To see the other types of publications on this topic, follow the link: Site-selectivity.

Journal articles on the topic 'Site-selectivity'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Site-selectivity.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Roche, Camille J., James A. Thomson, and Donald M. Crothers. "Site selectivity of daunomycin." Biochemistry 33, no. 4 (1994): 926–35. http://dx.doi.org/10.1021/bi00170a011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wilcock, Brandon C., Brice E. Uno, Gretchen L. Bromann, Matthew J. Clark, Thomas M. Anderson, and Martin D. Burke. "Electronic tuning of site-selectivity." Nature Chemistry 4, no. 12 (2012): 996–1003. http://dx.doi.org/10.1038/nchem.1495.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yeston, Jake. "Shaking up reaction-site selectivity." Science 363, no. 6427 (2019): 594.3–594. http://dx.doi.org/10.1126/science.363.6427.594-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wu, Bin, Peter Dröge, and Curt A. Davey. "Site selectivity of platinum anticancer therapeutics." Nature Chemical Biology 4, no. 2 (2007): 110–12. http://dx.doi.org/10.1038/nchembio.2007.58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Colloms, Sean D., Jonathan Bath, and David J. Sherratt. "Topological Selectivity in Xer Site-Specific Recombination." Cell 88, no. 6 (1997): 855–64. http://dx.doi.org/10.1016/s0092-8674(00)81931-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Routbort, J. L., S. J. Rothman, Nan Chen, J. N. Mundy та J. E. Baker. "Site selectivity and cation diffusion inYBa2Cu3O7−δ". Physical Review B 43, № 7 (1991): 5489–97. http://dx.doi.org/10.1103/physrevb.43.5489.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baldinozzi, G., J.-F. Bérar, M. Gautier-Soyer, and G. Calvarin. "Segregation and site selectivity in Zr-doped." Journal of Physics: Condensed Matter 9, no. 45 (1997): 9731–44. http://dx.doi.org/10.1088/0953-8984/9/45/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Andersen, Kristen A., Langdon J. Martin, Joel M. Prince, and Ronald T. Raines. "Intrinsic site-selectivity of ubiquitin dimer formation." Protein Science 24, no. 2 (2015): 182–89. http://dx.doi.org/10.1002/pro.2603.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chiavarino, Barbara, Maria Elisa Crestoni, Barbara Di Rienzo, Simonetta Fornarini, and Francesco Lanucara. "Site-selectivity of protonation in gaseous toluene." Physical Chemistry Chemical Physics 10, no. 36 (2008): 5507. http://dx.doi.org/10.1039/b808710e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cromie, Sarah, Vickie McKee, and Frédéric Launay. "Site-selectivity in a heterotetranuclear macrocyclic complex." Chemical Communications, no. 19 (2001): 1918–19. http://dx.doi.org/10.1039/b106340p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Schneider, U., G. R. Castro, and K. Wandelt. "Adsorption on ordered Cu3Pt(111): site selectivity." Surface Science 287-288 (May 1993): 146–50. http://dx.doi.org/10.1016/0039-6028(93)90759-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Schneider, U., G. R. Castro, and K. Wandelt. "Adsorption on ordered Cu3Pt(111): site selectivity." Surface Science Letters 287-288 (May 1993): A374. http://dx.doi.org/10.1016/0167-2584(93)90408-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Demchenko, A. P., and A. I. Sytnik. "Site selectivity in excited-state reactions in solutions." Journal of Physical Chemistry 95, no. 25 (1991): 10518–24. http://dx.doi.org/10.1021/j100178a045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Roche, Camille J., David Berkowitz, Gary A. Sulikowski, Samuel J. Danishefsky, and Donald M. Crothers. "Binding affinity and site selectivity of daunomycin analogs." Biochemistry 33, no. 4 (1994): 936–42. http://dx.doi.org/10.1021/bi00170a012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Blakely, G., and D. Sherratt. "Determinants of selectivity in Xer site-specific recombination." Genes & Development 10, no. 6 (1996): 762–73. http://dx.doi.org/10.1101/gad.10.6.762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chartier, Patrick, Mahalingam Balasubramanian, Dale Brewe та ін. "Site selectivity in Fe doped β phase NiAl". Journal of Applied Physics 75, № 8 (1994): 3842–46. http://dx.doi.org/10.1063/1.356063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kilcoyne, S. H., S. J. Hibble, and R. Cywinski. "Site selectivity in 3d transition metal substituted YBa2Cu3O7." Physica B: Condensed Matter 180-181 (June 1992): 423–25. http://dx.doi.org/10.1016/0921-4526(92)90779-r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Lancaster, Jill, Barbara J. Downes, and Amanda Arnold. "Oviposition site selectivity of some stream-dwelling caddisflies." Hydrobiologia 652, no. 1 (2010): 165–78. http://dx.doi.org/10.1007/s10750-010-0328-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Immke, David, and Stephen J. Korn. "Ion–Ion Interactions at the Selectivity Filter." Journal of General Physiology 115, no. 4 (2000): 509–18. http://dx.doi.org/10.1085/jgp.115.4.509.

Full text
Abstract:
In the Kv2.1 potassium channel, binding of K+ to a high-affinity site associated with the selectivity filter modulates channel sensitivity to external TEA. In channels carrying Na+ current, K+ interacts with the TEA modulation site at concentrations ≤30 μM. In this paper, we further characterized the TEA modulation site and examined how varying K+ occupancy of the pore influenced the interaction of K+ with this site. In the presence of high internal and external [K+], TEA blocked 100% of current with an IC50 of 1.9 ± 0.2 mM. In the absence of a substitute permeating ion, such as Na+, reducing
APA, Harvard, Vancouver, ISO, and other styles
20

Prince, Richard J., and Steven M. Sine. "Epibatidine Activates Muscle Acetylcholine Receptors with Unique Site Selectivity." Biophysical Journal 75, no. 4 (1998): 1817–27. http://dx.doi.org/10.1016/s0006-3495(98)77623-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Diallo, P. T., P. Boutinaud, and R. Mahiou. "Anti-Stokes luminescence and site selectivity in La2Ti2O7:Pr3+." Journal of Alloys and Compounds 341, no. 1-2 (2002): 139–43. http://dx.doi.org/10.1016/s0925-8388(02)00098-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Gilbert, M. R. "Site selectivity of dopant cations in Ca3(SiO4)Cl2." Journal of Physics and Chemistry of Solids 75, no. 8 (2014): 1004–9. http://dx.doi.org/10.1016/j.jpcs.2014.04.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Takeiri, Fumitaka, Akihiro Watanabe, Akihide Kuwabara, et al. "Ba2ScHO3: H– Conductive Layered Oxyhydride with H– Site Selectivity." Inorganic Chemistry 58, no. 7 (2019): 4431–36. http://dx.doi.org/10.1021/acs.inorgchem.8b03593.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Grubisic, A., X. Li, S. T. Stokes, et al. "Al13H−: Hydrogen atom site selectivity and the shell model." Journal of Chemical Physics 131, no. 12 (2009): 121103. http://dx.doi.org/10.1063/1.3234363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Dierolf, V., A. B. Kutsenko, and W. von der Osten. "Site-selectivity of up-conversion processes in Ti:Er:LiNbO3 waveguides." Journal of Luminescence 83-84 (November 1999): 487–92. http://dx.doi.org/10.1016/s0022-2313(99)00148-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dekker, Lodewijk V., Peter McIntyre та Peter J. Parker. "Altered substrate selectivity of PKC-η pseudosubstrate site mutants". FEBS Letters 329, № 1-2 (1993): 129–33. http://dx.doi.org/10.1016/0014-5793(93)80208-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Colebatch, Annie L., and Anthony F. Hill. "Coordination chemistry of phosphinocarbynes: phosphorus vs. carbyne site selectivity." Dalton Transactions 46, no. 13 (2017): 4355–65. http://dx.doi.org/10.1039/c6dt04770j.

Full text
Abstract:
The phosphinocarbyne complex [W(CPPh<sub>2</sub>)(CO)<sub>2</sub>(Tp*)] (1: Tp* = hydrotris(dimethylpyrazolyl)borate) coordinates transition metal fragments via the phosphine to form bimetallic species [W{CPPh<sub>2</sub>RhCl<sub>2</sub>(Cp*)}(CO)<sub>2</sub>(Tp*)] (2) and [W(CPPh<sub>2</sub>AuCl)(CO)<sub>2</sub>(Tp*)] (3).
APA, Harvard, Vancouver, ISO, and other styles
28

Hoggard, Bryce R., Christopher B. Larsen, and Nigel T. Lucas. "Site Selectivity of [RuCp*]+ Complexation in Cyclopenta[def]triphenylenes." Organometallics 33, no. 21 (2014): 6200–6209. http://dx.doi.org/10.1021/om5008852.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Rufer, A. W. "Non-contact positions impose site selectivity on Cre recombinase." Nucleic Acids Research 30, no. 13 (2002): 2764–71. http://dx.doi.org/10.1093/nar/gkf399.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Li, Keyan, C. Kang, and Dongfeng Xue. "Site Selectivity of Dopants in Lithium Niobate Single Crystal." Materials Focus 4, no. 1 (2015): 28–31. http://dx.doi.org/10.1166/mat.2015.1203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Guhathakurta, Anjan, Ian Viney, and David Summers. "Accessory proteins impose site selectivity during ColE1 dimer resolution." Molecular Microbiology 20, no. 3 (1996): 613–20. http://dx.doi.org/10.1046/j.1365-2958.1996.5471072.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Wang, Jian-bo, Guangyue Li, and Manfred T. Reetz. "Enzymatic site-selectivity enabled by structure-guided directed evolution." Chemical Communications 53, no. 28 (2017): 3916–28. http://dx.doi.org/10.1039/c7cc00368d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Hirosawa, Ichiro, Jun'ichiro Mizuki, Katsumi Tanigaki, and Hidekazu Kimura. "Site selectivity of alkali metal ions in KxRb3−xC60." Solid State Communications 89, no. 1 (1994): 55–58. http://dx.doi.org/10.1016/0038-1098(94)90417-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Zhou, Qun, Josephine Kyazike, Ekaterina Boudanova, et al. "Site-Specific Antibody Conjugation to Engineered Double Cysteine Residues." Pharmaceuticals 14, no. 7 (2021): 672. http://dx.doi.org/10.3390/ph14070672.

Full text
Abstract:
Site-specific antibody conjugations generate homogeneous antibody-drug conjugates with high therapeutic index. However, there are limited examples for producing the site-specific conjugates with a drug-to-antibody ratio (DAR) greater than two, especially using engineered cysteines. Based on available Fc structures, we designed and introduced free cysteine residues into various antibody CH2 and CH3 regions to explore and expand this technology. The mutants were generated using site-directed mutagenesis with good yield and properties. Conjugation efficiency and selectivity were screened using PE
APA, Harvard, Vancouver, ISO, and other styles
35

Nimigean, Crina M., and Christopher Miller. "Na+ Block and Permeation in a K+ Channel of Known Structure." Journal of General Physiology 120, no. 3 (2002): 323–35. http://dx.doi.org/10.1085/jgp.20028614.

Full text
Abstract:
The effects of intracellular Na+ were studied on K+ and Rb+ currents through single KcsA channels. At low voltage, Na+ produces voltage-dependent block, which becomes relieved at high voltage by a “punchthrough” mechanism representing Na+ escaping from its blocking site through the selectivity filter. The Na+ blocking site is located in the wide, hydrated vestibule, and it displays unexpected selectivity for K+ and Rb+ against Na+. The voltage dependence of Na+ block reflects coordinated movements of the blocker with permeant ions in the selectivity filter.
APA, Harvard, Vancouver, ISO, and other styles
36

He, Daoping, Hideshi Ooka, Yujeong Kim, et al. "Atomic-scale evidence for highly selective electrocatalytic N−N coupling on metallic MoS2." Proceedings of the National Academy of Sciences 117, no. 50 (2020): 31631–38. http://dx.doi.org/10.1073/pnas.2008429117.

Full text
Abstract:
Molybdenum sulfide (MoS2) is the most widely studied transition-metal dichalcogenide (TMDs) and phase engineering can markedly improve its electrocatalytic activity. However, the selectivity toward desired products remains poorly explored, limiting its application in complex chemical reactions. Here we report how phase engineering of MoS2 significantly improves the selectivity for nitrite reduction to nitrous oxide, a critical process in biological denitrification, using continuous-wave and pulsed electron paramagnetic resonance spectroscopy. We reveal that metallic 1T-MoS2 has a protonation s
APA, Harvard, Vancouver, ISO, and other styles
37

Arčon, Denis, Andrej Zorko, Peter Jeglič, et al. "Rattler Site Selectivity and Covalency Effects in Type-I Clathrates." Journal of the Physical Society of Japan 82, no. 1 (2013): 014703. http://dx.doi.org/10.7566/jpsj.82.014703.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Turpin, Eleanor R., Huey-Jen Fang, Neil R. Thomas, and Jonathan D. Hirst. "Cooperativity and Site Selectivity in the Ileal Lipid Binding Protein." Biochemistry 52, no. 27 (2013): 4723–33. http://dx.doi.org/10.1021/bi400192w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Nemkovich, N. A., J. V. Kruchenok, A. N. Rubinov, V. G. Pivovarenko, and W. Baumann. "Site selectivity in excited-state intramolecular proton transfer in flavonols." Journal of Photochemistry and Photobiology A: Chemistry 139, no. 1 (2001): 53–62. http://dx.doi.org/10.1016/s1010-6030(00)00408-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Bentley, Ronald. "Diastereoisomerism, contact points, and chiral selectivity: a four-site saga." Archives of Biochemistry and Biophysics 414, no. 1 (2003): 1–12. http://dx.doi.org/10.1016/s0003-9861(03)00169-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Xia, Guoqin, Jiang Weng, Luoyan Liu, Pritha Verma, Ziqi Li, and Jin-Quan Yu. "Reversing conventional site-selectivity in C(sp3)–H bond activation." Nature Chemistry 11, no. 6 (2019): 571–77. http://dx.doi.org/10.1038/s41557-019-0245-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Neufeldt, Sharon R., and Melanie S. Sanford. "Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization." Accounts of Chemical Research 45, no. 6 (2012): 936–46. http://dx.doi.org/10.1021/ar300014f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Lyons, Thomas W., Kami L. Hull, and Melanie S. Sanford. "Controlling Site Selectivity in Pd-Catalyzed Oxidative Cross-Coupling Reactions." Journal of the American Chemical Society 133, no. 12 (2011): 4455–64. http://dx.doi.org/10.1021/ja1097918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Pratihar, Sanjay, and Sujit Roy. "Nucleophilicity and Site Selectivity of Commonly Used Arenes and Heteroarenes." Journal of Organic Chemistry 75, no. 15 (2010): 4957–63. http://dx.doi.org/10.1021/jo100425a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Dery, Shahar, Suhong Kim, Daniel Feferman, Hillel Mehlman, F. Dean Toste, and Elad Gross. "Site-dependent selectivity in oxidation reactions on single Pt nanoparticles." Physical Chemistry Chemical Physics 22, no. 34 (2020): 18765–69. http://dx.doi.org/10.1039/d0cp00642d.

Full text
Abstract:
Site-dependent selectivity in oxidation reactions on Pt nanoparticles was identified by conducting IR nanospectroscopy measurements while using allyl-functionalized N-heterocyclic carbenes (allyl-NHCs) as probe molecules.
APA, Harvard, Vancouver, ISO, and other styles
46

Matsuda, Kazuhiko, Satoshi Kanaoka, Miki Akamatsu, and David B. Sattelle. "Diverse Actions and Target-Site Selectivity of Neonicotinoids: Structural Insights." Molecular Pharmacology 76, no. 1 (2009): 1–10. http://dx.doi.org/10.1124/mol.109.055186.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Strerath, Michael, Janina Cramer, Tobias Restle, and Andreas Marx. "Implications of Active Site Constraints on Varied DNA Polymerase Selectivity." Journal of the American Chemical Society 124, no. 38 (2002): 11230–31. http://dx.doi.org/10.1021/ja027060k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Robinson, Daniel D, Woody Sherman, and Ramy Farid. "Understanding Kinase Selectivity Through Energetic Analysis of Binding Site Waters." ChemMedChem 5, no. 4 (2010): 618–27. http://dx.doi.org/10.1002/cmdc.200900501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nekvasilová, Pavlína, Natalia Kulik, Nikola Rychlá, et al. "How Site‐Directed Mutagenesis Boosted Selectivity of a Promiscuous Enzyme." Advanced Synthesis & Catalysis 362, no. 19 (2020): 4138–50. http://dx.doi.org/10.1002/adsc.202000604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Broo, Klas, Malin Allert, Linda Andersson, et al. "Site selectivity in self-catalysed functionalization of helical polypeptide structures." Journal of the Chemical Society, Perkin Transactions 2, no. 3 (1997): 397–98. http://dx.doi.org/10.1039/a605776d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!