Journal articles on the topic 'Singularly Perturbed Differential Equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Singularly Perturbed Differential Equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Kanth, A. S. V. Ravi, and P. Murali Mohan Kumar. "A Numerical Technique for Solving Nonlinear Singularly Perturbed Delay Differential Equations." Mathematical Modelling and Analysis 23, no. 1 (2018): 64–78. http://dx.doi.org/10.3846/mma.2018.005.
Full textYüzbaşı, Şuayip, and Mehmet Sezer. "Exponential Collocation Method for Solutions of Singularly Perturbed Delay Differential Equations." Abstract and Applied Analysis 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/493204.
Full textBattelli, Flaviano, and Michal Fečkan. "Periodic Solutions in Slowly Varying Discontinuous Differential Equations: The Generic Case." Mathematics 9, no. 19 (2021): 2449. http://dx.doi.org/10.3390/math9192449.
Full textYUZBASI, SUAYIP, and NURCAN BAYKUS SAVASANERIL. "HERMITE POLYNOMIAL APPROACH FOR SOLVING SINGULAR PERTURBATED DELAY DIFFERENTIAL EQUATIONS." Journal of Science and Arts 20, no. 4 (2020): 845–54. http://dx.doi.org/10.46939/j.sci.arts-20.4-a06.
Full textEt. al., M. Adilaxmi ,. "Solution Of Singularly Perturbed Delay Differential Equations Using Liouville Green Transformation." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 4 (2021): 325–35. http://dx.doi.org/10.17762/turcomat.v12i4.510.
Full textDuressa, Gemechis File, Imiru Takele Daba, and Chernet Tuge Deressa. "A Systematic Review on the Solution Methodology of Singularly Perturbed Differential Difference Equations." Mathematics 11, no. 5 (2023): 1108. http://dx.doi.org/10.3390/math11051108.
Full textBobodzhanov, A., B. Kalimbetov, and N. Pardaeva. "Construction of a regularized asymptotic solution of an integro-differential equation with a rapidly oscillating cosine." Journal of Mathematics and Computer Science 32, no. 01 (2023): 74–85. http://dx.doi.org/10.22436/jmcs.032.01.07.
Full textSharip, B., and А. Т. Yessimova. "ESTIMATION OF A BOUNDARY VALUE PROBLEM SOLUTION WITH INITIAL JUMP FOR LINEAR DIFFERENTIAL EQUATION." BULLETIN Series of Physics & Mathematical Sciences 69, no. 1 (2020): 168–73. http://dx.doi.org/10.51889/2020-1.1728-7901.28.
Full textZhumanazarova, Assiya, and Young Im Cho. "Asymptotic Convergence of the Solution of a Singularly Perturbed Integro-Differential Boundary Value Problem." Mathematics 8, no. 2 (2020): 213. http://dx.doi.org/10.3390/math8020213.
Full textVrábeľ, Róbert. "Asymptotic behavior of $T$-periodic solutions of singularly perturbed second-order differential equation." Mathematica Bohemica 121, no. 1 (1996): 73–76. http://dx.doi.org/10.21136/mb.1996.125946.
Full textArtstein, Zvi. "On singularly perturbed ordinary differential equations with measure-valued limits." Mathematica Bohemica 127, no. 2 (2002): 139–52. http://dx.doi.org/10.21136/mb.2002.134168.
Full textCengizci, Süleyman. "An Asymptotic-Numerical Hybrid Method for Solving Singularly Perturbed Linear Delay Differential Equations." International Journal of Differential Equations 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/7269450.
Full textRavi Kanth, A. S. V., and P. Murali Mohan Kumar. "Numerical Method for a Class of Nonlinear Singularly Perturbed Delay Differential Equations Using Parametric Cubic Spline." International Journal of Nonlinear Sciences and Numerical Simulation 19, no. 3-4 (2018): 357–65. http://dx.doi.org/10.1515/ijnsns-2017-0126.
Full textArtstein, Zvi, and Alexander Vigodner. "Singularly perturbed ordinary differential equations with dynamic limits." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 126, no. 3 (1996): 541–69. http://dx.doi.org/10.1017/s0308210500022903.
Full textFečkan, Michal. "Singularly perturbed ordinary differential equations." Journal of Mathematical Analysis and Applications 170, no. 1 (1992): 214–24. http://dx.doi.org/10.1016/0022-247x(92)90015-6.
Full textChatterjee, Sabyasachi, Amit Acharya, and Zvi Artstein. "Computing singularly perturbed differential equations." Journal of Computational Physics 354 (February 2018): 417–46. http://dx.doi.org/10.1016/j.jcp.2017.10.025.
Full textSamoilenko, V. H., Yu I. Samoilenko, and V. S. Vovk. "Asymptotic analysis of the singularly perturbed Korteweg-de Vries equation." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 1 (2019): 194–97. http://dx.doi.org/10.17721/1812-5409.2019/1.45.
Full textNurgabyl, D. N., and S. S. Nazhim. "Recovery problem for a singularly perturbed differential equation with an initial jump." BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS 100, no. 4 (2020): 125–35. http://dx.doi.org/10.31489/2020m4/125-135.
Full textMuratova, A. K. "Asymptotic behavior of the solution of the boundary value problem for a singularly perturbed system of the integro-differential equations." Bulletin of the National Engineering Academy of the Republic of Kazakhstan 88, no. 2 (2023): 126–34. http://dx.doi.org/10.47533/2023.1606-146x.13.
Full textAdhikari, Mohit H., Evangelos A. Coutsias, and John K. McIver. "Periodic solutions of a singularly perturbed delay differential equation." Physica D: Nonlinear Phenomena 237, no. 24 (2008): 3307–21. http://dx.doi.org/10.1016/j.physd.2008.07.019.
Full textBijura, A. M. "Singularly Perturbed Volterra Integro-differential Equations." Quaestiones Mathematicae 25, no. 2 (2002): 229–48. http://dx.doi.org/10.2989/16073600209486011.
Full textVaid, Mandeep Kaur, and Geeta Arora. "Quintic B-Spline Technique for Numerical Treatment of Third Order Singular Perturbed Delay Differential Equation." International Journal of Mathematical, Engineering and Management Sciences 4, no. 6 (2019): 1471–82. http://dx.doi.org/10.33889/ijmems.2019.4.6-116.
Full textAkmatov, A. "Solutions Asymptotics of a Homogeneous Bisingularly Perturbed Differential Equation in the Generalized Functions Theory." Bulletin of Science and Practice 8, no. 2 (2022): 18–25. http://dx.doi.org/10.33619/2414-2948/75/02.
Full textSamusenko, P. F., and M. B. Vira. "Asymptotic solutions of boundary value problem for singularly perturbed system of differential-algebraic equations." Carpathian Mathematical Publications 14, no. 1 (2022): 49–60. http://dx.doi.org/10.15330/cmp.14.1.49-60.
Full textDmitriev, M. G., A. A. Pavlov, and A. P. Petrov. "Nonstationary Fronts in the Singularly Perturbed Power-Society Model." Abstract and Applied Analysis 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/172654.
Full textWOLDAREGAY, MESFIN MEKURIA, and GEMECHIS FILE DURESSA. "UNIFORMLY CONVERGENT NUMERICAL METHOD FOR SINGULARLY PERTURBED DELAY PARABOLIC DIFFERENTIAL EQUATIONS ARISING IN COMPUTATIONAL NEUROSCIENCE." Kragujevac Journal of Mathematics 46, no. 1 (2022): 65–54. http://dx.doi.org/10.46793/kgjmat2201.065w.
Full textDaba, Imiru Takele, and Gemechis File Duressa. "An Efficient Computational Method for Singularly Perturbed Delay Parabolic Partial Differential Equations." International Journal of Mathematical Models and Methods in Applied Sciences 15 (July 21, 2021): 105–17. http://dx.doi.org/10.46300/9101.2021.15.14.
Full textBouatta, Mohamed A., Sergey A. Vasilyev, and Sergey I. Vinitsky. "The asymptotic solution of a singularly perturbed Cauchy problem for Fokker-Planck equation." Discrete and Continuous Models and Applied Computational Science 29, no. 2 (2021): 126–45. http://dx.doi.org/10.22363/2658-4670-2021-29-2-126-145.
Full textShishkin, Grigorii. "Approximation of Singularly Perturbed Parabolic Reaction-Diffusion Equations with Nonsmooth Data." Computational Methods in Applied Mathematics 1, no. 3 (2001): 298–315. http://dx.doi.org/10.2478/cmam-2001-0020.
Full textAkmatov, A. "Investigation of Solutions to a System of Singularly Perturbed Differential Equations." Bulletin of Science and Practice 8, no. 5 (2022): 15–23. http://dx.doi.org/10.33619/2414-2948/78/01.
Full textCai, X., and F. Liu. "A Reynolds uniform scheme for singularly perturbed parabolic differential equation." ANZIAM Journal 47 (April 9, 2007): 633. http://dx.doi.org/10.21914/anziamj.v47i0.1067.
Full textMallet-Paret, John, and Roger D. Nussbaum. "Multiple transition layers in a singularly perturbed differential-delay equation." Proceedings of the Royal Society of Edinburgh: Section A Mathematics 123, no. 6 (1993): 1119–34. http://dx.doi.org/10.1017/s0308210500029772.
Full textAbdulla, Murad Ibrahim, Gemechis File Duressa, and Habtamu Garoma Debela. "Robust numerical method for singularly perturbed differential equations with large delay." Demonstratio Mathematica 54, no. 1 (2021): 576–89. http://dx.doi.org/10.1515/dema-2021-0020.
Full textWoldaregay, Mesfin Mekuria, and Gemechis File Duressa. "Uniformly convergent numerical scheme for singularly perturbed parabolic delay differential equations." ITM Web of Conferences 34 (2020): 02011. http://dx.doi.org/10.1051/itmconf/20203402011.
Full textPasekov, V. P. "To the analysis of weak two-locus viability selection and quasi linkage equilibrium." Доклады Академии наук 484, no. 6 (2019): 781–85. http://dx.doi.org/10.31857/s0869-56524846781-785.
Full textChen, Xiangyi, and Asok Ray. "On Singular Perturbation of Neutron Point Kinetics in the Dynamic Model of a PWR Nuclear Power Plant." Sci 2, no. 2 (2020): 30. http://dx.doi.org/10.3390/sci2020030.
Full textChen, Xiangyi, and Asok Ray. "On Singular Perturbation of Neutron Point Kinetics in the Dynamic Model of a PWR Nuclear Power Plant." Sci 2, no. 2 (2020): 36. http://dx.doi.org/10.3390/sci2020036.
Full textO'Riordan, E. "Numerical Methods for Singularly Perturbed Differential Equations." Irish Mathematical Society Bulletin 0016 (1986): 14–24. http://dx.doi.org/10.33232/bims.0016.14.24.
Full textNhan, T. A. "Preconditioning techniques for singularly perturbed differential equations." Irish Mathematical Society Bulletin 0076 (2015): 35–36. http://dx.doi.org/10.33232/bims.0076.35.36.
Full textArtstein, Zvi, Ioannis G. Kevrekidis, Marshall Slemrod, and Edriss S. Titi. "Slow observables of singularly perturbed differential equations." Nonlinearity 20, no. 11 (2007): 2463–81. http://dx.doi.org/10.1088/0951-7715/20/11/001.
Full textArtstein, Zvi. "Asymptotic stability of singularly perturbed differential equations." Journal of Differential Equations 262, no. 3 (2017): 1603–16. http://dx.doi.org/10.1016/j.jde.2016.10.023.
Full textArtstein, Zvi, and Marshall Slemrod. "On Singularly Perturbed Retarded Functional Differential Equations." Journal of Differential Equations 171, no. 1 (2001): 88–109. http://dx.doi.org/10.1006/jdeq.2000.3840.
Full textKoliha, J. J., and Trung Dinh Tran. "Semistable Operators and Singularly Perturbed Differential Equations." Journal of Mathematical Analysis and Applications 231, no. 2 (1999): 446–58. http://dx.doi.org/10.1006/jmaa.1998.6235.
Full textSlavova, Angela. "Nonlinear singularly perturbed systems of differential equations: A survey." Mathematical Problems in Engineering 1, no. 4 (1995): 275–301. http://dx.doi.org/10.1155/s1024123x95000172.
Full textGovindarao, Lolugu, and Jugal Mohapatra. "A second order numerical method for singularly perturbed delay parabolic partial differential equation." Engineering Computations 36, no. 2 (2019): 420–44. http://dx.doi.org/10.1108/ec-08-2018-0337.
Full textZavizion, G. V. "Singularly perturbed system of differential equations with a rational singularity." Differential Equations 43, no. 7 (2007): 885–97. http://dx.doi.org/10.1134/s0012266107070014.
Full textMalek, Stéphane. "On Singularly Perturbed Partial Integro-Differential Equations with Irregular Singularity." Journal of Dynamical and Control Systems 13, no. 3 (2007): 419–49. http://dx.doi.org/10.1007/s10883-007-9018-4.
Full textMalek, S. "On singularly perturbed q-difference-differential equations with irregular singularity." Journal of Dynamical and Control Systems 17, no. 2 (2011): 243–71. http://dx.doi.org/10.1007/s10883-011-9118-z.
Full textDaniyarova, Zh K. "Ingularly perturbed equations in critical cases." Bulletin of the Innovative University of Eurasia 84, no. 4 (2021): 69–75. http://dx.doi.org/10.37788/2021-4/69-75.
Full textMin, Chao, and Liwei Wang. "Orthogonal Polynomials with Singularly Perturbed Freud Weights." Entropy 25, no. 5 (2023): 829. http://dx.doi.org/10.3390/e25050829.
Full text