Dissertations / Theses on the topic 'Singularités de problèmes elliptiques'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Singularités de problèmes elliptiques.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Ponce, Augusto. "Quelques problèmes elliptiques avec singularités." Paris 6, 2004. https://tel.archives-ouvertes.fr/tel-00009043.
Full textGhergu, Marius. "Problèmes avec singularités sur la frontière pour des équations elliptiques." Chambéry, 2006. http://www.theses.fr/2006CHAMS016.
Full textThis work concerns the study of elliptic problems with singularities at the boundary. The first part deals with blow-op solutions for semilinear elliptic problems with gradient term. In this sense we establish some existence and nonexistence results for this kind of problems and for the associated elliptic systems. These results are obtained in the absence of the Keller-Osserman condition and assuming that the nonlinearities have a sublinear growth at infinity. We also point out the role played by the gradient term in the existence of a blow-up solution. The second part of the thesis concerns semilinear eliptic problems with singular nonlinearities. We are interested in existence, uniqueness and bifurcation with respect to the parameters. In the presence of asymptotically linear terms we establish a blow-up result for the solution around the bifurcation parameter. In the last chapter of this part we analyse the influence of the subquadratic gradient term. The proofs relies on the sub and super-solution method, combined with different techniques for singular elliptic equations. In the third part of this work we emphasize the collective behavior of a multi-building system subjected to time dependent impacts representing earthquakes, collisions and explosions. The approach is based on the spectral analysis of the problem combined with integral methods. The difficulty consists in the presence of the singularities at the end of the buildings foundations. An asymptotic study on the first frequency with respect to the number of the buildings is also presented
Sauvy, Paul. "Étude de quelques problèmes elliptiques et paraboliques quasi-linéaires avec singularités." Thesis, Pau, 2012. http://www.theses.fr/2012PAUU3020/document.
Full textThis thesis deals with the mathematical field of nonlinear partial differential equations analysis. More precisely, we focus on quasilinear and singular problems. By singularity, we mean that the problems that we have considered involve a nonlinearity in the equation which blows-up near the boundary. This singular pattern gives rise to a lack of regularity and compactness that prevent the straightforward applications of classical methods in nonlinear analysis used for proving existence of solutions and for establishing the regularity properties and the asymptotic behavior of the solutions. To overcome this difficulty, we establish estimations on the precise behavior of the solutions near the boundary combining several techniques : monotonicity method (related to the maximum principle), variational method, convexity arguments, fixed point methods and semi-discretization in time. Throughout the study of three problems involving the p-Laplacian operator, we show how to apply this different methods. The three chapters of this dissertation the describes results we get :– In Chapter I, we study a singular elliptic absorption problem. By using sub- and super-solutions and variational methods, we prove the existence of the solutions. In the case of a strong singularity, by using local comparison techniques, we also prove that the compact support of the solution. In Chapter II, we study a singular elliptic system. By using fixed point and monotonicity arguments, we establish two general theorems on the existence of solution. In a second time, we more precisely analyse the Gierer-Meinhardt systems which model some biological phenomena. We prove some results about the uniqueness and the precise behavior of the solutions. In Chapter III, we study a singular parabolic absorption problem. By using a semi-discretization in time method, we establish the existence of a solution. Moreover, by using differential energy inequalities, we prove that the solution vanishes in finite time. This phenomenon is called "quenching"
Devillanova, Giuseppe. "Structures singulières de quelques problèmes variationnels." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2005. http://tel.archives-ouvertes.fr/tel-00132680.
Full textGmira, Abdelilah. "Comportements asymptotiques et singularités des solutions de problèmes quasi-linéaires." Tours, 1989. http://www.theses.fr/1989TOUR4005.
Full textLOHEAC, Jean-Pierre. "Problèmes elliptiques à données peu régulières, applications." Habilitation à diriger des recherches, Université Claude Bernard - Lyon I, 2002. http://tel.archives-ouvertes.fr/tel-00002062.
Full textde recherche.
Le premier concerne la stabilisation-frontière de quelques systèmes
distribués, en présence de singularités. On s'intéresse principalement à l'équation des ondes et au système élastodynamique pour lesquels de nombreux auteurs ont obtenu des résultats de stabilisation en utilisant la méthode des multiplicateurs sous des conditions géométriques restrictives. Pour étendre ces résultats, on est amené à démontrer certaines propriétés de ``régularité cachée'' des solutions fortes, ce qui nécessite l'analyse des singularités d'un problème elliptique avec conditions aux limites mêlées. La connaissance de ces singularités permet de généraliser une relation de Rellich, cruciale dans l'obtentionédes estimations d'énergie conduisant aux résultats de stabilisation.
Le second thème a pour objet l'étude des écoulements de Hele-Shaw à
source ponctuelle. Le modèle de Stokes-Leibenson fait apparaître
une équation elliptique dont le second membre est la distribution de Dirac au point-source. Ce problème est de plus intrinsèquement non linéaire du fait que le domaine lui-même évolue d'une manière inconnue. On utilise la méthode de Helmholtz-Kirchhoff pour reformuler le problème. Ceci permet de démontrer un résultat d'existence et d'unicité locales d'une solution classique. On construit ensuite un modèle numérique, dit ``modèle quasi-contour'', destiné à étudier certaines propriétés qualitatives de ces écoulements.
Fabbri, Jean. "Problèmes elliptiques non linéaires singuliers au bord dans des ouverts non réguliers." Tours, 1994. http://www.theses.fr/1994TOUR4013.
Full textDJADEL, Karim. "Méthodes de Volumes Finis et Singularités." Phd thesis, Université de Valenciennes et du Hainaut-Cambresis, 2005. http://tel.archives-ouvertes.fr/tel-00010772.
Full textBéchet, Fabien. "Étude théorique et numérique des singularités en théorie des coques minces élastiques." Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-B_chet.pdf.
Full textHagbé, Joseph François. "Vitesse de convergence de l'itération du point fixe de Banach pour des problèmes semilinéaires elliptiques dans des domaines ayant une singularité conique." Valenciennes, 2004. http://ged.univ-valenciennes.fr/nuxeo/site/esupversions/2263f888-b8ae-4923-a945-c7f2e41b8acb.
Full textWe determine the convergence speed of the Banach fixed-point iteration applied to semilinear elliptic boundary value problems on domains with a conical point at the boundary. An important quantity is the norm of the embedding of the natural domain of the linear part of the problem into a family of weighted Sobolev spaces depending on an exponent giving a bound for the asymptotic behavior of the elements near the conical point. For general domains, we obtain a Lipschitz constant for the fixed point application which is proportional to this norm. Here we use the mapping properties of the Nemytskij (composition) operator on weighted Sobolev spaces. In the case of a 2d-sector, we derive estimations from above and below of the norm of this embedding, which imply its asymptotic behaviour when tending to infinity, when the interior angle of the sector approaches a limit value, for which the natural domain is no longer included in the given weighted space. We use Bessel functions
Ignat, Radu. "Singularités dans quelques problèmes variationnels." Paris 6, 2006. http://www.theses.fr/2006PA066368.
Full textMaris, Mihai. "Sur quelques problèmes elliptiques non-linéaires." Paris 11, 2001. http://www.theses.fr/2001PA112247.
Full textIn this thesis we study particular solutions for some nonlinear dispersive partial differential equations which appear in physics, such the nonlinear Schrödinger equation, the Benney-Luke equation or the Benjamin-Ono equation. We are particularly interested in the stationary waves and in the travelling waves of these equations. This gives nonlinear elliptic problems in the whole space. Solitary and travelling waves for the considered equations have been observed in experiments and in numerical simulations. In some cases, these solutions seem to play an important role in the general dynamics of the corresponding evolution equations. In the first chapter we prove the analyticity and we find the optimal algebraic decay rate at infinity of solitary waves to the Benney-Luke equation and to the generalized Benjamin-Ono equation. The second chapter is devoted to the proof of existence of stationary solutions for a nonlinear Schrödinger equation with potential in one dimension which describes the flow of a fluid past an obstacle. .
Ghalim, Rachid. "Singularités elliptiques des plans doubles ramifiés le long d'une sextique." Lille 1, 1986. http://www.theses.fr/1986LIL10054.
Full textDevoue, Victor. "Sur les singularités de certains problèmes différentiels." Phd thesis, Université des Antilles-Guyane, 2005. http://tel.archives-ouvertes.fr/tel-00012098.
Full textBenaissa, Abdallah. "Problèmes de sortie, intégrales exponentielles et singularités." Lyon 1, 1986. http://www.theses.fr/1986LYO11704.
Full textDévoué, Victor. "Sur les singularités de certains problèmes différentiels." Antilles-Guyane, 2005. http://www.theses.fr/2005AGUY0124.
Full textIn this thesis ,we propose a method to solve some Cauchy probems with irregular or characteristic data by using the recent theories of generalized functions. We study a regular Cauchy problem and a regular Goursat problem in the first part with data on a monotonous curve. The second part is devoted to the setting up of an algebra adapted to the generalized Cauchy problem. In the third part, we study a generalized Goursat problem in the same way. In the fourth part,we approach a characteristic Cauchy problem by a family of non-charasteristic ones (Pe) by considering the straigth line of equation Y=ex. If ue is the solution of problem (Pe),u=[ue] is a generalized function that we consider as the generalized solution of the problem in an appropriate algebra. We give a meaning to the charasteristic Cauchy problem with irregular data by replacing it by a family of non-charasteristic problems(P(e,n)) in an appropriate algebra. The parameter e permits to replace the given problem by a non-charasteristic one,whereas the parameter n makes it regular. If U(e,n)is the solution of problem (P(e,n)),u=[u(e,n)] is a generalized function considered as the generalized solution of the problem
Benoit, Antoine. "Problèmes aux limites, optique géométrique et singularités." Nantes, 2015. https://archive.bu.univ-nantes.fr/pollux/show/show?id=22a463d1-3a4e-4cf3-8e1f-afc0ffef6c4e.
Full textWe are interested in hyperbolic boundary value problems in the half space or in the quarter space. This manuscript is composed of two independant parts, the first one deals with weakly well-posed problems in the half space. By weakly well-posed we mean that the solution is not as regular as the source terms of the problem. In this framework, we show the optimality of energy estimates established in the existing literature and a finite speed of propagation result. In the second part of the manuscript, about hyperbolic boundary value problems in the quarter space, we show that the problem is strongly well-posed (in the sense that the solution is as regular as the source terms) in the particular framework of symetric with stricly dissipative boundary conditions problems. Then we give some new contributions about the strong well-posedness in the general framework. Finally, we construct rigorous geometric optics expansion of the solution of the problem in the quarter space. This expansion permits, in particular, to show that some new phenomenons such that selfinteraction phenomenons beetwen the phases, the generation of an infinite number of phases or the concentration at the corner
Stahlhut, Sebastian. "Problèmes aux limites pour les systèmes elliptiques." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112186.
Full textIn this this thesis we study boundary value problems for elliptic systems in divergence form with complex coefficients in L^{\infty}. We prove a priori estimates, discuss solvability and extrapolation of solvability. We use a transformation to generalized Cauchy-Riemann equations due to P. Auscher, A. Axelsson, and A. McIntosh. The generalized Cauchy-Riemann equations can be solved by the semi-group generated by a perturbed first order Dirac/differential operator. In relation to semi-group theory we setup the L^p theory by a discussion of bisectoriality, holomorphic functional calculus and off-diagonal estimates for operators in the functional calculus. In particular, we develop an L^p-L^q theory for operators in the functional calculus of the first order perturbed Dirac/differential operators. The formulation of Neumann, Regularity and Dirichlet problems involve square function estimates and nontangential maximal function estimates. This leads us to discuss square function estimates and nontangential maximal function estimates involving operators in the functional calculus of the perturbed first order Dirac/differential operator. We discuss the related Hardy spaces associated to operators and prove identifications by subspaces of classical Hardy and Lebesgue spaces. We obtain the a priori estimates by an extension of the square function estimates and nontangential maximal function estimates to Sobolev spaces associated to operators. We use the a priori estimates for a discussion of solvability and extrapolation of solvability
Saoudi, Kamel. "Etude de quelques problèmes quasilinéaires elliptiques singuliers." Toulouse 1, 2009. https://tel.archives-ouvertes.fr/tel-00412365v2.
Full textThis thesis concerns the study od some singular elliptic problems. Precisely, in Chapter 2, we investigate the question of multiplicity of solutions for a singular problem with critical growth in dimension N = 3. In Chapter 3, we investigate the validity of C1 versus W0 1;p energy minimisers for a quasilinear elliptic singular problem. In Chapter 4, we present global bifurcation results for a semilinear elliptic singular problem with critical growth in dimension 2 with exponentiel growth
Smith, Graham. "Problèmes elliptiques pour des sous-variétés riemanniennes." Paris 11, 2004. http://www.theses.fr/2004PA112191.
Full textThe first part of the thesis treats special legendrian submanifolds which are positive in a certain sense. We obtain a compactness result and we study certain degenerate forms which appear. The second part treats the plateau problem for convex hypersurfaces of constant gaussian curvature immerged into three dimensional hyperbolic space. We show the existence of solutions and their continuous dependance on initial conditions for the case of conformally hyperbolic surfaces. The third part continues the work of the second part by treating the geometric structure of solutions which are conformally equivalent to pointed compact riemann surfaces. We show that such solutions are cylindrical near to critical points. The fourth part treats representations of compact fuchsian groups in compact kleinian groups. We show that if such a representation is non-elementary, and if its second stiefel-whitney class vanishes, then it has a realisation by a convex immersion of a compact surface into a three dimensional manifold
Grillot, Philippe. "Singularités isolées dans des équations et des systèmes elliptiques semi-linéaires." Tours, 1997. http://www.theses.fr/1997TOUR4007.
Full textBenmlih, Khalid. "Étude qualitative de certains problèmes semi-linéaires elliptiques." Nancy 1, 1994. http://www.theses.fr/1994NAN10075.
Full textBelahdji, Kheira. "Problèmes elliptiques dans des domaines à points cuspides." Ecully, Ecole centrale de Lyon, 1996. http://www.theses.fr/1996ECDL0005.
Full textMoussaoui, Mimoun. "Questions d'existence dans les problèmes semi-linéaires elliptiques." Doctoral thesis, Universite Libre de Bruxelles, 1991. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213020.
Full textMegrez, Nasreddine. "Étude de certains problèmes elliptiques et sous elliptiques nonlinéaires sur des domaines non bornés." Toulouse 1, 2003. http://www.theses.fr/2003TOU10064.
Full textThis thesis is devoted to the study of some nonlinear elliptic and subelliptic problems on unbounded domains. Using variational methods, we investigate the existence of weak solutions for an elliptic problem involving the p-Laplacian operator defined on an unbounded domain of Rn. After this, and using also varational methods, we prove the existence of weak solutions for a subelliptic system involving the Heisenberg Laplacian on unbounded domains of the Heisenberg group Hn. Finally, using Rabinowitz's bifurcation theory, we prove the existence of bounded continuums of positive solutions for a semilinear elliptic problem defined on Rn with an indefinite nonlinearity
Guerch, Bouchaïb. "Singularités de solutions de certaines équations elliptiques non linéaires avec potentiel singulier." Tours, 1991. http://www.theses.fr/1991TOUR4001.
Full textRadulescu, Vicentiu. "Analyse de quelques problèmes liés à l'équation de Ginzburg-Landau." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1995. http://tel.archives-ouvertes.fr/tel-00980811.
Full textWang, Chao. "Analyse de quelques problèmes elliptiques et paraboliques semi-linéaires." Phd thesis, Université de Cergy Pontoise, 2012. http://tel.archives-ouvertes.fr/tel-00809045.
Full textRadulescu, Vicentiu. "Analyse de quelques problèmes aux limites elliptiques non linéaires." Habilitation à diriger des recherches, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00980823.
Full textMaghnouji, Abderrahman. "Problèmes elliptiques et paraboliques dans des domaines non-réguliers." Lille 1, 1992. http://www.theses.fr/1992LIL10161.
Full textBouhsiss, Fouzia. "Quelques résultats d'unicité pour des problèmes elliptiques et paraboliques." Besançon, 2001. http://www.theses.fr/2001BESA2048.
Full textRedwane, Hicham. "Solutions normalisées de problèmes paraboliques et elliptiques non linéaires." Rouen, 1997. http://www.theses.fr/1997ROUES059.
Full textCohen, Laurent David. "Etude de quelques problèmes semi-linéaires paraboliques et elliptiques." Paris 6, 1986. http://www.theses.fr/1986PA066503.
Full textTorne, Olaf. "Symétrie et brisure de symétrie dans quelques problèmes elliptiques." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211121.
Full textMaigrot, Laurent. "Pertubations singulières pour des systèmes elliptiques avec dégénérescence." Reims, 2001. http://www.theses.fr/2001REIMS003.
Full textBruyère, Nicolas. "Comportement asymptotique de problèmes posés dans les cylindres. Problèmes d’unicité pour les systèmes Boussinesq." Rouen, 2007. http://www.theses.fr/2007ROUES032.
Full textThe thesis is divided in two independent parts. In the first part, we investigate the asymptotic behaviour of elliptic and parabolic problems with L1 + W 1,p’ data (respectively with L1+ Lp (0, T ; W-1,p’) data in the parabolic case), in domaine becoming unbounded. Using the framework of renormalized solutions and the regularity results of the solutions for such data, we prove, under structural conditions on space variables, convergence results in spaces containing the solutions. In the second part, in the 2-dimensional case, we study Boussinesq type systems. These systems derive from fluid mechanics models and couple incompressible Navier-Stokes equations and heat equation. We focus our attention on studying the uniqueness of the solution, which is intricate because of the very nonlinear coupling of the equations. We consider weak solutions for the Navier-Stokes equations and renormalized solutions are used for the heat equation. We state regularity results for these equations and then we prove few existence and uniuqueness results of the solution of the system for small data
Djadel, Karim. "Méthodes de volumes finis et singularités." Lille 1, 2005. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2005/50376-2005-Djadel.pdf.
Full textNous illustrons ceci numériquement. Nous appliquons enfin la méthode sur quelques cas tests de la mécanique des Fluides (cavité entraînée et marche descendante). Nous abordons ensuite la question des couches limites intervenant dans des problèmes singulièrement perturbés. Il est bien connu que la solution de problèmes elliptiques où l'opérateur de diffusion est "dominé" par l'opérateur de réaction et/ou de convection présente de forts gradients locaux mais suivant une seule direction d'espace. Les méthodes numériques utilisées sur des maillages uniformes n'arrivent alors pas à capturer ces fortes variations [Apel]. En conséquence, nous considérons un problème modèle de réaction-diffusion perturbé que nous discrétisons par diverses méthodes de Volumes Finis sur des maillages anisotropes, c'est-à-dire des maillages présentant des éléments "plats" et raffinés dans une seule direction d'espace (celle de fort gradient de la solution). Nous démontrons donc le bon comportement des méthodes de Volumes Finis Centrée Cellule et d'Eléments - Volumes Finis conforme sur ces maillages anisotropes. En revanche, pour la méthode d'Eléments-Volumes Finis non-conforme, nous expliquons le mauvais comportement obtenu si nous considérons des éléments triangulaires et utilisons de ce fait des éléments quadrangulaires afin de stabiliser la méthode. Pour chaque méthode; des essais numériques viennent valider les résultats obtenus
Nous nous intéressons en dernier lieu au cas des singularités tridimensionnelles. Les singularités intervenant dans un tel cas ont une nature plus variée qu'en dimension deux (singularités de coin et d'arête). Pour le problème de Laplace, nous décrivons dans un premier temps ces dernières [Lub]. ,Pour les méthodes de Volumes Finis Centrée Cellule, d'Eléments-Volumes Finis conforme et d'Eléments-Volumes Finis non-conforme que nous réintroduisons, nous pratiquons plusieurs tests numériques illustrant le meilleur taux de convergence obtenu sur des maillages raffinés de manière adéquate que sur des maillages uniformes. En outre, pour la méthode de Volumes Finis Centrée Cellule, nous introduisons un estimateur a-posteriori [Ver] que nous utilisons dans un test numérique pour lequel nous ne connaissons pas explicitement la solution
Al, Sayed Waad. "Mesures réduites, grandes solutions et singularités de quelques problèmes paraboliques." Thesis, Tours, 2008. http://www.theses.fr/2008TOUR4021/document.
Full textThe thesis at hand is composed of three parts. The first part is devoted to present the notions of "good measure" and "reduced measure" for two non-linear parabolic problems. For each of these problems we construct a sequence, after a relaxation phenomenon, which converges to the "greatest" sub-solution of the given problem. Moreover, we look for "universal capacities" and we establish equivalence with Hausdorff measure. In the second part, we establish existence and uniqueness conditions for "large solutions" of parabolic problems whose non-linear term is an absorption one. Some boundary conditions will permit to prove uniqueness of solutions. In the last part we study the "singularities" of two non-linear parabolic problems
Goudjo, Aurélien. "Singularités d'arêtes en thermique et résolution de quelques problèmes hyperboliques." Nice, 1990. http://www.theses.fr/1990NICE4362.
Full textVasseur, Baptiste. "Étude de problèmes différentiels elliptiques et paraboliques sur un graphe." Thesis, Littoral, 2014. http://www.theses.fr/2014DUNK0400/document.
Full textAfter a quick presentation of usual notations for the graph theory, we study the set of harmonic functions on graphs, that is, the functions whose laplacian is zero. These functions form a vectorial space. On a uniformly locally finite tree, we shaw that this space has dimension one or infinity. When the graph has an infinite number of cycles, this result change and we describe some examples showing that there exists a graph on which the harmonic functions form a vectorial space of dimension n, for all n. We also treat the case of a particular periodic graph. Then, we study more precisely the eigenvalues of infinite dimension. In this case, the eigenspace contains a subspace isomorphic to the set of bounded sequences. An inequality concerning the spectral is given when edges length is equal to one. Examples show that these inclusions are optimal. We also study the asymptotic behavior of eigenvalues for elliptic operators under dynamical Kirchhoff node conditions. We write the problem as a Sturm-Liouville operator and we transform it in a matrix problem. Then we find a characteristic equation whose zeroes correspond to eigenvalues. We deduce a formula for the asymptotic behavior. In the last chapter, we study the stability of stationary solutions for some reaction-diffusion problem whose the non-linear term is polynomial
Benkler, Yochai. "Potentiel de Riesz et problèmes elliptiques dans les espaces d'Orlicz." Doctoral thesis, Universite Libre de Bruxelles, 1988. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/213349.
Full textBensedik, Ahmed. "Sur quelques problèmes elliptiques de type Kirchhoff et dynamique des fluides." Phd thesis, Université Jean Monnet - Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00971279.
Full textDjellit, Ali. "Valeurs propres de problèmes elliptiques indéfinis sur des ouverts non bornés." Toulouse 3, 1992. http://www.theses.fr/1992TOU30072.
Full textAndré, Nelly. "Sur l'unicité de problèmes quasilinéaires elliptiques et de leurs approximations numériques." Metz, 1993. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1993/Andre.Nelly.SMZ9317.pdf.
Full textThe first part of this work deals with the uniqueness for solutions of quasi-lear elliptic equations. We try to give simple conditions and to construct counter-examples for the cases where the conditions fail to hold. The second part deals with the approximations, in some finite dimensional subspace, for the problem treated in the first part. We study the convergence for approximated solutions and their uniqueness. In the third part, we study the uniqueness for solutions of a quasilinear elliptic system. We give counterxamples which show that uniqueness may fall
Sirakov, Boyan. "Contributions à l'étude des problèmes elliptiques dans des domaines non-bornés." Paris 6, 2000. http://www.theses.fr/2000PA06A001.
Full textRobbiano, Luc. "Unicité du problème de Cauchy : ensembles nodaux : régularité des problèmes elliptiques." Paris 11, 1990. http://www.theses.fr/1990PA112344.
Full textRaimondi, Federica. "Problèmes elliptiques singuliers dans des domaines perforés et à deux composants." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR093/document.
Full textThis thesis is mainly devoted to the study of some singular elliptic problems posed in perforated domains. Denoting by Ωɛ* e domain perforated by ɛ-periodic holes of ɛ-size, we prove existence and uniqueness of the solution , for fixed ɛ, as well as homogenization and correctors results for the following singular problem :{█(-div (A (x/ɛ,uɛ)∇uɛ)=fζ(uɛ) dans Ωɛ*@uɛ=0 sur Γɛ0@@(A (x/ɛ,uɛ)∇uɛ)υ+ɛγρ (x/ɛ) h(uɛ)= ɛg (x/ɛ) sur Γɛ1@)┤Where homogeneous Dirichlet and nonlinear Robin conditions are prescribed on the exterior boundary Γɛ0 and on the boundary of the holles Γɛ1, respectively. The quasilinear matrix field A is elliptic, bounded, periodic in the first variable and Carathéodory. The nonlinear singular lower order ter mis the product of a continuous function ζ (singular in zero) and f whose summability depends on the growth of ζ near its singularity. The nonlinear boundary term h is a C1 increasing function, ρ and g are periodic nonnegative functions with prescribed summabilities. To investigate the asymptotic behaviour of the problem, as ɛ -> 0, we apply the Periodic Unfolding Method by D. Cioranescu-A. Damlamian-G. Griso, adapted to perforated domains by D. Cioranescu-A. Damlamian-P. Donato-G. Griso-R. Zaki. Finally, we show existence and uniqueness of a weak solution of the same equation in a two-component domain Ω = Ω1 υ Ω2 υ Γ, being Γ the interface between the connected component Ω1 and the inclusions Ω2. More precisely we consider{█(-div (A(x, u)∇u)+ λu=fζ(u) dans Ω\Γ,@u=0 sur δΩ@(A(x, u1)∇u1)υ1= (A(x, u2)∇u2)υ1 sur Γ,@(A(x, u1)∇u1)υ1= -h(u1-u2) sur Γ@)┤Where ν1 is the unit external vector to Ω1 and λ a nonnegative real number. Here h represents the proportionality coefficient between the continuous heat flux and the jump of the solution and it is assumed to be bounded and nonnegative on Γ
El, Hachimi Abderrahmane. "Etude de quelques problèmes elliptiques et paraboliques liés au p-Laplacien." Doctoral thesis, Universite Libre de Bruxelles, 1993. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212842.
Full textRichard, Yves. "Solutions singulières d'équations elliptiques semi-linéaires." Tours, 1987. http://www.theses.fr/1987TOUR4003.
Full textGuedda, Mohammed. "Propriétés locales et globales de solutions d'équations quasilinéaires elliptiques." Tours, 1987. http://www.theses.fr/1987TOUR4001.
Full text2. Nous étudions l'existence de fonctions dans W::(O)**(1,P)(Omega ) qui satisfait - DIV(|DU|**(P-2)DU)=U**(P-1)+U**(P*-1) dans G inclus dans R**(N) et U>0 dans G ou G est un domaine borne. Lorsque 1