s functions for electrons in magnetic fields in both three dimensions and two dimensions, also a Hamilton equation-of-motion method for the determination of Green’s functions with application to a 2D saddle potential in a time-dependent electric field. Moreover, separable Hamiltonians and their product Green’s functions are discussed with application to a one-dimensional superlattice in axial electric and magnetic fields. Green’s function matching/joining techniques are introduced and applied to spatially varying mass (heterostructures) and non-local electrostatics (surface plasmons).
APA, Harvard, Vancouver, ISO, and other styles
16

Furst, Eric M., and Todd M. Squires. Microrheology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199655205.001.0001.

Full text
Abstract:
We present a comprehensive overview of microrheology, emphasizing the underlying theory, practical aspects of its implementation, and current applications to rheological studies in academic and industrial laboratories. Key methods and techniques are examined, including important considerations to be made with respect to the materials most amenable to microrheological characterization and pitfalls to avoid in measurements and analysis. The fundamental principles of all microrheology experiments are presented, including the nature of colloidal probes and their movement in fluids, soft solids, and viscoelastic materials. Microrheology is divided into two general areas, depending on whether the probe is driven into motion by thermal forces (passive), or by an external force (active). We present the theory and practice of passive microrheology, including an in-depth examination of the Generalized Stokes-Einstein Relation (GSER). We carefully treat the assumptions that must be made for these techniques to work, and what happens when the underlying assumptions are violated. Experimental methods covered in detail include particle tracking microrheology, tracer particle microrheology using dynamic light scattering and diffusing wave spectroscopy, and laser tracking microrheology. Second, we discuss the theory and practice of active microrheology, focusing specifically on the potential and limitations of extending microrheology to measurements of non-linear rheological properties, like yielding and shear-thinning. Practical aspects of magnetic and optical tweezer measurements are preseted. Finally, we highlight important applications of microrheology, including measurements of gelation, degradation, high-throughput rheology, protein solution viscosities, and polymer dynamics.
APA, Harvard, Vancouver, ISO, and other styles
17

Morawetz, Klaus. Interacting Systems far from Equilibrium. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.001.0001.

Full text
Abstract:
In quantum statistics based on many-body Green’s functions, the effective medium is represented by the selfenergy. This book aims to discuss the selfenergy from this point of view. The knowledge of the exact selfenergy is equivalent to the knowledge of the exact correlation function from which one can evaluate any single-particle observable. Complete interpretations of the selfenergy are as rich as the properties of the many-body systems. It will be shown that classical features are helpful to understand the selfenergy, but in many cases we have to include additional aspects describing the internal dynamics of the interaction. The inductive presentation introduces the concept of Ludwig Boltzmann to describe correlations by the scattering of many particles from elementary principles up to refined approximations of many-body quantum systems. The ultimate goal is to contribute to the understanding of the time-dependent formation of correlations. Within this book an up-to-date most simple formalism of nonequilibrium Green’s functions is presented to cover different applications ranging from solid state physics (impurity scattering, semiconductor, superconductivity, Bose–Einstein condensation, spin-orbit coupled systems), plasma physics (screening, transport in magnetic fields), cold atoms in optical lattices up to nuclear reactions (heavy-ion collisions). Both possibilities are provided, to learn the quantum kinetic theory in terms of Green’s functions from the basics using experiences with phenomena, and experienced researchers can find a framework to develop and to apply the quantum many-body theory straight to versatile phenomena.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography