Books on the topic 'Singularna matrica'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 19 books for your research on the topic 'Singularna matrica.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Kei, Takeuchi, Takane Yoshio, and SpringerLink (Online service), eds. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. Springer Science+Business Media, LLC, 2011.
Find full textYanai, Haruo, Kei Takeuchi, and Yoshio Takane. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9887-3.
Full textBöttcher, Albrecht, Israel Gohberg, and Peter Junghanns, eds. Toeplitz Matrices and Singular Integral Equations. Birkhäuser Basel, 2002. http://dx.doi.org/10.1007/978-3-0348-8199-9.
Full textWei, Li. A singular loop transformation framework based on non-singular matrices. Cornell Theory Center, Cornell University, 1992.
Find full textDemmel, J. W. On computing accurate singular values and eigenvalues of acyclic matrices. Naval Postgraduate School, 1992.
Find full textDemmel, James. Computing small singular values of bidiagonal matrices with guaranteed high relative accuracy. Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textSezginer, R. The largest singular value of e{sup}x A{sub}o e -x is convex on convex sets of commuting matrices. Courant Institute of Mathematical Sciences, New York University, 1988.
Find full textBouchaud, Jean-Phillipe, and Marc Potters. Asymptotic singular value distributions in information theory. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.41.
Full textTakeuchi, Kei, Haruo Yanai, and Yoshio Takane. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition. Springer, 2011.
Find full textZabrodin, Anton. Financial applications of random matrix theory: a short review. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.40.
Full textBouchaud, Jean-Philippe. Random matrix theory and (big) data analysis. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797319.003.0006.
Full text1941-, Silbermann Bernd, Böttcher Albrecht, Gohberg I. 1928-, and Junghanns Peter 1953-, eds. Toeplitz matrices and singular integral equations: The Bernd Silbermann anniversary volume. Birkhauser Verlag, 2002.
Find full textAdler, Mark. Universality. Edited by Gernot Akemann, Jinho Baik, and Philippe Di Francesco. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780198744191.013.6.
Full textFactorization of Matrix Functions and Singular Integral Operators. Birkhäuser, 2013.
Find full textToeplitz Matrices and Singular Integral Equations: The Bernd Silbermann Anniversary Volume (Operator Theory, Advances and Applications, V. 135.). Birkhauser, 2002.
Find full textBarel, Marc Van, Raf Vandebril, and Nicola Mastronardi. Matrix Computations and Semiseparable Matrices Vol. 2: Eigenvalue and Singular Value Methods. Johns Hopkins University Press, 2008.
Find full textChimenti, Dale, Stanislav Rokhlin, and Peter Nagy. Physical Ultrasonics of Composites. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780195079609.001.0001.
Full textCheng, Russell. The Skew Normal Distribution. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198505044.003.0012.
Full textBennister, Mark, Ben Worthy, and Paul 't Hart, eds. The Leadership Capital Index. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198783848.001.0001.
Full text