To see the other types of publications on this topic, follow the link: Singularité de systèmes intégrables.

Dissertations / Theses on the topic 'Singularité de systèmes intégrables'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Singularité de systèmes intégrables.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Alamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.

Full text
Abstract:
Le système de Gelfand-Ceitlin a été découvert par V. Guillemin et S. Sternberg en 1983. C'est un système bien connu en géométrie, mais ses singularités sont mal comprises. Le but de cette thèse est d'étudier la géométrie et la topologie des systèmes hamiltoniens intégrables et la relation avec la théorie de Lie et la géométrie symplectique et de Poisson. On s'intéresse au système de Gelfand-Ceitlin sur une orbite coadjointe générique du groupe SU(3). Pour une description géométrique de ce système, on a étudié la topologie de la variété ambiante. On calcule ses invariants (les groupes de cohomologie, d'homotopie). On étudie le problème de convexité en relation avec ce système. L'étude des singularités de ce système montre que toutes les singularités sont non dégénérées de type elliptique, sauf une dégénérée. On décrit soigneusement le comportement du système au voisinage de cette singularité, on donne un modèle simple pour la singularité dégénérée que l'on prouve grâce à un théorème qui établit un symplectomorphisme entre la singularité dégénérée et le modèle de flots géodésiques sur la sphère S3
The Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
APA, Harvard, Vancouver, ISO, and other styles
2

Bouloc, Damien. "Géométrie et topologie de systèmes dynamiques intégrables." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30099/document.

Full text
Abstract:
Dans cette thèse, on s'intéresse à deux aspects différents des systèmes dynamiques intégrables. La première partie est dévouée à l'étude de trois familles de systèmes hamiltoniens intégrables : les systèmes de pliage de Kapovich et Millson sur les espaces de modules de polygones 3D de longueurs de côtés fixées, les systèmes de Gelfand-Cetlin introduits par Guillemin et Sternberg sur les orbites coadjointes du groupe de Lie U(n), et une famille de systèmes définie par Nohara et Ueda sur la variété grassmannienne Gr(2,n). Dans chaque cas on montre que les fibres singulières de l'application moment sont des sous-variétés plongées et on en donne des modèles géométriques sous la forme de variétés quotients. La deuxième partie poursuit une étude initiée par Zung et Minh sur les actions totalement hyperboliques de Rn sur des variétés compactes de dimension n, qui apparaissent naturellement lors de l'étude des systèmes non-hamiltoniens intégrables dont toutes les singularités sont non-dégénérées. On s'intéresse au flot engendré par l'action d'un vecteur générique de Rn. On donne une définition d'indice pour ses singularités qu'on relie à la théorie de Morse classique, et on utilise ce flot pour obtenir des résultats sur le nombres d'orbites de dimension donnée. Une étude plus poussée est effectuée en dimension 2, et en particulier sur la sphère S2, où les orbites de l'action dessinent un graphe plongé dont on analyse la combinatoire. On termine en construisant explicitement des exemples d'actions hyperboliques en dimension 3 sur la sphère S3 et dans l'espace projectif RP3
In this thesis, we are interested in two different aspects of integrable dynamical systems. The first part is devoted to the study of three families of integrable Hamiltonian systems: the systems of bending flows of Kapovich and Millson on the moduli spaces of 3D polygons with fixed side lengths, the Gelfand-Cetlin systems introduced by Guillemin and Sternberg on the coadjoint orbits of the Lie group U(n), and a family of integrable systems defined by Nohara and Ueda on the Grassmannian Gr(2,n). In each case we prove that the fibers of the momentum map are embedded submanifolds for which we give geometric models in terms of quotients manifolds. In the second part we carry on with a study initiated by Zung and Minh of the totally hyperbolic actions of R^n on compact n-dimensional manifolds that appear naturally when investigating integrable non-hamiltonian systems with nondegenerate singularities. We study the flow generated by the action of a generic vector in Rn. We define a notion of index for its singularities and we use this flow to obtain results on the number of orbits of given dimension. We investigate further the 2-dimensional case, and more particularly the case of the sphere S2, where the orbits of the action draw an embedded graph of which we analyse the combinatorics. Finally, we provide explicit examples of totally hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3
APA, Harvard, Vancouver, ISO, and other styles
3

Vũ, Ngoc San. "Sur le spectre des systèmes complètement intégrables semi-classiques avec singularités." Université Joseph Fourier (Grenoble ; 1971-2015), 1998. http://www.theses.fr/1998GRE10270.

Full text
Abstract:
Le sujet principal de cette these est l'etude microlocale semi-classique des systemes de n operateurs pseudo-differentiels qui commutent sur une variete de dimension n, au voisinage d'un point fixe du flot hamiltonien completement integrable associe. La presence d'une telle singularite influence aussi bien la dynamique locale du systeme classique que la topologie globale des feuilles lagrangiennes. Cette these s'attache a deceler les repercussions quantiques de ces aspects. Sous des hypotheses de non-degenerescence pour la singularite, mais sans hypothese d'analyticite, l'aspect local est resolu par l'enonce d'une forme normale microlocale. L'aspect global est discute du point de vue de la monodromie du systeme, qui est une obstruction a l'existence de variables actions-angles globales. La monodromie quantique est definie comme un invariant du spectre conjoint du systeme quantique. Les systemes possedant une singularite de type focus-focus, comme le probleme du pendule spherique etudie par duistermaat, sont concernes par ces deux aspects. Nous les traitons en detail, en determinant, dans l'esprit des travaux de colin de verdiere et parisse, les conditions de bohr-sommerfeld singulieres dont les solutions donnent le spectre conjoint pres de la valeur critique. Elles nous permettent d'obtenir des informations asymptotiques et exactes sur la structure du spectre, corroborees par les resultats numeriques de child. Nous traitons aussi dans cette these le probleme de l'abandon de l'hypothese de complete integrabilite, dans le cadre des etats semi-excites de sjostrand. Une variante de la forme normale de birkhoff quantique est presentee, qui fournit une nouvelle approche du probleme de la determination du spectre en presence de frequences resonnantes. Nous appliquons la methode au cas de la resonance 1 : 1 : : 1.
APA, Harvard, Vancouver, ISO, and other styles
4

Lablée, Olivier. "Autour de la dynamique semi-classique de certains systèmes complètement intégrables." Phd thesis, Université Joseph Fourier (Grenoble), 2009. http://tel.archives-ouvertes.fr/tel-00439641.

Full text
Abstract:
La dynamique semi-classique d'un opérateur pseudo-différentiel sur une variété est l'analogue quantique du flot classique de son symbole principal sur la variété . Cette dynamique semi-classique est décrite par l'équation de Schrödinger de l'opérateur ; alors que le flot classique hamiltonien est, lui, donné par les équations d'Hamilton associées a la fonction . Le spectre de l'opérateur pseudo-différentiel permet donc de pouvoir décrire les solutions générales en fonction du temps de l'équation de Schrödinger associée. Le comportement en temps long de la dynamique semi-classique donnée par ces solutions reste cependant sur bien des points mystérieux. La dynamique semi-classique dépend donc directement du spectre de l'opérateur et aussi par conséquent de la géométrie sous jacente dans induite par la fonction symbole classique . Dans cette thèse, on décrit d'abord la dynamique semi-classique en temps long dans le cas de la dimension 1 avec une fonction symbole n'ayant pas de singularité ou bien avec une singularité non-dégénérée de type elliptique : le feuilletage dans de est alors elliptique. Les règles de Bohr-Sommerfeld régulières fournissent alors le spectre d'un tel opérateur. On traite aussi le cas de la dimension 2 qui nous amène à quelques discussions de théorie de nombres. Pour finir, on s'intéresse au cas d'un opérateur pseudo-différentiel avec une singularité non-dégénérée de type hyperbolique : le feuilletage dans de est alors un ”huit hyperbolique ” (modèle difféomorphe au Schrödinger avec un potentiel double puits).
APA, Harvard, Vancouver, ISO, and other styles
5

Fittouhi, Yasmine. "Étude des fibres singulières des systèmes de Mumford impairs et pairs." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2252/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude des fibres de l'application moment du système de Mumford (pair ou impair) d'ordre g>0. Ces fibres sont paramétrées par des courbes hyperelliptiques de genre g. Comme l'a démontré Mumford, la fibre au-dessus d'une telle courbe lisse est la jacobienne de la courbe, moins son diviseur thêta. Nous décrivons les fibres au-dessus d'une courbe singulière, à la fois de manière algébrique et géométrique. Pour ce faire, nous utilisons de façon essentielle les g champs de vecteurs du système de Mumford, qui définissent une stratification de chaque fibre, où chaque strate est isomorphe à une strate particulière (dite maximale) d'une fibre d'un système de Mumford d'ordre inférieur. Sur cette strate, tous les champs de vecteurs du système de Mumford sont linéairement indépendants en tout point. Nous décrivons cette strate comme un ouvert de la jacobienne généralisée d'une courbe hyperelliptique singulière. Nous montrons également que sur la jacobienne généralisée, les champs de Mumford sont des champs invariants par translation
This thesis is dedicated to the study and to the description of the fibres of the momentum map of the (even or odd) Mumford system of degree g>0. These fibres are parameterized by hyperelliptic curves. Mumford proved that each fiber over a smooth curve is isomorphic to the Jacobian of the curve, minus its theta divisor. We give a geometrical as well as an algebraic description of the fibers over any singular curve. The geometrical description uses in an essential way the g vector field of the Mumford system. They define a stratification of each fiber where each stratum is isomorphic to a particular stratum, called the maximal stratum, of a fiber of a Mumford system of degree at most g. The algebraic description uses the theory of subresultants, which is applied to the polynomials which parametrize the points of phase space. We show that every stratum is isomorphic with an affine part of the generalized Jacobian of a singular hyperelliptic curve. We also prove that the Mumford vector fields are translation invariant on these generalized Jacobians
APA, Harvard, Vancouver, ISO, and other styles
6

Orieux, Michaël. "Quelques propriétés et applications du contrôle en temps minimal." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLED079.

Full text
Abstract:
Cette thèse contribue à l'étude en temps minimal des systèmes de contrôle affines. Les systèmes dépendant du contrôle de manière affine sont naturellement présents en physique, et apparaissent dès qu'on s'intéresse aux systèmes mécaniques. Ils sont, pour autant, bien plus généraux. Dans ce manuscrit on traite les singularités de tels systèmes, en minimisant le temps final, celui où l'objectif est atteint. Une étude précise du flot extrémal de ces systèmes est faite, d'abord pour les systèmes mécaniques, puis en général, et l'on donne une formulation à paramètre du système extrémal. Cela nous permet d'obtenir une régularité précise pour le flot, qui s'avère être lisse sur une stratification au voisinage du lieu singulier. Nous appliquons ensuite les résultats au problème du transfert d'orbite d'un engin spatial, et contrôlons le nombre singularités présentes au cours d'un transfert. Nous changeons ensuite de point de vue pour s'intéresser aux conditions d'optimalités des extrémales étudiées, et donnons un critère d'optimalité local, calculable par un test numérique simple. Il est enfin question d'étudier ces singularités du point de vue de l'intégrabilité des systèmes Hamiltoniens : nous prouvons ainsi que le problème du transfert d'orbite à deux corps en temps minimal n'est pas intégrable au sens de Liouville
This thesis contribute to the optimal time study of control-affine systems. These problems arise naturally from physics, and contains, for instance, mechanical systems. We tackle the study of their singularities, while minimizing the final time, meaning the time on which the aim is reached. We give a precise study of the extremal flow, for mechanical systems, for starter, and then, in general. This leads to the knowledge of the flow regularity: it is smooth on a stratification around the singular set. We then apply those results to mechanical systems, and orbit transfer problems, with two and three bodies, giving an upper bound to the number of singularities occurring during a transfer. We then change our viewpoint to study the optimality of such extremal in general, and give an optimality criteria than can be easily checkednumerically. In the last chapter we study the singularities of the controlled Kepler problem through another path: we prove a non-integrability theorem - in the Liouville sens - for the Hamiltonian system given by the minimum time orbit transfer (or rendez-vous) problem in the Kepler configuration
APA, Harvard, Vancouver, ISO, and other styles
7

Leurent, Sebastien. "Systèmes intégrables et dualité AdS/CFT." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00797842.

Full text
Abstract:
Cette thèse est consacrée à l'étude de systèmes quantiques intégrables tels des chaînes de spins, des théories de champs à 1+1 dimensions, et la dualité AdS/CFT. Cette dualité AdS/CFT est une conjecture, émise à la fin du siècle dernier, qui relie notamment le régime non-perturbatif d'une théorie de jauge superconforme (nommée N =4 super Yang- Mills) au régime perturbatif d'une théorie de cordes dans un espace à 10 dimensions (de géométrie AdS5×S5). Ce manuscrit explore les similarités entre des chaînes de spins intégrables et des théories de champs intégrables, tels Super Yang Mills. Il commence par une étude ap- profondie des chaînes de spins intégrables pour y construire explicitement un "flot de Bäcklund" et des "opérateurs Q" polynômiaux, qui permettent de diagonaliser le Hamil- tonien. Des théories de champs intégrables sont ensuite étudiées et des "fonctions Q" sont obtenues, qui sont l'analogue des opérateurs Q construits pour les chaînes de spins. Il apparaît que de nombreuses informations sont contenue dans les propriétés analytiques des fonctions Q. Cela permet d'aboutir, dans le cadre de l'ansatz de Bethe thermody- namique, à un nombre fini d'équations non-linéaires intégrales qui encode le spectre des niveaux d'énergie de la théorie considérée (en taille finie). Ce système d'équations est équivalent au système infini d'équations, connu sous le nom de système Y, qui dans le cas de la dualité AdS/CFT avait été conjecturé assez récemment.
APA, Harvard, Vancouver, ISO, and other styles
8

Leurent, Sébastien. "Systèmes intégrables et dualité AdS/CFT." Paris 6, 2012. http://www.theses.fr/2012PA066238.

Full text
Abstract:
Cette thèse est consacrée à l'étude de systèmes quantiques intégrables tels des chaines de spin, des théories de champs à 1+1 dimensions, et la dualité AdS/CFT. Cette dualité AdS/CFT est une conjecture, emmise à la fin du siècle dernier, qui relie notamment le régime non-perturbatif d'une théorie de jauge superconforme (nommée N=4 super Yang-Mills) au régime perturbatif d'une théorie de cordes dans un espace à 10 dimensions (de géométrie AdS₅xS⁵). Ce manuscrit explore les similarités entre des chaînes de spins intégrables et des théories de champs intégrables, tels Super Yang Mills. Il commence par une étude approfondie des chaînes de spins intégrables pour y construire explicitement un "flot de Bäcklund" et des "opérateurs Q" polynomiaux, qui permettent de diagonaliser le Hamiltonien. Des théories de champs intégrables sont ensuite étudiées et des "fonctions Q" sont obtenues, qui sont l'analogue des opérateurs Q construits pour les chaînes de spins. Il apparaît que de nombreuses informations sont contenue dans les propriétés analytiques des fonctions Q. Cela permet d'aboutir, dans le cadre de l'Ansatz de Bethe thermodynamique, à un nombre fini d'équations non-linéaires intégrales qui encode le spectre des niveaux d'energie de la théorie considérée (en taille finie). Ce système d'équation est équivalent au système infini d'équation, connu sous le nom de système Y, qui dans le cas de la dualité AdS/CFT avait été conjecturé assez récemment
This thesis is devoted to the study of integrable quantum systems such as spin chains, bidimentional field theories and the AdS/CFT duality. This AdS/CFT duality is a conjecture, stated in the end of the last century, which relates (for instance) the non-perturbative regime of a superconformal gauge theory (called N=4 super Yang-Mills) and the perturbative regime of a string theory on a 10-dimensioonal space with the geometry AdS₅xS⁵. This thesis explores the similarities between integrable spin chains and quantum field theories, such as Super Yang Mills. We first study integrable spin chains and build explicitely a polynomial "Bäcklund flow" and polynomial "Q-operators", which allow to diagonalize the Hamiltonian. We then study integrable field theories et show how to obtain "Q-functions", analogous to the Q-operators built for spin chains. It turns out that several important informations are contained in the analytic properties of these Q-functions. That allows to obtain, in the framework of the thermodynamic Bethe Ansatz, a finite number of non-linear integral equations encoding the spectrum of the theory which we study. This system of equations is equivalent to an infinite system of equations, known as "Y-system", which had been quite recently conjectured in the case of the AdS/CFT duality
APA, Harvard, Vancouver, ISO, and other styles
9

Crampé, Nicolas. "Approches algébriques dans les systèmes intégrables." Chambéry, 2004. http://www.theses.fr/2004CHAMA001.

Full text
Abstract:
Cette thèse est consacrée principalement aux systèmes intégrables quantiques et, plus particulièrement, aux développements de structures algébriques qui permettent l'étude de la symétrie de modèles en physique quantique. Elle est constitutée de deux parties. La première fournit ds notions mathématiques utilisées dans l'étude des systèmes intégrables. Les groupes quantiques et plus particulièrement les Yangiens seront définis et étudiés. Ces algèbres, déformation des algèbres de Lie, sont au coeur de développements récents aussi bien en mathém̀atiques qu'en physique. On présnetera entre autres la structure de Hopf qui joue un rôle primordial dans la compréhension des systèmes intégrables. Des généralisations de ces notions algébriques à l'ensemble des algèbres de LIe ainsi qu'à des superalgèbres de Lie seront présentées et finalement des sous-algèbres des Yangiens seront étuduées en détail. La seconde partie utilise des concepts introduits dans la première partie pour étudier des systèmes intégrables. En particulier, on étudiera deux grandes classes de modèles : les modèles dits de Sutherland et les chaînes de spins. Une partie importante de cette partie sera dédiée à l'étude de ces systèmes intégrables en présence de conditions aux bords non triviables
The aim of this thesis is mainly the study of quantum integrable systems. In particular, algebraic methods are developped in order to study the symmetries of quantum models. The thesis is made out of two parts. In this first part, mathematical tools used in the study of integrable systems are presented. We shall define quantum groups and in particular Yangians. These algebras are the cause of recent developments in mathematics and physics. Their Hopf structure which is essential for the understanding of integrable systems will be discussed. These algebraic concepts will be generalized to any Lie algebra and superalgebra and finally, we will focus on the subalgebras of the Yangians. The second part uses these concepts to study quantum integrable systems, namely the so-called Sutherland model and spin chains. An important part of this part will be devoted to the study of these integrable systems in the presence of non-trivial boundary conditions
APA, Harvard, Vancouver, ISO, and other styles
10

Cresson, Jacky. "Propriétés d'instabilité des systèmes Hamiltoniens proches de systèmes intégrables." Observatoire de Paris, 1997. https://hal.archives-ouvertes.fr/tel-02071388.

Full text
Abstract:
L’objet de ce mémoire est l'étude des propriétés d'instabilité des systèmes hamiltoniens voisins de systèmes intégrables. Plus précisément, nous étudions le mécanisme d'Arnold (encore appelé diffusion d'Arnold). Nous décrivons tout d'abord l'espace des phases au voisinage d'un tore partiellement hyperbolique et le long d'une chaine de tore. Nous démontrons que les tores hyperboliques provenant de la destruction d'un tore résonnant le long d'une surface de résonance quelconque vérifie la propriété d'obstruction. Nous montrons ensuite qu'il existe une dynamique symbolique au voisinage d'un tore homocline transverse. Ces résultats nous permettent de déduire l'existence d'orbites le long d'une chaine et l'existence d'une chaine d'orbites périodiques hyperboliques. On montre alors l'existence d'orbites périodiques de période arbitrairement longue le long de la chaine, résolvant ainsi une conjecture de Holmes-Marsden. Nous estimons ensuite le temps de dérive d'une orbite le long d'une chaine. Nous éclaircissons le lien entre les différentes données du problèmes (angle d'intersection, propriété d'Ergodisation sur le tore) et le temps calcule. On démontre ainsi que le temps de dérive dans un système Hamiltonien initialement hyperbolique est polynomial. La méthode mise au point est générale et valable pour une chaine abstraite, ce qui n'est pas le cas des méthodes variationnelle actuelles. On applique enfin l'ensemble de nos résultats à des systèmes issus de la physique. Nous décrivons dans un premier temps une classe de systèmes pour lesquels il existe toujours des chaines de transition. Notre but est ensuite de montrer qu'une grande classe de ces systèmes contient des problèmes physiques classiques (problème restreint elliptique plan des 3 corps, dynamique d'une galaxie elliptique). Ce travail nous permet de discuter, de manière informelle, une nouvelle construction d'orbites d'instabilité permettant de lever le problème des trous dû à la méthode d'Arnold
The purpose of this thesis is to study instability properties of near-integrable Hamiltoniens systems, in particular Arnold’s diffusion. We first describe the phase-space near a partially hyperbolic torus and along a transition chain. We prove that hyperbolic tori, which come from the destruction of resonant tori, are transition tori. We then show that transvers homoclinic partially hyperbolic tori possess a symbolic dynamics. These results allow us to prove the existence of instability’s orbits along a chain as well as periodic orbits of arbitrarily hight period as conjectured by Homes-Marsden. Second, we estimate the time of drift along a chain by geometrical methods. We precise the role of the splitting size, ergodisation time… We prove that for initially hyperbolic Hamiltonian systems this time of drift is polynomial. Our method is general and applies on abstract chain of tori, which is not the case of variational methods. Last, we apply our result on specific examples. We first describe a class of systems, which always possess transition chain. We then show that this class contains a lot of classical systems as the three body problem, Rydberg’s atom…
APA, Harvard, Vancouver, ISO, and other styles
11

Baseilhac, Pascal. "Approche à la Onsager en systèmes intégrables." Habilitation à diriger des recherches, Université François Rabelais - Tours, 2010. http://tel.archives-ouvertes.fr/tel-00612887.

Full text
Abstract:
Une nouvelle approche non-perturbative à la Onsager en systèmes intégrables quantiques est développée, dont les idées maîtresses prennent leurs racines dans l'article de L. Onsager (1944) portant sur la solution exacte du modèle d'Ising en deux dimensions. L'intérêt de cette approche repose sur le fait qu'elle est applicable de façon systématique dans le cas oú d'autres méthodes usuelles échouent. Celle-ci repose sur l'étude de quatres éléments capitaux: (i) L'identification de l'algèbre non-Abélienne de dimension infinie généralisant l'algèbre de Onsager et représentant la condition d'intégrabilité du modèle; (ii) La construction d'une hiérarchie de quantités en involution formant une sous-algèbre Abélienne; (iii) L'étude des réalisations et représentations de dimension finie et infinie de cette algèbre; (iv) La résolution du modèle à l'aide de ces données. Pour un modèle de référence - la chaîne de spin XXZ de taille finie avec conditions aux bords intégrables - la nouvelle approche basée sur l'algèbre q-Onsager introduite par P. Terwilliger est utilisée pour résoudre le problème spectral (spectre en énergie et états propres) dans le régime de paramètres génériques où l'ansatz de Bethe est inapplicable. Certaines étapes essentielles à l'obtention des fonctions de corrélations dans la limite thermodynamique du modèle sont aussi franchies, s'inspirant de la méthode de M. Jimbo et al.. La généralisation associée à toute algèbre de Lie affine de l'algèbre q-Onsager est proposée, et permet de classifier toutes les conditions d'intégrabilité dans les théories de Toda affines avec bord. Diverses perspectives sont enfin présentées.
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen, Van Minh. "Géométrie des systèmes dynamiques non-hamiltoniens intégrables." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1688/.

Full text
Abstract:
Cette thèse est dédiée à une étude systématique de la géométrie de systèmes dynamiques intégrables non-hamiltoniens de type (n,0) sur les variétés de dimension n, et de type (1,1) sur les surfaces de dimension 2. On décrit des invariants locaux et globaux de ces systèmes, des objects géométriques liés (e. G. Variétés toriques, structures affines singulières, groupes de réflexion), et obtient des résultats d'éxistance et de classification
This thesis is dedicated to a systematic study of the geometry of integrable non-Hamiltonian systems of type (n,0) on n-manifolds and of type (1,1) on 2-dimensional surfaces. We describe the local and global invariants, associated geometric structures (e. G. Toric manifolds, singular affine structures, reflection groups), and obtain existence and classification results
APA, Harvard, Vancouver, ISO, and other styles
13

Toulet, Anne. "Classifications des systèmes intégrables en dimension 2." Montpellier 2, 1996. http://www.theses.fr/1996MON20113.

Full text
Abstract:
On se donne un triplet (m,,f) ou m est une surface compacte munie d'une forme volume et d'un feuilletage f a feuilles compactes et a singularites de morse. Au couple (m,f), on associe le graphe de reeb (quotient de m par f), auquel on attache une famille d'invariants caracterisant le triplet (m,,f). La plupart de ces invariants proviennent des feuilles singulieres et sont des series formelles (coefficients de taylor de fonctions definies sur un voisinage de la feuille). On obtient ainsi une classification complete des systemes integrables sur une variete symplectique de dimension 2
APA, Harvard, Vancouver, ISO, and other styles
14

Nagy, Zoltan. "Systèmes intégrables et algèbres de réflexion dynamiques." Cergy-Pontoise, 2005. http://biblioweb.u-cergy.fr/theses/05CERG0270.pdf.

Full text
Abstract:
Cette thèse est consacrée à l'étude de différentes algèbres quadratiques dynamiques et de leurs applications aux modèles intégrables. Les algèbres quadratiques dynamiques sont des généralisations de l'algèbre de réflexion introduite par Cherednik pour traiter des systèmes intégrables sur la demi-ligne et plus généralement des systèmes intégrables avec des conditions aux bords ouvertes. Nous définissons deux algèbres quadratiques dynamiques : totalement dynamique et semi-dynamique. La première est une simple généralisation du groupe quantique elliptique à bord, la seconde est une structure nouvelle. Nous montrons dans les deux cas comment construire des familles de Hamiltoniens commutants comme des analogues quantiques de la trace de puissances de la matrice de Lax. Nous montrons aussi, en se servant de la structure de comodule que nous élucidons, comment construire des Hamiltoniens de type chaîne de spins en utilisant les représentations de ces algèbres comme des briques élémentaires. Ces résultats sont indépendants de l'existence de la correspondance vertex-IRF qui relie les algèbres dynamiques et non dynamiques
This thesis is a contribution to the study of different dynamical quadratic algebras and their applications to integrable systems. Dynamical quadratic algebras are generalizations of the reflection algebra introduced by Cherednik to deal with integrable systems on the half-line, and more generally with integrable systems with open boundary conditions. We define two dynamical quadratic algebras : fully dynamical and semi-dynamical. The former is a simple generalization of the boundary elliptic quantum group, the latter is a new structure. We show in both cases how to build families of commuting Hamiltonians as quantum analogues of the trace of powers of the classical Lax-matrix. We also show, making use of the comodule structure which we elucidate, how to construct spin chain type Hamiltonians using the representations of these algebras as building blocks. These results are self-contained in the sense that they make no use of the vertex-IRF correspondence linking dynamical and non-dynamical algebras
APA, Harvard, Vancouver, ISO, and other styles
15

Tseitline, Vadim. "Systèmes intégrables en mécanique classique et quantique." Paris 7, 2002. http://www.theses.fr/2002PA077188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Boldea, Costin-Radu. "Nouveaux systèmes intégrables et solitons non-analytiques." Paris 6, 2002. http://www.theses.fr/2002PA066042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Brodier, Olivier. "Effet tunnel dans les systèmes quasi-intégrables." Paris 6, 2002. http://www.theses.fr/2002PA066056.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Jiang, Kai. "Normalisation C-infini des systèmes complètement intégrables." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC298/document.

Full text
Abstract:
Cette thèse est consacrée à l’étude de la linéarisation géométrique locale des systèmes complètement intégrables dans la catégorie C1. Le sujet est la conjecture de linéarisation géométrique proposée (et établie dans le cadre analytique) par Nguyen Tien Zung. Nous commençons par les systèmes linéaires, puis introduisons la normalisation dans la catégorie formelle. Nous montrons qu’un système intégrable peut être décomposé en une partie hyperbolique et une partie elliptique. Nous établissons une bonne forme normale de Poincaré-Dulac pour les champs de vecteurs et discutons sa relation avec la linéarisation géométrique. Nous montrons que les systèmes intégrables faiblement hyperboliques sont géométriquement linéarisables en utilisant les outils de Chaperon. Nous étudions les systèmes intégrables sur les espaces de petite dimension : si celle-ci n’est pas plus grande que 4, alors la plupart des cas sont géométriquement linéarisables ; en particulier, la linéarisation géométrique est possible pour les systèmes intégrables de type de foyer-foyer. Enfin, nous généralisons la démonstration en grande dimension et proposons une condition sur les variétés fortement invariantes, sous laquelle nous linéarisons géométriquement les systèmes. Nous parvenons également à normaliser une action de R × T à plusieurs foyers en nous référant aux idées de Zung
This thesis is devoted to the local geometric linearization of completely integrable systems in the C1 category. The subject is the geometric linearization conjecture proposed (and proved in the analytic case) by Nguyen Tien Zung. We start from linear systems and introduce normalization in the formal category. Wes how that an integrable system can be decomposed into a hyperbolic part and an elliptic part. We establish a good Poincaré-Dulac normal form for the vector fields and discuss its relation with geometric linearization. We prove that weakly hyperbolic integrable systems are geometrically linearizable byusing Chaperon’s tools. We then study integrable systems on small dimensional spaces: if the dimension is no more than 4, then most cases are geometrically linearizable; in particular,geometric linearization works for integrable system of focus-focus type. Finally, we generalize the proof to high dimensions and propose a condition about strongly invariant manifolds, under which we linearize the systems in the geometric sense. We also manage to normalize an R × T-action of several focuses by referring to the ideas of Zung
APA, Harvard, Vancouver, ISO, and other styles
19

Bounemoura, Abed. "Stabilité et instabilité des systèmes hamiltoniens presque-intégrables." Paris 11, 2010. http://www.theses.fr/2010PA112101.

Full text
Abstract:
Cette thèse est consacrée à diverses questions concernant la stabilité et l'instabilité des systèmes hamiltoniens presque-intégrables. Dans une première partie, on donne une introduction informelle aux systèmes hamiltoniens et à la théorie des perturbations des systèmes hamiltoniens intégrables dans le premier chapitre, puis dans le second chapitre, on expose les résultats présentés dans cette thèse. Une seconde partie est consacrée à des résultats de stabilité. Dans le troisième chapitre, on donne une nouvelle preuve du théorème de stabilité exponentielle de Nekhoroshev dans le cas générique pour un système analytique. Elle n'utilise que des compositions de moyennisations périodiques, et elle évite donc le fameux problème des petits diviseurs. Dans le quatrième chapitre, on utilise cette approche pour en déduire des nouveaux résultats de stabilité exponentielle et super-exponentielle au voisinage des points fixes elliptiques, des tores lagrangiens invariants quasi-périodiques et plus généralement des tores invariants quasi-périodiques linéairement stables, isotropes et réductibles. Enfin, dans le cinquième chapitre, on établit un résultat de stabilité polynomiale si le système est seulement de différentiabilité finie, dans le cas où la partie intégrable est quasi-convexe. Dans une troisième partie, on étudie la frontière entre la stabilité et l'instabilité. Dans le sixième chapitre, pour un système quasi-convexe analytique ou de classe Gevrey, on améliore l'exposant de stabilité en étudiant la géométrie des résonances simples. On obtient ainsi un temps de stabilité encore plus proche des temps d'instabilité connus, et qui doit certainement être optimal. Enfin, dans une quatrième partie, on s'intéresse à la construction de certains exemples d'instabilité. Dans un septième chapitre, on construit un nouvel exemple d'un système \textit{a priori} instable qui possède une solution qui dérive avec un temps optimal. Notre approche est basée sur la dynamique symbolique engendrée par l'intersection transverse des variétés stable et instable d'une variété normalement hyperbolique. Dans le huitième et dernier chapitre, on construit également un exemple de système presque-intégrable, dont la taille de la perturbation ne tend vers zéro que lorsque le nombre de degrés de libertés tend vers l'infini, avec une solution qui dérive en temps polynomial. Cela donne en particulier de nouvelles contraintes sur le seuil de validité des résultats de stabilité exponentielle
This thesis is devoted to various questions concerning the stability and instability of near-integrable Hamiltonian systems. In a first part, we give an informal introduction to Hamiltonian systems and to the perturbation theory of integrable Hamiltonian systems in the first chapter, and then, in the second chapter, we state our results. A second part is devoted to stability results. In the third chapter, we give a new proof of the exponential stability theorem of Nekhoroshev in the generic case for an analytic system. Our method uses only composition of periodic averaging, and therefore it avoids the small divisors problem. Then, in the fourth chapter, we take advantage of this approach to obtain new results of exponential and super-exponential stability in the neighbourhood of elliptic fixed points, invariant Lagrangian quasi-periodic tori and more generally invariant linearly stable quasi-periodic tori, which are isotropic and reducible. In the fifth chapter, for a quasi-convex integrable Hamiltonian system, we also prove a result of polynomial stability in the case where the system is only finitely differentiable. A third part lies between stability and instability. In the sixth chapter, for a quasi-convex system which is analytic or Gevrey, we improve the stability exponent by studying the geometry of simple resonances. Thus we obtain a time of stability which is closer to the known instability times, and which is certainly optimal. In the fourth part, we will construct examples of unstable Hamiltonian systems. First, in the seventh chapter, we give a new example of an \textit{a priori} unstable system which has a drifting orbit with an optimal time of instability. Our method uses the symbolic dynamics created by the transverse intersection between the stable and unstable manifolds of a normally hyperbolic invariant manifold. In the eighth and last chapter, we also construct an example of a near-integrable Hamiltonian system, for which the size of the perturbation goes to zero only when the number of degrees of freedom goes to infinity, and which has an orbit drifting in a polynomial time. In particular, this gives a new constraint on the threshold of validity for exponential stability results
APA, Harvard, Vancouver, ISO, and other styles
20

Rachidi, Mustapha. "Contribution à l'étude algébrique de quelques systèmes intégrables." Lyon 1, 1992. http://www.theses.fr/1992LYO10004.

Full text
Abstract:
La presente these porte sur des notions d'algebres sous-jacentes a certains systemes hamiltoniens integrables. La premiere partie concerne: (i) les algebres de mellin-lie, provenant de la transformation de mellin algebrique, grace a une famille de relations de commutation. Ces dernieres sont etablies par des procedes de combinatoire dans des espaces de courants. Une extension du corps de base des algebres de mellin-lie est a l'origine de la mise en evidence d'une classe de modules de virasoro-witt. (ii) l'etude de l'espace des abservables polynomiales en relation avec une algebre a une infinite de variables, ce qui a permis en particulier d'etendre plus rigoureusement des resultats de la mecanique classique au formalisme variationnel pour les equations d'evolution non lineaires a solitons. Un sous-espace d'observables particulieres muni du crochet de faddeev est un algebre de virasoro generalisee, qui releve d'un modele plus general d'algebres de lie, frequemment rencontrees dans la theorie des champs. Une classe de modules de faddeev-virasoro, contient aussi des modules de virasoro-witt exhibes precedemment. La deuxieme partie est consacree a un algorithme de traitement formel d'une famille de systemes differentiels de type de lax. Des espaces de solutions sont explicites a l'aide de la theorie des racines des algebres de lie semi-simples. Le solide d'euler, la toupie de kovalevskya et les equations de lax recurrentes constituent des applications physiques de l'algorithme etabli
APA, Harvard, Vancouver, ISO, and other styles
21

Nguyen, Vu-Lan. "Polymères dirigés en milieu aléatoire : systèmes intégrables, ordres stochastiques." Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCC097.

Full text
Abstract:
Cette thèse est consacrée à l'étude de polymère dirigé en milieu aléatoire. Le polymère dirigé en milieu aléatoire modélise une longue chaine de molécules qui interagit avec un environnement inhomogène, il est considéré depuis longtemps dans la littérature de la physique statistique. Une de questions importantes est de comprendre le comportement du polymère dans un environnement typique : la localisation des trajectoires autour un tube typique. Une question fortement liée s'agit d'étudier la fluctuation de l'énergie libre. On considère dans cette thèse le modèle polymère dirigé avec Log-Gamma distribution proposé par Seppallainen. Dans ce modèle, l'énergie libre est calculable en fonction des paramètres et les fluctuations présentent des exposants non-standard. Jusqu'à maintenant, c'est encore toujours une question ouvert to calculer les corrélations entre les fonctions partitions et aussi établir la distribution asymptotique du end-point du polymère. Cette thèse, parmi autre travaux, présente une approche à ces questions
The thesis focuses on (mostly 1 + 1 dimensional) directed polymers in random media. These are classical and celebrated models in the statistical mechanics of disordered systems and describe a one dimensional interface interacting with a d + 1-dimensional random environment where it is immersed. A very important question is to understand, in the limit where the polymer's length tends to infinity and for a typical realization of the environment, the geometric properties of the polymer: typical transversal displacement of the endpoint and its fluctuations, polymer localization at strong disorder around typical tubes determined by disorder. . . A strictly related problem of great interest is to study the fluctuations of the free energy. The main focus is on the so-called log-gamma polymer. This model, introduced by Seppalainen, is obtained by making a specific choice for the disorder law: the random variables are inverse Gamma variables. For this specific disorder choice, he proved that the variance of the log of the partition function is of order N"2/3, as expected by KPZ theory. This was refined into a full limit theorem Tracy -Widom type fluctuations) by Corwin, O'Connell, Seppalainen and Zygouras, via an explicit formula for the Laplace transform of a single partition function. It was until now an open problem to compute correlations between partition functions with different end-points and to study the asymptotic distribution of the polymer's endpoint. The present thesis addresses, among others, these two very challenging problems. On the other hand, we consider applications of stochastic orders on the study of directed polymer and disordered systems
APA, Harvard, Vancouver, ISO, and other styles
22

Khemar, Idrisse. "Systèmes intégrables intervenant en géométrie différentielle et en physique mathématique." Phd thesis, Université Paris-Diderot - Paris VII, 2006. http://tel.archives-ouvertes.fr/tel-00277998.

Full text
Abstract:
Notre thèse est divisée en 2 chapitres indépendants correspondant chacun à un article. Dans le premier chapitre, nous définissons une notion de surfaces isotropes dans les octonions, i.e. sur lesquelles certaines formes symplectiques canoniques s'annulent. En utilisant le produit vectoriel dans O, nous définissons une application rho de la grassmanienne des plans de O dans la sphère de dimension 6. Cela nous permet d'associer à chaque surface Sigma de O une fonction rho_Sigma de la surface sur la sphère. Alors, nous montrons que les surfaces isotropes de O telles que cette fonction est harmonique sont solutions d'un système complètement intégrable. En utilisant les groupes de lacets, nous construisons une représentation de type Weierstrass de ces surfaces. Par restriction au corps des quaternions, nous retrouvons comme cas particulier les surfaces lagrangiennes hamiltoniennes stationnaires de R^4. Par restriction à Im(H), nous retrouvons les surfaces CMC de R^3. Dans le second chapitre, nous étudions les applications supersymétriques harmoniques définies sur R^{2|2} et à valeurs dans un espace symétrique, du point de vue des systèmes intégrables. Il est bien connu que les applications harmoniques de R^2 à valeurs dans un espace symétrique sont solutions d'un système intégrable. Nous montrons que les applications superharmoniques de R^{2|2} dans un espace symétrique sont solutions d'un système intégrable, et que l'on a une représentation de type Weierstrass en termes de potentiels holomorphes (ainsi qu'en termes de potentiels méromorphes). Nous montrons également que les applications supersymétriques primitives de R^{2|2} dans un espace 4-symétrique donnent lieu, par restriction à R^2, à des solutions du système elliptique du second ordre associé à l'espace 4-symétrique considéré (au sens de C.L. Terng).Ceci nous permet d'obtenir, de manière conceptuelle, une sorte d'interprétation supersymétrique de tous les systèmes elliptiques du second ordre associés à un espace 4-symétrique, en particulier du système intégrable construit au chapitre 1 (et plus particulièrement des surfaces lagrangiennes hamiltoniennes stationnaires dans un espace symétrique).
APA, Harvard, Vancouver, ISO, and other styles
23

Dargis, Pierre. "Structures non-locales dans les systèmes intégrables, systèmes KdV supersymétriques et chaînes de spins." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0005/NQ39345.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Saadé, Joelle. "Méthodes symboliques pour les systèmes différentiels linéaires à singularité irrégulière." Thesis, Limoges, 2019. http://www.theses.fr/2019LIMO0065.

Full text
Abstract:
Cette thèse est consacrée aux méthodes symboliques de résolution locale des systèmes différentiels linéaires à coefficients dans K = C((x)), le corps des séries de Laurent, sur un corps effectif C. Plus précisément, nous nous intéressons aux algorithmes effectifs de réduction formelle. Au cours de la réduction, nous sommes amenés à introduire des extensions algébriques du corps de coefficients K (extensions algébriques de C, ramifications de la variable x) afin d’obtenir une structure plus fine. Du point de vue algorithmique, il est préférable de retarder autant que possible l’introduction de ces extensions. Dans ce but, nous développons un nouvel algorithme de réduction formelle qui utilise l’anneau des endomorphismes du système, appelé « eigenring », afin de se ramener au cas d’un système indécomposable sur K. En utilisant la classification formelle donnée par Balser-Jurkat-Lutz, nous déduisons la structure de l’eigenring d’un système indécomposable. Ces résultats théoriques nous permettent de construire une décomposition sur le corps de base K qui sépare les différentes parties exponentielles du système et permet ainsi d’isoler dans des sous-systèmes, indécomposables sur K, les différentes extensions de corps qui peuvent apparaître afin de les traiter séparément. Dans une deuxième partie, nous nous intéressons à l’algorithme de Miyake pour la réduction formelle. Celle-ci est basée sur le calcul du poids et d’une suite de Volevic de la matrice de valuation du système. Nous donnons des interprétations en théorie de graphe et en algèbre tropicale du poids et suites de Volevic, et obtenons ainsi des méthodes de calculs efficaces sur le plan pratique, à l’aide de la programmation linéaire. Ceci complète une étape fondamentale dans l’algorithme de réduction de Miyake. Ces différents algorithmes sont implémentés sous forme de librairies pour le logiciel de calcul formel Maple. Enfin, nous présentons une discussion sur la performance de l’algorithme de réduction avec l’eigenring ainsi qu’une comparaison en terme de temps de calcul entre notre implémentation de l’algorithme de réduction de Miyake par la programmation linéaire et ceux de Barkatou et Pflügel
This thesis is devoted to symbolic methods for local resolution of linear differential systems with coefficients in K = C((x)), the field of Laurent series, on an effective field C. More specifically, we are interested in effective algorithms for formal reduction. During the reduction, we are led to introduce algebraic extensions of the field of coefficients K (algebraic extensions of C, ramification of the variable x) in order to obtain a finer structure. From an algorithmic point of view, it is preferable to delay as much as possible the introduction of these extensions. To this end, we developed a new algorithm for formal reduction that uses the ring of endomorphisms of the system, called "eigenring". Using the formal classification given by Balser-Jurkat-Lutz, we deduce the structure of the eigenring of an indecomposable system. These theoretical results allow us to construct a decomposition on the base field K that separates the different exponential parts of the system and thus allows us to isolate, in indecomposable subsystems in K, the different algebraic extensions that can appear in order to treat them separately. In a second part, we are interested in Miyake’s algorithm for formal reduction. This algorithm is based on the computation of the Volevic weight and numbers of the valuation matrix of the system. We provide interpretations in graph theory and tropical algebra of the Volevic weight and numbers, and thus obtain practically efficient methods using linear programming. This completes a fundamental step in the Miyake reduction algorithm. These different algorithms are implemented as libraries for the computer algebra software Maple. Finally, we present a discussion on the performance of the reduction algorithm using the eigenring as well as a comparison in terms of timing between our implementation of Miyake’s reduction algorithm by linear programming and the algorithms of Barkatou and Pflügel
APA, Harvard, Vancouver, ISO, and other styles
25

Labrousse, Clémence. "Compléxité des flots géodésiques intégrables sur le tore." Paris 6, 2012. http://www.theses.fr/2012PA066229.

Full text
Abstract:
Nous cherchons les métriques sur le tore qui minimisent la "complexité". L'entropie topologique pouvant s'annuler, nous cherchons les minimums de l'entropie polynomiale parmi des systèmes géodésiques à entropie nulle : les métriques plates, et les métriques pour lesquelles le flot géodésique admet une intégrale première non dégénérée au sens de Bott. Dans un premier temps, nous calculons l'entropie polynomiale des systèmes hamiltonien intégrable au sens de Bott avec une condition de cohérence dynamique supplémentaire. Un tel système vit sur un niveau d'énergie compact de dimension 3 d'une variété symplectique de dimension 4. Nous montrons que l'entropie polynomiale ne peut prendre que les valeurs 0,1 ou 2. Ensuite, nous montrons que l'entropie polynomiale d'un système géodésique sur une variété riemannienne compacte M est minorée par le degré de croissance polynomiale du groupe fondamental de M moins 1. De là , nous déduisons que les métriques plates sur les tores minimisent l'entropie polynomiale. Enfin, nous montrons que, parmi les systèmes géodésiques sur le tore de dimension 2 qui sont Bott-intégrables et dynamiquement cohérents, les métriques plates sont des minimums stricts locaux de l'entropie polynomiale
APA, Harvard, Vancouver, ISO, and other styles
26

Mazzanti, Liuba. "Systèmes intégrables non commutatifs et la correspondance Ads/CFT en cosmologie." Phd thesis, Ecole Polytechnique X, 2007. http://pastel.archives-ouvertes.fr/pastel-00003164.

Full text
Abstract:
Ma these se deroule suivant deux principales lignes de recherche. Les deux arguments traites constituent une relation entre la theorie des cordes et les aspects phenomenologiques/cosmologiques. D'une part, la geometrie noncommutative (NC) est une consequence naturelle de la presence de branes et flux dans la theorie des cordes. La non commutativite deforme certaines proprietes fondamentales des theories ordinaires decrivant par exemple les interactions electro–faibles et fortes ou les modeles statistiques. C'est dans ce sens que la geometrie NC represente une application a la phenomenologie des cordes. D'autre part, les branes sont l'ingredient clé des modeles d'univers branaires. Le modele de Randall–Sundrum (RS) en particulier offre de nouvelles perspectives tant du point de vue de la cosmologie, ouvrant des scenarios d'evolution cosmologique non conventionnelle, que du point de vue de l'holographie. La premiere partie de la these est dediee a la geometrie NC et, en particulier, aux theories de champs NC integrables. Le but principal du travail a ete d'etudier les consequences de la non commutativit´e par rapport a l'integrabilite. Plus precisement, on a voulu verifier ou refuter dans un contexte NC le theoreme qui lie, en deux dimensions, l'integrabilite a la factorisation de la matrice S. Avec integrabilite on parle de l'existence d'un nombre infini de courants locaux conserves, associes aux symetries de la theorie de champs.Le point de depart a donc ete de garantir la presence de tels courants, au moyen du formalisme du bicomplexe. Cette methode permet d'obtenir les equations du mouvement en tant que conditions d'int´ egrabilite d'un systeme d'equations differentielles lineaires. a partir des solutions du meme systeme lineaire suivent les courants conserves. En exploitant le formalisme de Weyl, la procedure est immediatement generalisable a la geometrie NC. Une algebre de fonctions (operateurs de Weyl) definie sur un espace NC est associee a une algebre NC de fonctions ou la multiplication est executee au moyen d'un produit NC de Moyal: le produit. En introduisant le produit au niveau du systeme lineaire et en en deduisant les equations du mouvement NC, on obtient la generalisation NC du bicomplexe. On a infere le premier modele en generalisant le bicomplexe du modeledesine–Gordon(SG)a la geometrie NC. Nous avons deduit (en collaboration avec Grisaru, Penati, Tamassia) l'action correspondante aux equations du mouvement precedemment etablies par Grisaru et Penati. Le calcul des amplitudes de diffusion et production a determine les caracteristiques de la matrice S du modele. Des comportements acausaux ont ete releves pour les processus de diffusion. En outre, les processus de production possedent une amplitudes non nulle: d'ou la non validite du theoreme d'integrabilite vs. factorisation pour cette version NC du modele de SG. D'autres proprietes ont ete mises en evidence, comme la relation avec la theorie des cordes et la bosonisation. Le deuxieme modele de SG NC a ete propose en collaboration avec Lechtenfeld, Penati, Popov, Tamassia. Les equations du mouvement ont ete tirees de la reduction dimensionnelle du modele sigma NC en 2+1 dimensions, qui a son tour est la reduction de la theorie de self–dual Yang–Mills NC en 2+2 dimensions (decrivant les supercordes N =2avecchamps B). L'action a ete calculee de meme que les amplitudes. Les processus de production possedant des amplitudes nulles et ceux de diffusion ne dependant pas du parametre de NC, entraınent ainsi un comportement causal. Le deuxieme modele de SG NC semble donc obeir a l'equivalence entre integrabilite et factorisation de la matrice S. La reduction de la theorie des cordes garde sa validite meme au niveau de l'action contrairement au modele precedent. La deuxieme partie de ma these traite des modeles d'univers branaires, ou plus precisement des modeles de RS. Le modele propose par Randall et Sundrumse situe dans un bulk 5–dimensionnel, caracterise per une symetrie d'orbifold Z2 par rapport `a la position de la brane 4–dimensionnelle. Grace au facteur de warp qui multiplie le sous–espace 4–dimensionnel parallele a la brane, on obtient la localisation des modes du graviton. Par consequent, le potentiel gravitationnel efficace est newtonien aux energies inferieures a la masse de Planck. En introduisant en outre un terme de matiere dans le bulk et en considerant l'echange d'energie entre brane et bulk, une variete de nouvelles cosmologies en derive. Dans la premiere partie de mon travail sur RS nous avons propose un modele analogue situe dans un bulk 7–dimensionnel. La brane 6–dimensionnelle — ayant compactifie deux dimensions — est placee au point fixe de l'orbifold Z2. Afin d'etudier l'evolution cosmologique en nous mettant en relation avec les observations, nous avons introduit l'echange d'energie entre brane et bulk. Les scenarios possibles sont nombreux et dependent de la forme explicite du parametre d'echange d'energie. Entre autres, les points fixes possedent une acceleration positive, pouvant ainsi representer la recente acceleration de l'univers. Il sont egalement stables pour un large ensemble des valeurs des parametres. Finalement, on peut tracer des scenarios qui partent d'une phase initiale acceleree, en passant successivement a une ere de deceleration, pour terminer sur un point fixe stable d'inflation. Les modeles d'univers branaires a la RS possedent un dual holographique via AdS/CFT. La correspondance AdS/CFT etablit qu'une theorie de supergravite(ou,plusg´ en´ eralement, de cordes) dans un champ de fond d'anti de Sitter (AdS) en d + 1 dimensions est duale a une theorie de champs conforme (CFT) en d dimensions. Tenant compte des divergences presentes dans les deux descriptions, cette correspondance a ete rendue plus precise par la formulation de la renormalisation holographique. Si l'espace de AdS est regularise au moyen d'un cutoff infrarouge, la correspondante CFT resulte regularisee par un cutoff ultraviolet et couplee a la gravite d–dimensionnelle. En analogie a l'analyse effectuee en cinq dimensions par Kiritsis, nous avons construit la theorie duale au modele cosmologique de RS en sept dimensions. Pour capturer les dynamiques dictees par l'echange d'energie entre brane et bulk, la theorie holographique en six dimensions a ete generalisee au cas interagissant (entre matiere et CFT) et non conforme. Le resultat sont les relations entre les parametres de masse appartenant aux deux descriptions et entre l'echange d'energie, d'un cote, et le parametre d'interaction, de l'autre. De plus, le parametre de rupture conforme est associe au parametre d'auto–interaction du bulk dans la description de supergravite 7–dimensionnelle. Le travail de recherche inclut donc des resultats pouvant trouver leur application dans la phenomenologie et cosmologie des cordes. D'une part on a enqueter sur l'influence de la noncommutativite liee a l'integrabilite du modele de SG. D'autre part, les consequences cosmologiques de l'emplacement du modele de RS en sept dimensions ont ete etudiees et la correspondance AdS/CFT a ete appliquee afin d'en tirer des informations sur la theorie duale, couplee a la gravite.
APA, Harvard, Vancouver, ISO, and other styles
27

Colome-Tatche, Maria. "Effets de taille finie et dynamique dans les systèmes intégrables unidimensionnels." Phd thesis, Université Paris Sud - Paris XI, 2008. http://tel.archives-ouvertes.fr/tel-00414689.

Full text
Abstract:
De nombreux systèmes physiques peuvent être décrits par des modèles unidimensionnels (1D). C'est le cas de certains gaz d'atomes ultrafroids: dans les bonnes conditions leur dynamique a lieu suivant une seule dimension spatiale.
Je me suis intéressée à l'étude de quelques aspects des systèmes intégrables à 1D. D'abord je présente une étude de l'état fondamental d'un système de fermions 1D à 2 composants en interactions de contact répulsives. J'utilise l'ansatz de Bethe pour calculer le diagramme de phase du système homogène. Je prends ensuite en compte un piège harmonique et je montre que les atomes s'organisent en deux couches: une phase partiellement polarisée se trouve au centre du piège et une phase totalement polarisée aux bords.
Ensuite j'étudie des corrections dues aux effets de taille finie au gap du spectre d'excitations du modèle d'Hubbard 1D. J'obtiens deux termes correctifs aux résultats de la limite thermodynamique: un en loi de puissances inverses en la taille du système L, et un second exponentiel en L. Dans le régime de faible interaction ce deuxième terme peut être important.
Finalement j'étudie la réponse d'un système excité à la modulation temporelle de l'interaction entre atomes. Je considère le modèle de Lieb-Liniger et le modèle non-intégrable d'un gaz de fermions avec une impureté mobile. Je montre que le système non-intégrable est sensible à des excitations de fréquences de l'ordre de l'espacement moyen entre niveaux d'énergie, tandis que le système intégrable n'est excité que par des fréquences beaucoup plus grandes. Cet effet peut être utilisé comme test d'intégrabilité dans des systèmes mésoscopiques 1D et pourrait être observé expérimentalement.
APA, Harvard, Vancouver, ISO, and other styles
28

Caudrelier, Vincent. "Equation de Schrödinger non-linéaire et impuretés dans les systèmes intégrables." Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00009612.

Full text
Abstract:
Cette thèse s'inscrit dans le domaine de physique théorique appelé systèmes intégrables, qui mêle fructueusement physique et mathématiques et se caractérise par la possibilité d'obtenir des résultats exacts (i.e. non perturbatifs) guidant les prédictions physiques qui en découlent.
Dans ce contexte, l'équation de Schrödinger non-linéaire (à 1+1 dimensions) est un système privilégié. On la retrouve comme modèle de phénomènes variés tant classiques (optique non-linéaire, mécanique des fluides...) que quantiques (gaz ultra-froids, condensation de Bose-Einstein...). En outre, elle a contribué à la mise au point de techniques de résolution des systèmes intégrables : méthode de diffusion inverse, ansatz de Bethe, identification et utilisation de symétries (groupes quantiques, Yangiens). En utilisant ce système à la fois comme support de test et comme modèle de prédiction, mon travail de thèse tourne autour de deux points principaux :
- Inclusion de degrés de liberté bosoniques et fermioniques.
- Inclusion d'un bord ou d'une impureté.
Dans un premier temps, j'ai étudié une version « supersymétrique » de cette équation pour laquelle j'ai montré la validité de tous les résultats d'intégrabilité, de symétrie et de résolution explicite classiques et quantiques connus pour la version scalaire originelle. La question de l'inclusion d'un bord a été traitée d'un autre point de vue. L'idée est de partir d'une algèbre de symétrie caractéristique des systèmes intégrables avec bord, l'algèbre de réflexion, et de construire un Hamiltonien général intégrable et possédant cette algèbre comme structure de symétrie. Un cas particulier de l'Hamiltonien intégrable obtenu n'est autre que l'Hamiltonien de Schrödinger non-linéaire en présence d'un bord. Un autre cas particulier est l'Hamiltonien de Sutherland en présence d'un bord pour lequel la symétrie n'était pas connue.
Le problème de l'inclusion d'une impureté dans un système intégrable a constitué la plus grosse partie de mon travail. J'ai pu montrer qu'il est possible de préserver l'intégrabilité d'un système avec interaction lorsqu'on introduit un défaut qui transmet et réfléchit (une impureté) grâce à une nouvelle structure algébrique, l'algèbre de Réflexion-Transmission, appliquée à l'équation de Schrödinger non-linéaire. Cela permet de trouver la forme explicite du champ, de calculer de façon exacte les éléments de la matrice de diffusion et les fonctions de corrélation à N points et d'identifier la symétrie du problème.
Suite à ce travail, les équations exactes qui régissent le spectre d'énergie d'un gaz de particules en interaction de contact et en présence d'une impureté contrôlée par quatre paramètres ont été établies. Ces résultats ouvrent des perspectives d'applications en physique de la matière condensée.
APA, Harvard, Vancouver, ISO, and other styles
29

Colomé, Tatché Maria. "Effets de taille finie et dynamique dans les systèmes intégrables unidimensionnels." Paris 11, 2008. http://www.theses.fr/2008PA112325.

Full text
Abstract:
De nombreux systèmes physiques peuvent être décrits par des modèles unidimensionnels (1D). C'est le cas de certains gaz d'atomes ultrafroids: dans les bonnes conditions leur dynamique a lieu suivant une seule dimension spatiale. Je me suis intéressée à l'étude de quelques aspects des systèmes intégrables à 1D. D'abord je présente une étude de l'état fondamental d'un système de fermions 1D à 2 composants en interactions de contact répulsives. J'utilise l'ansatz de Bethe pour calculer le diagramme de phase du système homogène. Je prends ensuite en compte un piège harmonique et je montre que les atomes s'organisent en deux couches: une phase partiellement polarisée se trouve au centre du piège et une phase totalement polarisée aux bords. Ensuite j'étudie des corrections dues aux effets de taille finie au gap du spectre d'excitations du modèle d'Hubbard 1D. J'obtiens deux termes correctifs aux résultats de la limite thermodynamique: un en loi de puissances inverses en la taille du système L, et un second exponentiel en L. Dans le régime de faible interaction ce deuxième terme peut être important. Finalement j'étudie la réponse d'un système excité à la modulation temporelle de l'interaction entre atomes. Je considère le modèle de Lieb-Liniger et le modèle non-intégrable d'un gaz de fermions avec une impureté mobile. Je montre que le système non-intégrable est sensible à des excitations de fréquences de l'ordre de l'espacement moyen entre niveaux d'énergie, tandis que le système intégrable n'est excité que par des fréquences beaucoup plus grandes. Cet effet peut être utilisé comme test d'intégrabilité dans des systèmes mésoscopiques 1D et pourrait être observé expérimentalement
Many physical systems can be described by one-dimensional (1D) models. It is the case of ultra-cold atoms: under certain circumstances their dynamics occurs only in one dimension. During my PhD I studied some aspects of 1D integrable systems. First, I present a study on the ground state of a system of 2-component repulsive fermions in 1D under harmonic confinement. I use the Bethe ansatz solution to calculate the phase diagram of the system in the homogeneous case. Adding a harmonic confinement I show that the atoms are distributed in a two-shell structure: the partially polarised phase in the inner shell and the fully polarised phase at the edges of the trap. Next I study the finite size effects for the gap of the quasiparticle excitation spectrum in the 1D Hubbard model. Two type of corrections to the result of the thermodynamic limit are obtained: a power law correction inversely proportional to the size of the system L, due to gapless excitations, and an exponential correction on L related to the existence of gapped excitations. In the weakly interacting regime this last correction can become important. Finally I study the response of a highly excited 1D gas to a periodic modulation of the coupling constant. I consider the Lieb-Liniger model and the non-integrable model of a single mobile impurity in a Fermi gas. I show that the non-integrable system is sensitive to excitations with frequencies as low as the mean level spacing, whereas the threshold frequency in the integrable case is much larger. This effect can be used as a probe of integrability for mesoscopic 1D systems, and can be observed experimentally by measuring the heating rate of a parametrically excited gas
APA, Harvard, Vancouver, ISO, and other styles
30

Roy, Nicolas. "Sur les déformations des systèmes complètement intégrables classiques et semi-classiques." Université Joseph Fourier (Grenoble), 2003. https://tel.archives-ouvertes.fr/tel-00003400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Gaillard, Pierre. "Déformations intégrables des potentiels de Darboux-Pöschl-Teller." Dijon, 2004. http://www.theses.fr/2004DIJOS006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Le, Blanc Ariane. "Des structures de (quasi -) Poisson quadratiques sur l'algèbre de lacets pour la construction d'un système intégrable sur un espace de modules." Phd thesis, Université de Poitiers, 2006. http://tel.archives-ouvertes.fr/tel-00114640.

Full text
Abstract:
Cette thèse est un travail conjointement sur l'espace de modules $\mathscr
M$ des connexions plates du fibré principal $S\times G$ d'une sphère de
Riemann $S$ (ayant $n\geq 3$ bords), où $G=\GL{N,\C}$ et sur l'algèbre de
lacets $\tilde\g=\gl{N,\C}(\!(\l^\mi)\!)$.

Dans un premier temps, nous étudions une hiérarchie de bidérivations
quadratiques sur $\tilde\g$. En particulier, grâce au processus de fusion
introduit par Alekseev, Kosmann-Schwarzbach et Meinrenken en 2002, nous
extrayons parmi elles une structure $\PB^Q_1$ de quasi-Poisson sur
$\tilde\g$. Celle-ci se restreint au sous-espace
$\tilde\g_n=\set{\sum_{k=0}^nx^{[k]}\l^k}$.

Nous montrons ensuite un résultat de réduction dans un contexte de
bidérivation de quasi-Poisson. Il permet d'équipper le quotient $\mathscr
A/G:=\set{\Id\l^n+\l Y(\l)+\Id|Y\in\tilde\g_{n-2}}/G$ d'une structure de
Poisson induite par $\PB^Q_1$.

En s'appuyant sur le système intégrable de Beauville sur
$\tilde\g_{n-2}/G$, nous montrons que la famille de fonctions $({\text{tr}}
X^k(a))_{k\in\N,a\in\C}$ constitue un système intégrable sur $\mathscr
A/G$. Les fonctions que nous considérons sur l'espace de modules $\mathscr
M$ sont les tiré-en-arrière $(\mathscr
T^*{\text{tr}X^k(a)})_{k\in\N,a\in\C}$, où $\mathscr T:G^n\to\tilde\g_n$
est un morphisme de quasi-Poisson et un difféomorphisme local. Nous
utilisons ces propriétés de $\mathscr T$ pour montrer que cette famille de
fonctions constitue un système intégrable sur $\mathscr M$.
APA, Harvard, Vancouver, ISO, and other styles
33

Abarenkova, Nina. "Etudes de systèmes intégrables ou de complexes faibles, en physique du solide et systèmes dynamiques discrets." Université Joseph Fourier (Grenoble), 1999. http://www.theses.fr/1999GRE10068.

Full text
Abstract:
Cette these reunit deux directions d'etude des systemes integrables : le calcul des fonctions de correlation dans le contexte de la physique du solide (en utilisant l'ansatz de bethe a deux composantes) et l'etude de transformations birationnelles dans le contexte des systemes dynamiques discrets. Le calcul analytique ainsi que plusieurs methodes numeriques sont employes. Ce document est organise en deux parties independantes. Dans la premiere partie, une methode de calcul analytique des fonctions de correlations, sous la forme d'un determinant de fredholm pour le modele de hubbard dans la limite u , et pour le modele correspondant d'echelle de spins, est presentee. Un ensemble de formules exactes est donne. La deuxieme partie est consacree a l'etude de systemes dynamiques discrets associes a des transformations birationnelles. Des classifications exhaustives, effectuees pour des ensembles tres larges de transformations birationnelles, ont permis de voir l'extraordinaire rarete des transformations integrables et la repartition effective de quantites mesurant la complexite des transformations. Sur l'exemple d'une famille de transformations non hyperboliques de deux variables nous avons donne tout un faisceau d'arguments convergeant vers une identification exacte de l'exponentielle de l'entropie topologique (associee a la fonction zeta dynamique) et du caracterisant la croissance exponentielle de la complexite de arnold. Cette egalite semble s'etendre au cas, ou les transformations sont vues comme des transformations portant sur des variables reelles. Des calculs d'exposants de lyapounov nous ont enfin permis de comparer l'entropie topologique reelle et l'entropie metrique.
APA, Harvard, Vancouver, ISO, and other styles
34

Rigal, Marie-Hélène. "Géométrie globale des systèmes bihamiltoniens en dimension impaire." Montpellier 2, 1996. http://www.theses.fr/1996MON20003.

Full text
Abstract:
Suivant la definition donnee par i. Gelfand et i. Zakharevitch gz, on etudie les systemes bihamiltoniens reguliers definis sur des varietes de dimension impaire 2n + 1. A un tel systeme est naturellement associe un feuilletage a de codimension n + 1, appele ame du systeme bihamiltonien. Il possede une structure transverse de tissu de veronese gz et ses feuilles sont munies d'une structure affine canonique. L'objet de la these est la description de la variete m, feuilletee par a, lorsqu'elle est fermee. Ce travail se divise en deux parties. La premiere est consacree a l'etude des feuilletages transversalement de veronese en toutes dimension et codimension et permet en particulier d'etablir que l'ame d'un systeme bihamiltonien admet un parallelisme transverse adapte a sa structure transverse et que le hamiltonien h est basique pour a. Dans la deuxieme partie, ce resultat essentiel conduit a une description assez precise, d'une part, des systemes bihamiltoniens sur les 5-varietes fermees, d'autre part, des tissus de veronese sur les 3-varietes fermees, apres en avoir effectue une etude locale prealable
APA, Harvard, Vancouver, ISO, and other styles
35

Caradot, Antoine. "Singularité et théorie de Lie." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1086/document.

Full text
Abstract:
Soit Γ un sous-groupe fini de SU2(ℂ). Alors le quotient ℂ2/Γ peut être plongé dans ℂ3 sous la forme d'une surface munie d'une singularité isolée. Le quotient ℂ2/Γ est appelé singularité de Klein, d'après F. Klein qui fut le premier à les décrire en 1884. A travers leurs résolutions minimales, ces singularités ont un lien étroit avec les diagrammes de Dynkin simplement lacés de types Ar, Dr et Er. Dans les années 1970, E. Brieskorn et P. Slodowy ont tiré profit de cette connection pour décrire les résolutions et les déformations de ces singularités à l'aide de la théorie de Lie. En 1998 P. Slodowy et H. Cassens ont construit les déformations semiuniverselles des ℂ2/Γ à l'aide de la théorie des carquois ainsi que des travaux de P.B. Kronheimer en géométrie symplectique datant de 1989. En théorie de Lie, la classification des algèbres de Lie simples divisent ces dernières en deux classes: les algèbres de Lie de types Ar, Dr et Er qui sont simplement lacées, et celles de types Br, Cr, F4 et G2 appelées non-homogènes. A l'aide d'un second sous-groupe fini Γ' de SU2(ℂ) tel que Γ ⊲ Γ', P. Slodowy a étendu en 1978 la notion de singularité de Klein aux algèbres de Lie non-homogènes en ajoutant à ℂ2/Γ le groupe d'automorphismes Ω= Γ'/Γ du diagramme de Dynkin associé à la singularité. L'objectif de cette thèse est de généraliser la construction de H. Cassens et P. Slodowy à ces singularités de types Br, Cr, F4 et G2. Il en résultera des constructions explicites des déformations semiuniverselles de types inhomogènes sur les fibres desquelles le groupe Ω agit. Le passage au quotient d'une telle application révèle alors une déformation d'une singularité de type ℂ2/Γ'
Let Γ be a finite subgroup of SU2(ℂ). Then the quotient ℂ2/Γ can be embedded in ℂ3 as a surface with an isolated singularity. The quotient ℂ2/Γ is called a Kleinian singularity, after F. Klein who studied them first in 1884. Through their minimal resolutions, these singularities have a deep connection with simply-laced Dynkin diagrams of types Ar, Dr and Er. In the 1970's E. Brieskorn and P. Slodowy took advantage of this connection to describe the resolutions and deformations of these singularities in terms of Lie theory. In 1998 P. Slodowy and H. Cassens constructed the semiuniversal deformations of the Kleinian singularities using quiver theory and work from 1989 by P.B. Kronheimer on symplectic geometry. In Lie theory, the classification of simple Lie algebras allows for a separation in two classes: those simply-laced of types Ar, Dr and Er, and those of types Br, Cr, F4 and G2 called inhomogeneous. With the use of a second finite subgroup Γ’ of SU2(ℂ) such that Γ ⊲ Γ’, P. Slodowy extended in 1978 the definition of a Kleinian singularity to the inhomogeneous types by adding to ℂ2/Γ the group of automorphisms Ω= Γ’/Γ of the Dynkin diagram associated to the singularity. The purpose of this thesis is to generalize H. Cassens' and P. Slodowy's construction to the singularities of types Br, Cr, F4 and G2. It will lead to explicit semiuniversal deformations of inhomogeneous types on the fibers of which the group Ω acts. By quotienting such a map we obtain a deformation of a singularity ℂ2/Γ’
APA, Harvard, Vancouver, ISO, and other styles
36

Piu, Maria Paola. "Sur certains types de distributions non-intégrables totalement géodésiques." Mulhouse, 1988. http://www.theses.fr/1988MULH0085.

Full text
Abstract:
Les distributions intégrables (feuilletages) totalement géodésiques ont fait, depuis le début du siècle, l'objet d'importants travaux (J. Hadamard 1901. . . Et récemment Ghys et Carriere 1982). Par contre une approche aux distributions non intégrables totalement géodésiques se cantonait dans des problèmes très spécifiques (E. Cartan s'était préoccupé de trouver des distributions totalement géodésiques de codimension 1 de l'espace projectif, Petrescu et Yano ont de leur côté regardé ce problème mais dans le cadre général des connexions). On comprend rapidement qu'une étude liée à la classification (soit-elle locale ou globale) de telles distributions soit difficile à développer. Le cas des distributions intégrables est facilité par l'existence (du moins locale) de modèles, à isomorphisme près, que l'on n'a pas dans le cas non intégrable. On se propose dans cette thèse, de décrire entièrement certaines situations particulièrement intéressantes qui doivent permettre d'aborder ces problèmes de classification: par exemple on considère le cas où la distribution non intégrable est de classe maximale
APA, Harvard, Vancouver, ISO, and other styles
37

Boudaoud, Abdelmadjid. "Modélisation de phénomènes discrets et approximations diophantiennes infinitésimales." Mulhouse, 1988. http://www.theses.fr/1988MULH0087.

Full text
Abstract:
Approximation des réels par des rationnels avec contrôle de l'erreur et du dénominateur simultanément. Développement de la théorie des phénomènes discrets, basée sur la considération de la restriction d'une fonction standard continue ainsi que sa dérivée sur un nombre fini non limité de points espacés par un pas infiniment petit
APA, Harvard, Vancouver, ISO, and other styles
38

Liorit, Grégory. "Etude des valeurs propres de quelques processus matriciels à l'aide d'une méthode de Laplace pour des intégrales stochastiques itérées et de la formule de Campbell-Hausdorff stochastique." Poitiers, 2005. http://www.theses.fr/2005POIT2329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Cohen-Aptel, Véronique. "Fonctions double Gamma liées aux systèmes de racines." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1558/.

Full text
Abstract:
Cette thèse, composée de 11 chapitres, répartis en trois parties, aborde les fonctions double Gamma liées aux systèmes de racines. La première partie regroupe les théorèmes classiques sur la fonction G d'Euler ; y sont ajoutés des résultats spécifiquement développés pour ce travail, qui seront utilisés dans les deux autres parties. Sont également étudiées sur un modèle similaire (relation fonctionnelle, formules intégrales, valeurs limites) la fonction double Gamma et la fonction Gamma q- analogue. La deuxième partie expose les variantes de Double Gamma en physique : sont ainsi étudiées, la fonction Gammab, double-sinus Sb, la fonction gamma des frères Zamolodchikov, la fonction de Lukyanov-Zamolodchikov et les fonctions de Fateev liées aux matrices de Cartan. Une partie de ces résultats, énoncés par les physiciens, est démontrée. La dernière partie s'intéresse aux formules de Fateev et donne une preuve par calcul, du théorème de Fateev pour les systèmes du type A,D,E et aussi B,C,F,G en n'utilisant que la formule classique du produit de Gamma. Le chapitre 9 donne un théorème de Fateev q-analogue pour A, B, C, D, G2. Le chapitre 10 permet d'exprimer certains vecteurs propres de matrices de Cartan en termes de produits de valeurs de la fonction G. Les cas affines et finis sont démontrés
This thesis, consisting of 11 chapters, is divided into three parts and addresses the double Gamma functions associated with root systems. The first part includes the classical theorems on the Euler G function ; added are results, specifically developed for this work, which will be used in the other two parts. According a similar pattern (functional equation, integral formulas, limiting values) the double Gamma function and the q-Gamma function are also studied. The second part describes the Double Gamma versions in physics : the Gammab function, double sine Sb function, the gamma function of the brothers Zamolodchikov, the Lukyanov-Zamolodchikov and Fateev functions related to Cartan matrices, are studied. A part of these results, expressed by the physicists, is demonstrated. The last part deals with Fateev formulas and gives proof of the Fateev theorem by direct calculation, for systems of type A, D, E, B, C, F, G, using only the classical formula of the product of Gamma. Chapter 9 gives a q-analogue theorem of the Fateev formula for the systems of type A, B, C, D, G2. Chapter 10 allows us to express some eigenvectors of the Cartan matrix in terms of products of values of the G function. Finite and affine cases are demonstrated
APA, Harvard, Vancouver, ISO, and other styles
40

Sobrero, Alessandra. "Systèmes de Toda multidiagonaux et opérateurs de Toeplitz." Paris 7, 2005. http://www.theses.fr/2005PA077167.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Barraquand, Guillaume. "Quelques modèles intégrables dans la classe d'universalité KPZ." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC242.

Full text
Abstract:
Cette thèse est consacrée à l'étude de quelques modèles aléatoires exactement solubles dans la classe d'universalité KPZ. Le premier chapitre dresse un panorama des méthodes récentes pour étudier ce type de systèmes. On présente aussi les différents travaux qui constituent cette thèse, sans rentrer dans les détails techniques, en insistant plutôt sur l'intérprétation des résultats et les méthodes générales. Ensuite viennent trois chapitres, correspondant à autant d'articles publiés ou soumis pour publication. Le premier chapitre est une étude asymptotique du système de particules en interaction q-TASEP, perturbé par des particules lentes. On montre que le système obéit au même type de théorème limite que le TASEP, et on observe une transition de phase appelée transition BBP. Le deuxième chapitre, basé sur des travaux en collaboration avec Ivan Corwin, introduit de nouveaux processus d'exclusion exactement solubles. Nous vérifions notamment les prédictions de la classe d'universalité KPZ, et nous nous intéressons aussi au comportement moins universel de la première particule. Le troisième chapitre correspond également à un travail en collaboration avec Ivan Corwin. Nous introduisons une marche aléatoire en environnment aléatoire, qui a la particularité d'être exactement soluble. Nous montrons que les corrections au second ordre au principe de grandes déviations vérifié par la marche sont distribuées selon la loi de Tracy-Widom. On donne une interprétation probabiliste de ce théorème limite, et on montre également que le résultat se propage à température nulle
This thesis is about exactly solvable stochastic models in the KPZ universality class. The first chapter provides an overview of the recent methods designed to study such systems. We also present the different works which constitute this thesis, leaving aside the technical details, but rather focusing on the interpretation of the results and the general methods that we use. The three next chapters each correspond to an article published or submitted for publication. The first chapter is an asymptotic study of the q-TASEP interacting particle system, when the system is perturbed by a few slower particles. We show that the system obeys to the same limit theorem as TASEP, and one observes the so-called BBP transition. The second chapter, based on a work in collaboration with Ivan Corwin, introduces new exactly solvable exclusion processes. We verify the predictions from KPZ scaling theory, and we also study the less universal behaviour of the first particle. The third chapter corresponds to a second work in collaboration with Ivan Corwin. We introduce a random walk in random environment, which turns out to be exactly solvable. We prove that the second order correction to the large deviation principle is Tracy-Widom distributed on a cube root scale. We give a probabilistic interpretation of this limit theorem, and show that the result also propagates at zero-temperature
APA, Harvard, Vancouver, ISO, and other styles
42

Fortin, Frédéric. "Etude de structures couplées adaptées aux composants hyperfréquences intégrables." Chambéry, 2000. http://www.theses.fr/2000CHAMS027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lazarescu, Alexandre. "Exact large deviations of the current in the asymmetric simple exclusion process with open boundaries." Paris 6, 2013. http://www.theses.fr/2013PA066295.

Full text
Abstract:
In this thesis, we consider one of the most popular models of non-equilibrium statistical physics: the Asymmetric Simple Exclusion Process, in which particles jump stochastically on a one-dimensional lattice, between two reservoirs at fixed densities, with the constraint that each site can hold at most one particle at a given time. This model has the mathematical property of being integrable, which makes it a good candidate for exact calculations. What interests us in particular is the current of particles that flows through the system (which is a sign of it being out of equilibrium), and how it fluctuates with time. We present a method, based on the `matrix Ansatz' devised by Derrida, Evans, Hakim and Pasquier, that allows to access the exact cumulants of that current, for any finite size of the system and any value of its parameters. We also analyse the large size asymptotics of our result, and make a conjecture for the phase diagram of the system in the so-called `s-ensemble'. Finally, we show how our method relates to the algebraic Bethe Ansatz, which was thought not to be applicable to this situation
Dans cette thèse, on considère un des modèles les plus étudiés en physique statistique hors équilibre : le processus d'exclusion simple asymétrique, qui décrit des particules se déplaçant stochastiquement sur un réseau unidimensionnel, entre deux réservoirs de densités fixées, avec la contrainte que chaque site ne peut porter qu'une particule à un instant donné. Ce modèle a la propriété mathématique d'être intégrable, ce qui en fait un bon candidat à une résolution exacte. Ce qui nous intétresse, en particulier, est de décrire le courant de particules qui traverse le système (ce qui est une caractéristique des systèmes hors équilibre) et comment ce dernier fluctue avec le temps. Nous présentons une méthode inspirée de l'Ansatz matriciel de Derrida, Evans, Hakim et Pasquier, qui nous permet d'obtenir une expression exacte des cumulants de ce courant, et ce pour une taille finie du système et quelle que soit la valeur de ses paramètres. Nous analysons également le comportement asymptotique de ce résultat à la limite d'un système de grande taille, et émettons une conjecture quant au diagramme de phase du système dans 'l'ensemble-s'. Enfin, nous montrons en quoi notre méthode est reliée à l'Ansatz de Bethe algébrique, que l'on pensait ne pas être appliquable à cette situation
APA, Harvard, Vancouver, ISO, and other styles
44

Bonjour, Christophe. "Inversion de systèmes linéaires pour la simulation des matériaux férromagnetiques : singularité d'une configuration d'aimantation." Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00004975.

Full text
Abstract:
Dans cette thèse, nous étudions deux problèmes mathématiques concernant les équations du micromagnétisme. Ces équations régissent la configuration de la magnétisation dans les matériaux ferromagnétiques qui entrent dans la fabrication des têtes d'enregistrement magnétique et des mémoires à lignes de Bloch. Dans la première partie, nous décrivons les propriétés physiques de ces matériaux et nous donnons une description sommaire de deux codes de simulation numérique qui ont été développés au LETI-CEA. Une configuration d'aimantation est un minimum d'une énergie composée de quatre termes : les énergies d'échange, d'anisotropie, démagnétisante et de Zeemann. De plus, l'aimantation est de norme constante. Il s'agit d'un problème de minimisation d'une fonctionnelle, sous contrainte non linéaire. Le terme d'énergie démagnétisante est non local, ce qui introduit des difficultés tant du point de vue théorique que numérique. La deuxième partie est consacrée à la présentation des méthodes que nous avons développées pour résoudre les systèmes linéaires qui apparaissent dans les codes de simulation. Nous avons utilisé une méthode de type gradient conjugué préconditionné et une méthode d'expansion couplée à la première méthode. Dans la troisième partie, nous démontrons que les singularités d'une configuration d'aimantation sont en nombre fini à l'intérieur du matériau. Nous utilisons, pour cela, la théorie introduite par Schoen et Uhlenbeck pour les fonctions minimisant l'énergie de Dirichlet sur la sphère unité. Nous avons du adapter cette théorie à l'énergie du micromagnétisme. Il a fallu, en particulier, tenir compte du caractère non local de l'énergie démagnétisante
APA, Harvard, Vancouver, ISO, and other styles
45

Chhay, Marx. "Intégrateurs géométriques : application à la mécanique des fluides." La Rochelle, 2008. http://www.theses.fr/2008LAROS261.

Full text
Abstract:
Une approche récente permettant d'étudier les équations issues de la Mécanique des Fluides consiste à considérer les symétries de ces équations. Les succès des développements théoriques, notamment en turbulence, ont justifié la pertinence d'une telle approche. Sur le plan numérique, les méthodes d'intégration construites sur des arguments liés à la structure géométrique des équations s'appellent les intégrateurs géométriques. Dans la première partie de la thèse, on présente la classe d'intégrateurs géométriques probablement la plus connue; ce sont les intégrateurs symplectiques pour les systèmes hamiltoniens. Dans une seconde partie, on introduit les intégrateurs variationnels, construits pour reproduire les lois de conservation des systèmes lagrangiens. Cependant, la plupart des équations de la Mécanique des Fluides ne dérive pas d'un Lagrangien. On expose alors dans la dernière partie une méthode de construction de schémas numériques respectant les symétries d'une équation. Cette méthode est basée sur une formulation moderne des repères mobiles. On présente une contribution au développement de cette méthode; elle permet d'obtenir un schéma invariant possédant un ordre de précision déterminé. Des exemples issus des équations modèles de la Mécanique des Fluides sont traités
A recent approach to study the equations from Fluid Mechanics consists in considering the symmetry group of equations. Succes of theoretical development, specially in turbulence, has justified the relevance of this approach. On the numerical side, the integrating methods based on arguments related to the geometrical structure of equations are called geometric integrators. In the first part of this thesis, a class of such integrators is introduced: symplectic integrators for hamiltonian systems, which are probably the most well known geometric integrators. In the second part, variational integrators are outlined, constructed in order to reproduce conservation laws of lagrangian systems. However most of Fluid Mechanics equations cannot be derived from a Lagrangian. In the last part of this thesis, a method of construction of numerical schemes that preserves equations symmetry is exposed. This method is based on a modern formulation of moving frames. A contribution to the development of this method is proposed; this allows to obtain an invariant numerical scheme that owns an order of accuracy. Examples from Fluid Mechanics model equations are detailled
APA, Harvard, Vancouver, ISO, and other styles
46

Shenderovich, Igor. "Structures intégrables dans les théories de jauge et les théories des cordes supersymmétriques." Paris 6, 2012. http://www.theses.fr/2012PA066465.

Full text
Abstract:
Dans cette thèse nous étudions des méthodes d'intégrabilité dans le cadre de la correspondance AdS /CFT. Nous étudions des structures intégrables des deux côtés de la dualité AdS / CFT en utilisant deux conceptions déférentes. Sur le côté corde de la dualité nous observons comment la supersymmétrie et l’automorphisme du groupe de symétrie organisent le modèle dans un système intégrable. Puis, en utilisant les conséquences de la méthode « finit gap » pour le système intégrable nous effectuons une procédure de quantification «one-loop» qui nous permet de calculer le «one-loop» spectre du modèle. Nous illustrons cette méthode avec le calcul du spectre d’une cordes courte. Sur le côté gauge nous passons en revue la méthode du Y – système fonctionnel pour le calcul du spectre de la théorie dans un volume fini. En raison de l'existence de la S-matrice a deux particules, il est possible d'utiliser l'astuce de Zamolodchikov pour mettre en place un système des équations fonctionnelles, qui peuvent être par la suite re-écrit en une équation de Hirota sur un domaine défini. Dans la limite de couplage fort ces équations peuvent être considérablement simplifiées. Cela nous donne une chance d'avoir une solution analytique du système, qui peut être comparé a la solution corde. Ces deux solutions sont en accord parfait
In this thesis is given a review of the methods of integrability in the context of the AdS/CFT correspondence. We investigate integrable structures on both sides of the AdS/CFT duality using different methods. On the string side of the duality we observe how the supersymmetry and automorphism of the symmetry group organize the model into integrable one. Then, using the consequences of the finite gap method for the integrable system we perform a one--loop quantization procedure which allows us to compute the one--loop spectrum of the model. We illustrate this method by computing the spectrum of a short string. On the gauge side we review the method of the functional Y--system equations for computing the spectrum of the theory in the finite volume. Due to the existence of the two--particle S--matrix it is possible to use the Zamolodchikov's trick to setup a system of functional equations, which can be later recast as a Hirota equation defined on some domain. In the strong coupling limit these equations can be drastically simplified. This gives us a chance to have an analytic solution of them, which can be compared to the string side computation. These two results are in a perfect agreement
APA, Harvard, Vancouver, ISO, and other styles
47

Faquir, Mohamed. "Aux frontières de la théorie des champs." Montpellier 2, 2006. http://www.theses.fr/2006MON20163.

Full text
Abstract:
I. L'équation décrivant la dynamique des ondes courtes à la surface d'un fluide après une réduction de Green-Naghdi des équations d'Euler se trouve être un nouveau système intégrable exhibant des propriétés remarquables. Une relation insoupçonnée avec le modèle de sine-Gordon, au travers de transformations impliquant une quantité conservée, nous permet en effet d'obtenir des solutions singulières et multivaluées pour la nouvelle équation intégrable et, par la suite, d'en construire une description en termes du Lagrangien d'un champ relativiste. L'existence de modèles très similaires au système hydrodynamique et partageant les mêmes propriétés nous pousse à rechercher les conditions d'apparition d'une telle relation dans un cadre plus général puis à construire un modèle non relativiste mélangeant deux des équations obtenues auparavant. Cette partie se clôt sur une étude aux premiers ordres quantiques des effets de ces transformations responsables de l'apparition de champs relativistes multivalués. II. Dans l'optique d'arriver à une théorie cohérente décrivant des champs de spin élevé en interaction, nous présentons dans la seconde partie une construction, basée sur la théorie des champs de cordes, qui mélange tous les niveaux de spin. Grâce à des contraintes d'herméticité, on détermine dans un premier temps les éléments d'un groupe de jauge et leur loi de composition. Les champs de jauge sont choisis comme la représentation adjointe du groupe puis modifiés pour se rapprocher des définitions usuelles. Finalement, l'étude du spin 3 nécessite l'introduction de champs auxiliaires qui nous permettent d'obtenir un Lagrangien pour le champ de spin 2 massif en généralisant une méthode introduite par Veltman dans le cas de Yang-Mills
I. The equation describing short waves dynamics on th surface of a fluid after a Green-Naghdi type reduction of Euler equations is found to be a new integrable system that exhibits very interesting properties. Indeed, an unexpected relation with the sine-Gordon model, through transformations involving a conserved quantity, leads to singular and multivalued solutions for the new equation and allows to build a description in terms of the Lagrangien of a relativistic field. The existence of cases very similar to this one leads us to investigate general condition for this kind of relations to appear and to study a model not explicitely Lorentz-invariant which mix two of the equations we obtained earlier. The last point we focus on is the effects on low-order quantum corrections due to those transformations. II. In order to find a consistent theory for higher-spin fields, we have studied a new way to build gauge groups and fields based on string field theory and mixing all levels of spin. We first calculate elements of the group and the composition law thanks to hermiticity constraints. We then choose the gauge fields to belong to the adjoint representation of the group and modify them to get closer to usual definitions. Eventually, the study of the spin 3 needs us to introduce auxiliary fields which can be used to build a Lagrangian for the massive spin 2, analogous to what Veltman did in the Yang-Mills case
APA, Harvard, Vancouver, ISO, and other styles
48

Melotti, Paul. "Modèles intégrables de spins, vertex et boucles." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS258.

Full text
Abstract:
Cette thèse porte sur divers problèmes de mécanique statistique, liée à l'étude des modèles intégrables. Dans ces modèles, l'existence de symétries particulières, exprimées par exemple par les équations de Yang-Baxter ou transformations "triangle-étoile'', permettent de donner des formules exactes pour les observables d'intérêt. Dans un premier temps, nous étudions la transformation triangle-étoile du modèle d'Ising, reformulée par Kashaev en une équation d'évolution polynomiale. Nous montrons que cette évolution fait apparaître des objets combinatoires : les modèles de boucles C2(1). Nous montrons de plus des résultats de formes limites et des calculs d'énergie libre pour ces modèles de boucles. Dans un second temps, nous développons la compréhension du modèle des ``huit sommets'', qui généralise les modèles de glace. Nous montrons que dans le régime des fermions libres, ces modèles peuvent être compris via des modèles de dimères bipartis, et des fortes structures d'intégrabilité de ces derniers. Nous en déduisons des constructions de mesures de Gibbs et des corrélations en volume infini, notamment pour des régimes Z-invariants sur des graphes isoradiaux. Enfin, nous proposons des interprétations des équations de Yang-Baxter en géométrie discrète, via des plongements particuliers de graphes
This thesis deals with several problems in statistical mechanics, related to the study of integrable models. In these models, some particular symmetries, like those expressed by the Yang-Baxter equations or "star-triangle'' transformations, lead to the existence of exact formulas for observables of interest.In a first part, we study the star-triangle transformation of the Ising model, recast into a singe polynomial evolution equation by Kashaev. We show that this evolution creates combinatorial objects: C2(1) loop models. We show some limit shapes results and compute the free energy of these loop models. In a second part, we develop the study of the ``eight-vertex'' model, that generalises ice models. In the free-fermion regime, we translate these models into dimers on a bipartite graph, and use the strong integrability structures of these. We deduce the construction of Gibbs measures and correlations in infinite volume, in particular for Z-invariant regimes on isoradial graphs. Finally, we suggest interpretations of the Yang-Baxter equations in discrete geometry, via particular embeddings of graphs
APA, Harvard, Vancouver, ISO, and other styles
49

Ben, Yahia Hamed. "Intégralité classique et quantique de quelques systèmes dynamiques." Paris 7, 2008. http://www.theses.fr/2008PA077048.

Full text
Abstract:
Cette thèse a pour objet l'étude de l'intégrabilité de certains systèmes dynamiques. Dans un premier travail nous avons obtenu une nouvelle famille (d\'enombrable) de systèmes intégrables sur la sphère S ^2S qui généralisent le système de Neumann. Dans notre second travail, sur les métriques dites "multi-centres" à flot géodésique intégrable, nous avons montré qu'elles font partie des métriques de type Bianchi A. Parmi celles-ci, celles pour Bianchi S I_0S et S VII_0S semblaient pouvoir être non-diagonales, mais nous avons montre que dans ces deux cas, des changements de coordonnées appropriés permettent de les diagonaliser. Enfin, pour la métrique Bianchi II nous avons mis en évidence l'existence, au niveau classique, d'une nouvelle algèbre W (par rapport au crochet de Poisson) pour les observables conservées. Ces deux travaux ont été publiés dans des revues, mais nous avons inclus dans la Thèse, deux travaux pour lesquels nous n'avons pas obtenu des solutions assez générales pour donner lieu à publication:-Construction des métriques multi-centres dans la classe des Bianchi B-Construction, en dimension 2, de tous les systèmes de Stäckel qui admettent une grandeur conservée quadratique supplémentaire. Dans le premier cas nous n'avons réussi à résoudre le problème que pour Bianchi B III, et pour le second nous n'avons pu obtenir que des solutions particulières
This thesis is devoted to the study of the integrability of some dynamical Systems. In a first job, we've got a new family (enumerable) of integrable Systems on the sphere S ^2 wich genralizes the Neumann System. In a second job, on metrics called muticenter with integrable géodésie flow, we've show that they do belong to the Bianchi A metrics. Among them, those for Bianchi Vl_0 and Vll_0 seemed to be non-diagonal, but we've prove that in those two cases, apropriates coordinates changes allow to diagonalize them. Finally, for the Bianchi II metric we have highlighted the existence, in classical level, of a new W-algebra for conserved observables. Those two works, have been published in journals, but we've include in the thesis, two other works for which we have not obtain general solutions and that will lead to publications. -Construction of multi-center metrics in the Bianchi B classes. -Construction, in dimension 2, of all Stäckel Systems that do have an extra conserved quadratic quatity. In the first case we have been able to solve the problem for Bianchi B III, and for the second we have only been able to get particular solutions
APA, Harvard, Vancouver, ISO, and other styles
50

Grosjean, Nicolas. "Séparation des variables et facteurs de forme des modèles intégrables quantiques." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00854395.

Full text
Abstract:
Les facteurs de forme et les fonctions de corrélation déterminent les quantités dynamiques mesurables associées aux modèles de théorie des champs et de mécanique statistique. Dans le cas de modèles intégrables en dimension 2, au-delà des propriétés du spectre ou de la fonction de partition, un des grands défis actuels concerne le calcul exact des facteurs de forme et des fonctions de corrélation.Le but de cette thèse est de développer une approche permettant de résoudre ce problème dans le cadre de la méthode de séparation des variables quantique de Skyanin. Cette méthode généralise au cas quantique et pour des systèmes avec un grand nombre de degrés de liberté la méthode de Hamilton-Jacobi en mécanique analytique. Le Hamiltonien est exprimé avec des opérateurs séparés, son spectre et ses états propres caractérisés par un système d'équations de Baxter résultant des structures algébriques de Yang-Baxter, caractéristiques de l'intégrabilité de ces modèles.Cette thèse a permis, pour les modèles de sine-Gordon (théorie des champs quantique) et de Potts chiral (modèle de physique statistique), le calcul des produits scalaires entre états propres du Hamiltonien, la résolution du problème inverse, i. e. l'expression des opérateurs du modèle en termes des variables séparées, ainsi que le calcul en termes de déterminants des facteurs de forme, i. e. des éléments de matrice des opérateurs locaux du modèle dans la base propre du Hamiltonien, ce qui constitue un pas important vers le calcul des fonctions de corrélation de ces modèles.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography