Academic literature on the topic 'Singularité de systèmes intégrables'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Singularité de systèmes intégrables.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Singularité de systèmes intégrables"
Lesfari, Ahmed. "Analyse des singularités de quelques systèmes intégrables." Comptes Rendus Mathematique 341, no. 2 (July 2005): 85–88. http://dx.doi.org/10.1016/j.crma.2005.06.006.
Full textBalde, Moussa, Salomon Sambou, and El Hadj Cheikh Mbacke Diop. "Systèmes de contact intégrables à singularitées non dégénérées." Comptes Rendus Mathematique 343, no. 11-12 (December 2006): 751–54. http://dx.doi.org/10.1016/j.crma.2006.10.022.
Full textTien Zung, Nguyen. "Actions toriques et groupes d'automorphismes de singularités des systèmes dynamiques intégrables." Comptes Rendus Mathematique 336, no. 12 (June 2003): 1015–20. http://dx.doi.org/10.1016/s1631-073x(03)00242-5.
Full textLesfari, A. "Systèmes hamiltoniens complètement intégrables." Aequationes mathematicae 82, no. 1-2 (May 17, 2011): 165–200. http://dx.doi.org/10.1007/s00010-011-0078-x.
Full textLesfari, A. "Systèmes dynamiques algébriquement complètement intégrables et géométrie." Annals of West University of Timisoara - Mathematics and Computer Science 53, no. 1 (July 1, 2015): 109–36. http://dx.doi.org/10.1515/awutm-2015-0006.
Full textKhemar, Idrisse. "Surfaces isotropes de O et systèmes intégrables." Journal of Differential Geometry 79, no. 3 (July 2008): 479–516. http://dx.doi.org/10.4310/jdg/1213798185.
Full textFrançoise, J. P. "Systèmes intégrables à $m$-corps sur la droite." Mémoires de la Société mathématique de France 1 (1991): 111–22. http://dx.doi.org/10.24033/msmf.357.
Full textLablée, Olivier. "Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique." Séminaire de théorie spectrale et géométrie 26 (2008): 29–76. http://dx.doi.org/10.5802/tsg.260.
Full textLablée, Olivier. "Sur le spectre semi-classique d’un système intégrable de dimension 1 autour d’une singularité hyperbolique." Annales de la faculté des sciences de Toulouse Mathématiques 19, no. 1 (2010): 191–229. http://dx.doi.org/10.5802/afst.1241.
Full textAmmar, F. "Systèmes hamiltoniens complètement intégrables et déformations d'algèbres de Lie." Publicacions Matemàtiques 38 (July 1, 1994): 427–31. http://dx.doi.org/10.5565/publmat_38294_11.
Full textDissertations / Theses on the topic "Singularité de systèmes intégrables"
Alamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Full textThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Bouloc, Damien. "Géométrie et topologie de systèmes dynamiques intégrables." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30099/document.
Full textIn this thesis, we are interested in two different aspects of integrable dynamical systems. The first part is devoted to the study of three families of integrable Hamiltonian systems: the systems of bending flows of Kapovich and Millson on the moduli spaces of 3D polygons with fixed side lengths, the Gelfand-Cetlin systems introduced by Guillemin and Sternberg on the coadjoint orbits of the Lie group U(n), and a family of integrable systems defined by Nohara and Ueda on the Grassmannian Gr(2,n). In each case we prove that the fibers of the momentum map are embedded submanifolds for which we give geometric models in terms of quotients manifolds. In the second part we carry on with a study initiated by Zung and Minh of the totally hyperbolic actions of R^n on compact n-dimensional manifolds that appear naturally when investigating integrable non-hamiltonian systems with nondegenerate singularities. We study the flow generated by the action of a generic vector in Rn. We define a notion of index for its singularities and we use this flow to obtain results on the number of orbits of given dimension. We investigate further the 2-dimensional case, and more particularly the case of the sphere S2, where the orbits of the action draw an embedded graph of which we analyse the combinatorics. Finally, we provide explicit examples of totally hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3
Vũ, Ngoc San. "Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités." Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10270.
Full textLablée, Olivier. "Autour de la dynamique semi-classique de certains systèmes complètement intégrables." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00439641.
Full textFittouhi, Yasmine. "Étude des fibres singulières des systèmes de Mumford impairs et pairs." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2252/document.
Full textThis thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians
Orieux, Michaël. "Quelques propriétés et applications du contrôle en temps minimal." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED079.
Full textThis thesis contribute to the optimal time study of control-affine systems. These problems arise naturally from physics, and contains, for instance, mechanical systems. We tackle the study of their singularities, while minimizing the final time, meaning the time on which the aim is reached. We give a precise study of the extremal flow, for mechanical systems, for starter, and then, in general. This leads to the knowledge of the flow regularity: it is smooth on a stratification around the singular set. We then apply those results to mechanical systems, and orbit transfer problems, with two and three bodies, giving an upper bound to the number of singularities occurring during a transfer. We then change our viewpoint to study the optimality of such extremal in general, and give an optimality criteria than can be easily checkednumerically. In the last chapter we study the singularities of the controlled Kepler problem through another path: we prove a non-integrability theorem - in the Liouville sens - for the Hamiltonian system given by the minimum time orbit transfer (or rendez-vous) problem in the Kepler configuration
Leurent, Sebastien. "Systèmes intégrables et dualité AdS/CFT." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00797842.
Full textLeurent, Sébastien. "Systèmes intégrables et dualité AdS/CFT." Paris 6, 2012. http://www.theses.fr/2012PA066238.
Full textThis thesis is devoted to the study of integrable quantum systems such as spin chains, bidimentional field theories and the AdS/CFT duality. This AdS/CFT duality is a conjecture, stated in the end of the last century, which relates (for instance) the non-perturbative regime of a superconformal gauge theory (called N=4 super Yang-Mills) and the perturbative regime of a string theory on a 10-dimensioonal space with the geometry AdS₅xS⁵. This thesis explores the similarities between integrable spin chains and quantum field theories, such as Super Yang Mills. We first study integrable spin chains and build explicitely a polynomial "Bäcklund flow" and polynomial "Q-operators", which allow to diagonalize the Hamiltonian. We then study integrable field theories et show how to obtain "Q-functions", analogous to the Q-operators built for spin chains. It turns out that several important informations are contained in the analytic properties of these Q-functions. That allows to obtain, in the framework of the thermodynamic Bethe Ansatz, a finite number of non-linear integral equations encoding the spectrum of the theory which we study. This system of equations is equivalent to an infinite system of equations, known as "Y-system", which had been quite recently conjectured in the case of the AdS/CFT duality
Crampé, Nicolas. "Approches algébriques dans les systèmes intégrables." Chambéry, 2004. http://www.theses.fr/2004CHAMA001.
Full textThe aim of this thesis is mainly the study of quantum integrable systems. In particular, algebraic methods are developped in order to study the symmetries of quantum models. The thesis is made out of two parts. In this first part, mathematical tools used in the study of integrable systems are presented. We shall define quantum groups and in particular Yangians. These algebras are the cause of recent developments in mathematics and physics. Their Hopf structure which is essential for the understanding of integrable systems will be discussed. These algebraic concepts will be generalized to any Lie algebra and superalgebra and finally, we will focus on the subalgebras of the Yangians. The second part uses these concepts to study quantum integrable systems, namely the so-called Sutherland model and spin chains. An important part of this part will be devoted to the study of these integrable systems in the presence of non-trivial boundary conditions
Cresson, Jacky. "Propriétés d'instabilité des systèmes Hamiltoniens proches de systèmes intégrables." Observatoire de Paris, 1997. https://hal.archives-ouvertes.fr/tel-02071388.
Full textThe purpose of this thesis is to study instability properties of near-integrable Hamiltoniens systems, in particular Arnold’s diffusion. We first describe the phase-space near a partially hyperbolic torus and along a transition chain. We prove that hyperbolic tori, which come from the destruction of resonant tori, are transition tori. We then show that transvers homoclinic partially hyperbolic tori possess a symbolic dynamics. These results allow us to prove the existence of instability’s orbits along a chain as well as periodic orbits of arbitrarily hight period as conjectured by Homes-Marsden. Second, we estimate the time of drift along a chain by geometrical methods. We precise the role of the splitting size, ergodisation time… We prove that for initially hyperbolic Hamiltonian systems this time of drift is polynomial. Our method is general and applies on abstract chain of tori, which is not the case of variational methods. Last, we apply our result on specific examples. We first describe a class of systems, which always possess transition chain. We then show that this class contains a lot of classical systems as the three body problem, Rydberg’s atom…
Books on the topic "Singularité de systèmes intégrables"
Albert, Claude. Integrable Systems and Foliations: Feuilletages et Systèmes Intégrables. Birkhäuser, 2011.
Find full textAudin, Michele. Les Systemes Hamiltoniens Et Leur Integrabilite. Societe Mathematique De France, 2001.
Find full textBook chapters on the topic "Singularité de systèmes intégrables"
Boucetta, Mohamed. "Géometrie Globale des Systèmes Hamiltoniens Complètement Intégrables et Variables Action-Angle avec Singularités." In Mathematical Sciences Research Institute Publications, 13–22. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_2.
Full textBennequin, Daniel. "Hommage à Jean-Louis Verdier : au jardin des systèmes intégrables." In Integrable Systems, 1–36. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_1.
Full text