Contents
Academic literature on the topic 'Sistemas fermiônicos'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sistemas fermiônicos.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Sistemas fermiônicos"
Acevedo, O. A., K. P. Gallo, B. M. Pimentel, and G. E. R. Zambrano. "Campos clássicos no plano nulo." Revista Brasileira de Ensino de Física 43 (2021). http://dx.doi.org/10.1590/1806-9126-rbef-2021-0200.
Full textDissertations / Theses on the topic "Sistemas fermiônicos"
Carvalho, Vanuildo Silva de. "Aspectos de modelos eletrônicos bidimensionais fortemente correlacionados: aplicações em cupratos supercondutores." Universidade Federal de Goiás, 2016. http://repositorio.bc.ufg.br/tede/handle/tede/7535.
Full textApproved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-07-10T12:27:09Z (GMT) No. of bitstreams: 2 Tese - Vanuildo Silva de Carvalho - 2016.pdf: 3221594 bytes, checksum: 54ed1f03fc423dc28c894e76c771e03f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Made available in DSpace on 2017-07-10T12:27:09Z (GMT). No. of bitstreams: 2 Tese - Vanuildo Silva de Carvalho - 2016.pdf: 3221594 bytes, checksum: 54ed1f03fc423dc28c894e76c771e03f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-06-06
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
We investigate here the low-energy properties of two strongly correlated electronic models in two spatial dimensions. The first one consists in a version of the Hubbard model in which are considered just the degrees of freedom of the system in the neighborhood of the so-called hot spots, which are defined as the intersection of the Fermi surface of the model with the antiferromagnetic zone. Initially, we set our theory up by linearizing the dispersion model in hot spots and consider all the interacting processes between these regions that conserve momentum within a reciprocal-lattice wave vector. In order to access the physics of the model, we then turn to the renormalization group method of quantum field theory and derive the flow equations for the couplings in the two-loop approximation. As a result, we obtain that the Fermi surface is strongly renormalized in hot spots as the renormalized couplings flow to a non-trivial fixed point in the low-energy limit. Then we suggest that this system can be viewed as an example of a non-Fermi liquid in two spatial dimensions, due to the lack of well defined quasiparticle fermionic excitations in the region close to hot spots. Moreover, we solve the Callan-Symanzik equation for the oneparticle Green function up to two-loop order, calculate the density of states in the hot spots, and derive the renormalization group equations for the order parameters of the potential instabilities which may eventually occur in the system at lower energies. We verify that the system can be characterized, in this regime, in terms of an emergent pseudospin symmetry [SU(2)]4, which leads to the appearance of entangled orders in the region close to the non-trivial fixed point of the model. We also show that the fermionic excitations in the adjacent regions to the hot spots get a gap in both charge a spin excitation spectra. Because of this, we argue that the Fermi surface of the model can be reconstructed, leading therefore to the formation of either Fermi arcs or electronic pockets. The second model analyzed in this thesis was the three-band Emery model, which describes all the interacting processes between fermionic excitations localized in both copper (Cu) and oxygen (O) orbitals in the CuO2 unit cell. By making use of a Hubbard-Stratonovich transformation, we introduce two order parameters in the system: one for the so-called ΘII-loop-current order, which violates Z2 time-reversal symmetry, and another one for the entangled phase with dx 2 -y 2 symmetry involving the singlet superconducting instability and the quadrupole density wave order, whose wave vector points in the direction of the Brillouin zone diagonal. Minimizing the free energy of the model, we derive the self-consistent mean-field equations for these order parameters. The solution of these equations for the zero temperature regime shows that the two phases compete with themselves for the same region of the phase space and, consequently, the system tends not to display coexistence between them. We argue that this effect could be the main reason for the fact that the quadrupole density wave order has never been observed in experiments performed on the cuprate superconductors. Next, we analyze the competition between the ΘII-loop-current order, which is experimentally observed, and charge order with dx 2 -y 2 symmetry and wave vectors in the direction of the main axes of the Brillouin zone. As a result, we obtain that the system only exhibits coexistence between the ΘII-loop-current phase and the bidirectional charge order. Due to the existence of a pseudospin symmetry in this model, we also confirm that the ΘII-loop-current phase coexists with the bidirectional pair density wave order. Finally, we discuss the implications of these results for the pseudogap phase of the cuprate superconductors, which appears in the underdoped regime in these systems.
Investigamos aqui as propriedades de baixa energia de dois modelos eletrônicos fortemente correlacionados em duas dimensões espaciais. O primeiro deles consiste em uma versão do modelo de Hubbard em que são considerados apenas os graus de liberdade do sistema na vizinhança dos chamados hot spots, que são definidos como a intersecção da superfície de Fermi do modelo com a zona antiferromagnética. Inicialmente, definimos a nossa teoria linearizando a dispersão do modelo nos hot spots e consideramos todos os processos de interação entre essas regiões que conservam momento a menos de um vetor da rede recíproca. Para acessar a física do modelo, recorremos então ao método de grupo de renormalização de teoria de campos e derivamos as equações de fluxo para os acoplamentos na aproximação de dois loops. Como resultado, obtemos que a superfície de Fermi do modelo sofre forte renormalização nos hot spots, ao mesmo tempo que os acoplamentos renormalizados fluem para um ponto fixo não trivial no limite de baixa energia. Sugerimos então que esse sistema pode ser visto como um exemplo de um líquido de não-Fermi em duas dimensões espaciais, devido à ausência de excitações fermiônicas do tipo quasipartícula bem definidas na região próxima aos hot spots. Além disso, resolvemos a equação de Callan- Symanzik para a função de Green de uma partícula na aproximação de dois loops, calculamos a densidade de estados nos hot spots, e derivamos as equações de grupo de renormalização para os parâmetros de ordem das possíveis instabilidades que podem, eventualmente, ocorrer no sistema em baixas energias. Verificamos que o sistema pode ser caracterizado, nesse regime, em termos de uma simetria emergente de pseudospin [SU(2)]4, que leva ao aparecimento de ordens emaranhadas na região próxima ao ponto fixo não trivial do modelo. Mostramos também que as excitações fermiônicas nas regiões adjacentes aos hot spots adquirem um gap nos espectros de excitação de carga e spin. Devido a isso, argumentamos que a superfície de Fermi do modelo pode ser reconstruída, levando assim à formação de arcos de Fermi ou pockets eletrônicos. O segundo modelo analisado nesta tese foi o modelo de três bandas de Emery, que descreve todos processos de interação entre as excitações fermiônicas localizadas nos orbitais do cobre (Cu) e do oxigênio (O) na célula unitária de CuO2. Através de uma transformada de Hubbard-Stratonovich, introduzimos dois parâmetros de ordem no sistema: um para a chamada fase de corrente de loop do tipo ΘII, que viola a simetria de reversão temporal Z2, e outro para a fase emaranhada com simetria dx 2 -y 2 envolvendo a instabilidade supercondutora do tipo singleto e a ordem de densidade de carga quadrupolar, cujo vetor de onda aponta na direção da diagonal da zona de Brillouin. Minimizando a energia livre do modelo, derivamos as equações auto-consistentes de campo médio para esses parâmetros de ordem. A solução dessas equações para o regime de temperatura nula mostra que as duas fases competem entre si pela mesma região do espaço de fase e, consequentemente, o sistema tende a não exibir coexistência entre as mesmas. Argumentamos que esse efeito pode ser a principal razão para o fato de a fase onda de densidade quadrupolar nunca ter sido observada em experimentos realizados nos cupratos supercondutores. Em seguida, analisamos a competição entre as fases de corrente de loop do tipo ΘII, observada experimentalmente, e ordem de carga com simetria dx2-y2 e vetores de onda na direção dos eixos principais da zona de Brillouin. Como resultado, obtemos que o sistema exibe coexistência apenas entre as fases de corrente de loop do tipo ΘII e ordem de carga bidirecional. Devido à existência de uma simetria de pseudospin nesse modelo, confirmamos também que a fase de corrente de loop do tipo ΘII coexiste com a fase onda de densidade de pares bidirecional. Por fim, discutimos as implicações dos nossos resultados para a fase de pseudogap dos cupratos supercondutores, que emerge no chamado regime subdopado nesses sistemas.
Aza, Nelson Javier Buitrago. "Princípios de grandes desvios para a condutividade microscópica de férmions em cristais." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-19122017-015208/.
Full textThis Thesis deals with the existence of Large Deviation Principles (LDP) in the scope of fermionic systems at equilibrium. The physical motivation beyond our studies are experimental measures of electric resistance of nanowires in silicon doped with phosphorus atoms. The latter demonstrate that quantum effects on charge transport almost disappear for nanowires of lengths larger than a few nanometers, even at very low temperature (4.2°K). In order to mathematically prove the latter, we divide our work in several steps: 1. In the first step, for noninteracting lattice fermions with disorder, we show that quantum uncertainty of microscopic electric current density around their (classical) macroscopic values is suppressed, exponentially fast with respect to the volume of the region of the lattice where an external electric field is applied. Disorder is modeled by a random external potential along with random, complex-valued, hopping amplitudes. The celebrated tight-binding Anderson model is one particular example of the general case considered here. Our mathematical analysis is based on Combes-Thomas estimates, the Akcoglu-Krengel ergodic theorem, and the large deviation formalism, in particular the Gärtner-Ellis theorem. 2. Secondly, we prove that for weakly interacting fermions on the lattice, the logarithm moment generating function J(s), s R of probability distributions associated with KMS states can be written as the limit of logarithms of Gaussian Berezin integrals. The covariances of the Gaussian integrals are shown to have a uniform determinant bound (via Hölder inequalities for Schatten norms) and to be summable in general cases of interest, including systems that are not translation invariant. 3. In the third step we analyze expansions of logarithms of Gaussian Berezin integrals, which combined with constructive methods of quantum field theory is useful to show the analyticity of J(s) for s in a neighborhood of 0. We finally discuss how to combine steps 2-3 in order to prove (mathematically speaking) for interacting fermions in equilibrium the experimental results above mentioned. In fact, the found results in this Thesis generalize previous works in the scope of LDP used to study quantum systems.
Manso, Pedro Henrique Amantino. "Teoria quântica de campos para férmions interagentes no plano a temperatura e potencial químico finitos, na presença de um campo magnético externo oblíquo." Universidade do Estado do Rio de Janeiro, 2011. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=6020.
Full textNeste trabalho, os efeitos de um campo magnético oblíquo externo no modelo de Gross- Neveu (2+1)-dimensional, que inclui as componentes paralela e perpendicular do campo em relação ao sistema, são estudados no contexto da simetria quiral e discreta do modelo. Nosso principal interesse está nos efeitos deste campo sobre o diagrama de fase do sistema, onde também incluímos os efeitos combinados de temperatura e potencial químico. Os diagramas de fase são obtidos através do potencial efetivo a 1 loop para o modelo, derivado em primeira ordem na expansão 1=N. Transições de fase relevantes que podem ser estudadas através deste modelo são, por exemplo, metal-isolante em matéria condensada e na teoria quântica de campos de férmions planares em geral. A relação entre a transição de fase com quebra da simetria quiral e discreta e o surgimento de um gap (ou a presença de um valor esperado no vácuo do campo escalar diferente de zero), como função do campo magnético oblíquo, é analisada em detalhes.
In this work, the effects of an external oblique magnetic field in the (2+1)-dimensional Gross-Neveu model, and that therefore includes both parallel and perpendicular components of the applied field, are studied in the context of the models discrete chiral symmetry. Our main concern is in the effects of such a field in the systems phase diagram and that also includes the combined effects of temperature and chemical potential. The phase diagrams are obtained through the one-loop effective potential for the model, derived in the leading order in the 1=N expansion Relevant phase transitions that can be studied through this model are, for example, metal-insulator ones in condensed matter and in the quantum field theory of planar fermions in general. The relation between the phase transition with (discrete) chiral symmetry breaking and the emergence of a gap (or the presence of a chiral nonvanishing vacuum expectation value) in the planar fermionic system, as a function of the external oblique magnetic field, is analyzed in details.
Ferreira, João Vitor Batista. "Estudo do calor específico de um sistema de dois níveis acoplados a um banho fermiônico." Universidade de São Paulo, 1995. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-24062008-161338/.
Full textWe calculate the specific heat of the two-spinless impurity coupled to a fermionic bath. The model takes into account the tunneling of a hole between the impurities. The two-level system representing the impurities is coupled electrostatically with the conduction electrons. Through the specific heat curves, we analyse the renormalization of the tunneling rate as a function of the Coulomb interaction and distance between impurities. The Numerical Renormalization Group is used to diagonalize the tunneling Hamiltonian proposed by Kondo. We analyse the role of each term of the Hamiltonian in the renormalization of the bare tunneling rate and we stress the importance of the exchange parity between impurity states and conduction states. Finally, a parameter a, is found which combines the distance between impurities and Coulomb interaction in such a way that every curve is specified only by a and the bare tunneling rate.
Natti, Paulo Laerte. "Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu." Universidade de São Paulo, 1995. http://www.teses.usp.br/teses/disponiveis/43/43131/tde-15102012-122148/.
Full textA time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.
Mastine, Antonio Carlos. "Dinâmica de campo médio de um sistema fermiônico descrito pelo oscilador anarmônico na presença de campo magnético." Universidade Estadual de Londrina. Centro de Ciências Exatas. Programa de Pós-Graduação em Física, 2002. http://www.bibliotecadigital.uel.br/document/?code=vtls000086595.
Full textA non-perturbative time-dependent projection technique is used to treat the initial value problem in Quantum Mechanics context. In this formalism, we derive equations for the set of one-body dynamics observables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium self-interacting fermionic system in the presence of an external magnetic field. In this regime we study the dynamical symmetry breaking phenomenon, associed to phase transition, and the mean-field physics of our system.
Berger, Isabela Corrêa. "Efeitos induzidos por campo aleatório bimodal e gaussiano nos modelos de van Hemmen clássico e fermiônico." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/178881.
Full textIn this work, two adaptations to the original model proposed by van Hemmen are used with the aim of investigating the e ects of a random eld hi under the phase transitions: a model studied in the classical version and a model in the fermionic formulation. The van Hemmen model was chosen because the disorder can be treated without the use of the replica method. In the rst case, the classic model has a crystal eld (D) which energetically favors the non-interacting states. The random interactions Ji j are responsible for introduce disorder and frustration to the problem. Both random eld and random variables follow a bimodal probability distribution. Analyzing the behavior of the order parameters and the free energy, phase diagrams of temperatura T versus the ferromagnetic coupling J0 and T versus the crystal eld D for di erent values of hi were build. The results indicate that the presence of the random eld tends to reduce the tricritical point of the phase transitions. For a given value of hi, a new solution of phase spin glass (SG) can be favored. In addition, for su ciently high enough values of hi the problem presents multicritical points in phase transitions. It is also intended to investigate if this model is able to present some kind of inverse transition (IT) IT is a class of highly nonintuitive phase transitions in that the usual ordered phase has more entropy than the disordered one. The IT manifests in the phase diagrams as a reentrance of the disordered-ordereddisordered phase according to the temperature decreases. Although the model presents several tricritical points in the transition PM=SG, no type of reentrant transition was observed. Therefore, there is no evidence of inverse transition in this model. The model analyzed in the fermionic formulation has a chemical potential (m), which has the role of controlling the magnetic dilution related to favoring double-occupation or empty sites. This model also counts with a transverse magnetic eld G, which introduces quantum uctuations to the problem. In this case, the spin interactions Ji j and random eld follow a Gaussian distribution The introduction of the hi allows the investigation of IT under the e ects of a disorder that is not a source of frustration. The results show a reentrant transition from the SG phase to the PM phase in the absence of G and hi. The reentrance appears for a certain range of m, in which there is a PM phase at low temperatures with lower entropy than the SG phase, characterizing the inverse freezing (IF) transition. However, IF is gradually suppressed when the e ects hi are intensi ed. Moreover, the IF is completely destroyed by quantum uctuations from G. Thus, the disorder combined with the dilution may present the favorable scenario to the occurrence of IF, while the random eld and the uctuations quantum mechanics act against this kind of transition.