Academic literature on the topic 'Singular decomposition'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Singular decomposition.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Singular decomposition"
Caltenco, J. H., José Luis Lopez-Bonilla, B. E. Carvajal-Gámez, and P. Lam-Estrada. "Singular Value Decomposition." Bulletin of Society for Mathematical Services and Standards 11 (September 2014): 13–20. http://dx.doi.org/10.18052/www.scipress.com/bsmass.11.13.
Full textКутрунов, В., and Т. Латфуллин. "НАСЛЕДОВАНИЕ СИНГУЛЯРНЫХ ВЕКТОРОВ ПРИ ПОПОЛНЕНИИ МАТРИЦЫ СТОЛБЦОМ." EurasianUnionScientists 6, no. 12(81) (January 18, 2021): 36–40. http://dx.doi.org/10.31618/esu.2413-9335.2020.6.81.1173.
Full textMaehara, Takanori, and Kazuo Murota. "Simultaneous singular value decomposition." Linear Algebra and its Applications 435, no. 1 (July 2011): 106–16. http://dx.doi.org/10.1016/j.laa.2011.01.007.
Full textZhang, Lingsong, and Yao Wang. "Visualizing singular value decomposition." Wiley Interdisciplinary Reviews: Computational Statistics 6, no. 3 (March 14, 2014): 197–201. http://dx.doi.org/10.1002/wics.1295.
Full textKOH, MIN-SUNG. "A QUINTET SINGULAR VALUE DECOMPOSITION THROUGH EMPIRICAL MODE DECOMPOSITIONS." Advances in Adaptive Data Analysis 06, no. 02n03 (April 2014): 1450010. http://dx.doi.org/10.1142/s1793536914500101.
Full textLem, Kong Hoong. "Truncated singular value decomposition in ripped photo recovery." ITM Web of Conferences 36 (2021): 04008. http://dx.doi.org/10.1051/itmconf/20213604008.
Full textCai, Jian-Feng, and Stanley Osher. "Fast singular value thresholding without singular value decomposition." Methods and Applications of Analysis 20, no. 4 (2013): 335–52. http://dx.doi.org/10.4310/maa.2013.v20.n4.a2.
Full textChen, Zhen, Lifeng Qin, Shunbo Zhao, Tommy HT Chan, and Andy Nguyen. "Toward efficacy of piecewise polynomial truncated singular value decomposition algorithm in moving force identification." Advances in Structural Engineering 22, no. 12 (May 22, 2019): 2687–98. http://dx.doi.org/10.1177/1369433219849817.
Full textWang, Xin, Zhixin Song, and Youle Wang. "Variational Quantum Singular Value Decomposition." Quantum 5 (June 29, 2021): 483. http://dx.doi.org/10.22331/q-2021-06-29-483.
Full textGass, S. I., and T. Rapcsák. "Singular value decomposition in AHP." European Journal of Operational Research 154, no. 3 (May 2004): 573–84. http://dx.doi.org/10.1016/s0377-2217(02)00755-5.
Full textDissertations / Theses on the topic "Singular decomposition"
Ek, Christoffer. "Singular Value Decomposition." Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-21481.
Full textDigital information transmission is a growing field. Emails, videos and so on are transmitting around the world on a daily basis. Along the growth of using digital devises there is in some cases a great interest of keeping this information secure. In the field of signal processing a general concept is antenna transmission. Free space between an antenna transmitter and a receiver is an example of a system. In a rough environment such as a room with reflections and independent electrical devices there will be a lot of distortion in the system and the signal that is transmitted might, due to the system characteristics and noise be distorted. System identification is another well-known concept in signal processing. This thesis will focus on system identification in a rough environment and unknown systems. It will introduce mathematical tools from the field of linear algebra and applying them in signal processing. Mainly this thesis focus on a specific matrix factorization called Singular Value Decomposition (SVD). This is used to solve complicated inverses and identifying systems. This thesis is formed and accomplished in collaboration with Combitech AB. Their expertise in the field of signal processing was of great help when putting the algorithm in practice. Using a well-known programming script called LabView the mathematical tools were synchronized with the instruments that were used to generate the systems and signals.
Kwizera, Petero. "Matrix Singular Value Decomposition." UNF Digital Commons, 2010. http://digitalcommons.unf.edu/etd/381.
Full textSamuelsson, Saga. "The Singular Value Decomposition Theorem." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-150917.
Full textDenna uppsats kommer presentera en självständig exposition av singulärvärdesuppdelningssatsen för linjära transformationer. En direkt följd är singulärvärdesuppdelning för komplexa matriser.
Jolly, Vineet Kumar. "Activity Recognition using Singular Value Decomposition." Thesis, Virginia Tech, 2006. http://hdl.handle.net/10919/35219.
Full textMaster of Science
Khatavkar, Rohan. "Sparse and orthogonal singular value decomposition." Kansas State University, 2013. http://hdl.handle.net/2097/15992.
Full textDepartment of Statistics
Kun Chen
The singular value decomposition (SVD) is a commonly used matrix factorization technique in statistics, and it is very e ective in revealing many low-dimensional structures in a noisy data matrix or a coe cient matrix of a statistical model. In particular, it is often desirable to obtain a sparse SVD, i.e., only a few singular values are nonzero and their corresponding left and right singular vectors are also sparse. However, in several existing methods for sparse SVD estimation, the exact orthogonality among the singular vectors are often sacri ced due to the di culty in incorporating the non-convex orthogonality constraint in sparse estimation. Imposing orthogonality in addition to sparsity, albeit di cult, can be critical in restricting and guiding the search of the sparsity pattern and facilitating model interpretation. Combining the ideas of penalized regression and Bregman iterative methods, we propose two methods that strive to achieve the dual goal of sparse and orthogonal SVD estimation, in the general framework of high dimensional multivariate regression. We set up simulation studies to demonstrate the e cacy of the proposed methods.
Kardamis, Joseph R. "Audio watermarking techniques using singular value decomposition /." Online version of thesis, 2007. http://hdl.handle.net/1850/4493.
Full textMontagnon, Chris. "Singular value decomposition and time series forecasting." Thesis, Imperial College London, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.535012.
Full textRajamanickam, Sivasankaran. "Efficient algorithms for sparse singular value decomposition." [Gainesville, Fla.] : University of Florida, 2009. http://purl.fcla.edu/fcla/etd/UFE0041153.
Full textDeng, Cheng. "Time Series Decomposition Using Singular Spectrum Analysis." Digital Commons @ East Tennessee State University, 2014. https://dc.etsu.edu/etd/2352.
Full textHo, Anna. "Cross sentence alignment based on singular value decomposition." Thesis, University of Macau, 2008. http://umaclib3.umac.mo/record=b1942865.
Full textBooks on the topic "Singular decomposition"
Deift, Percy. The bidiagonal singular value decomposition and Hamiltonian mechanics. New York: Courant Institute of Mathematical Sciences, New York University, 1989.
Find full textKei, Takeuchi, Takane Yoshio, and SpringerLink (Online service), eds. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York, NY: Springer Science+Business Media, LLC, 2011.
Find full textYanai, Haruo, Kei Takeuchi, and Yoshio Takane. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9887-3.
Full textDhar, Pranab Kumar, and Tetsuya Shimamura. Advances in Audio Watermarking Based on Singular Value Decomposition. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14800-7.
Full textGilsinn, David. Updating a turning center error model by singular value decomposition. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2001.
Find full textElsner, James B. Singular spectrum analysis: A new tool in time series analysis. New York: Plenum Press, 1996.
Find full textSen, sujit. Innovations and singular value decomposition for blind sequence detection in wireless channels. Ottawa: National Library of Canada, 1999.
Find full textTorres, Rodolfo H. Boundedness results for operators with singular kernels on distribution spaces. Providence, R.I., USA: American Mathematical Society, 1991.
Find full textYao, Kung. Final report to NASA-Ames Research Center, Moffett Field, CA 94034, contract no. NAG 2-433, January 1, 1987 - March 31, 1988 on efficient load measurements using singular value decomposition. Los Angeles, CA: Laboratory for Flight Systems Research, University of California, 1989.
Find full textYao, Kung. Final report to NASA-Ames Research Center, Moffett Field, CA 94034, contract no. NAG 2-433, January 1, 1987 - March 31, 1988 on efficient load measurements using singular value decomposition. Los Angeles, CA: Laboratory for Flight Systems Research, University of California, 1989.
Find full textBook chapters on the topic "Singular decomposition"
Aggarwal, Charu C. "Singular Value Decomposition." In Linear Algebra and Optimization for Machine Learning, 299–337. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40344-7_7.
Full textKanatani, Kenichi. "Singular Value Decomposition." In Computer Vision, 1–4. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-03243-2_802-1.
Full textBrown, Jonathon D. "Singular Value Decomposition." In Advanced Statistics for the Behavioral Sciences, 149–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-93549-2_5.
Full textZhang, Yanchun, and Guandong Xu. "Singular Value Decomposition." In Encyclopedia of Database Systems, 3506–8. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4614-8265-9_538.
Full textZhang, Yanchun, and Guandong Xu. "Singular Value Decomposition." In Encyclopedia of Database Systems, 2657–58. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-39940-9_538.
Full textPuntanen, Simo, George P. H. Styan, and Jarkko Isotalo. "Singular Value Decomposition." In Matrix Tricks for Linear Statistical Models, 391–414. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-10473-2_20.
Full textLange, Kenneth. "Singular Value Decomposition." In Numerical Analysis for Statisticians, 129–42. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-5945-4_9.
Full textZhang, Yanchun, and Guandong Xu. "Singular Value Decomposition." In Encyclopedia of Database Systems, 1–3. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4899-7993-3_538-2.
Full textHelmke, Uwe, and John B. Moore. "Singular Value Decomposition." In Communications and Control Engineering, 81–100. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-3467-1_3.
Full textGodunov, S. K., A. G. Antonov, O. P. Kiriljuk, and V. I. Kostin. "Singular Value Decomposition." In Guaranteed Accuracy in Numerical Linear Algebra, 1–108. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1952-8_1.
Full textConference papers on the topic "Singular decomposition"
"Material decomposition using a singular value decomposition method." In 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC). IEEE, 2013. http://dx.doi.org/10.1109/nssmic.2013.6829379.
Full textLe Bihan, N. "Color image decomposition using quaternion singular value decomposition." In International Conference on Visual Information Engineering (VIE 2003). Ideas, Applications, Experience. IEE, 2003. http://dx.doi.org/10.1049/cp:20030500.
Full textSekmen, Ali, Akram Aldroubi, Ahmet Bugra Koku, and Keaton Hamm. "Matrix resconstruction: Skeleton decomposition versus singular value decomposition." In 2017 International Symposium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS). IEEE, 2017. http://dx.doi.org/10.23919/spects.2017.8046777.
Full textHan, Shuguo, Wee Keong Ng, and Philip S. Yu. "Privacy-Preserving Singular Value Decomposition." In 2009 IEEE 25th International Conference on Data Engineering (ICDE). IEEE, 2009. http://dx.doi.org/10.1109/icde.2009.217.
Full textPilgram, Schappacher, and Pfurtscheller. "Method Using Singular Value Decomposition." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1992. http://dx.doi.org/10.1109/iembs.1992.592988.
Full textMistry, Nirav, Sudeep Tanwar, Sudhanshu Tyagi, and Pradeep Kr Singh. "Tensor Decomposition of Biometric Data using Singular Value Decomposition." In 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2018. http://dx.doi.org/10.1109/pdgc.2018.8745719.
Full textSugamya, Katta, Suresh Pabboju, and A. VinayaBabu. "Image enhancement using singular value decomposition." In 2016 International Conference on Research Advances in Integrated Navigation Systems (RAINS). IEEE, 2016. http://dx.doi.org/10.1109/rains.2016.7764388.
Full textHegedus, Istvan, Mark Jelasity, Levente Kocsis, and Andras A. Benczur. "Fully distributed robust singular value decomposition." In 2014 IEEE Thirteenth International Conference on Peer-to-Peer Computing (P2P). IEEE, 2014. http://dx.doi.org/10.1109/p2p.2014.6934299.
Full textHou, Junhui, Jie Chen, Lap-Pui Chau, and Ying He. "Sparse two-dimensional singular value decomposition." In 2016 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2016. http://dx.doi.org/10.1109/icme.2016.7552922.
Full textH. Fan, Michael K., and Andre L. Tits. "Toward a structure singular value decomposition." In 26th IEEE Conference on Decision and Control. IEEE, 1987. http://dx.doi.org/10.1109/cdc.1987.272766.
Full textReports on the topic "Singular decomposition"
Luk, Franklin T. Deconvolution and Singular Value Decomposition. Fort Belvoir, VA: Defense Technical Information Center, November 1994. http://dx.doi.org/10.21236/ada286582.
Full textMiller, Timothy C., and Ravinder Chona. Overdeterministic Fracture Analysis and Singular Value Decomposition. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada409496.
Full textFahnline, JB, RL Campbell, and SA Hambric. Modal Analysis Using the Singular Value Decomposition. Office of Scientific and Technical Information (OSTI), February 2004. http://dx.doi.org/10.2172/836294.
Full textMiller, Timothy C., and Ravinder Chona. Overdeterministic Fracture Analysis and Singular Value Decomposition. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada386847.
Full textBro, Rasmus, Evrim Acar, and Tamara Gibson Kolda. Resolving the sign ambiguity in the singular value decomposition. Office of Scientific and Technical Information (OSTI), October 2007. http://dx.doi.org/10.2172/920802.
Full textRust, Bert W. Truncating the singular value decomposition for ILL-posed problems. Gaithersburg, MD: National Institute of Standards and Technology, 1998. http://dx.doi.org/10.6028/nist.ir.6131.
Full textGilsinn, David E., Herbert T. Brandy, and Alice V. Ling. Updating a turning center error model by singular value decomposition. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6722.
Full textHoff, Peter D. Model Averaging and Dimension Selection for the Singular Value Decomposition. Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada454966.
Full textKim, J. S. Data analysis of tokamak experiments with singular value decomposition. Final report. Office of Scientific and Technical Information (OSTI), April 1997. http://dx.doi.org/10.2172/555486.
Full textChu, Nhi-Anh. An Implementation of the Singular Value Decomposition on the Connection Machine CM-2. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada234124.
Full text