Academic literature on the topic 'Size and temperature of nanomaterials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Size and temperature of nanomaterials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Size and temperature of nanomaterials"
Goyal, Monika, and B. R. K. Gupta. "Study of shape, size and temperature-dependent elastic properties of nanomaterials." Modern Physics Letters B 33, no. 26 (September 20, 2019): 1950310. http://dx.doi.org/10.1142/s021798491950310x.
Full textArora, Neha, Deepika P. Joshi, and Uma Pachauri. "Size and shape dependent Debye temperature of Nanomaterials." Materials Today: Proceedings 4, no. 9 (2017): 10450–54. http://dx.doi.org/10.1016/j.matpr.2017.06.398.
Full textZhou, Xiao-Ye, Bao-Ling Huang, and Tong-Yi Zhang. "Size- and temperature-dependent Young's modulus and size-dependent thermal expansion coefficient of thin films." Physical Chemistry Chemical Physics 18, no. 31 (2016): 21508–17. http://dx.doi.org/10.1039/c6cp03294j.
Full textParitskaya, Lyudmila N., Yuri S. Kaganovsky, and V. V. Bogdanov. "Size-Dependent Interdiffusion in Nanomaterials." Solid State Phenomena 101-102 (January 2005): 123–30. http://dx.doi.org/10.4028/www.scientific.net/ssp.101-102.123.
Full textZhang, Xianhe, Weiguo Li, Dong Wu, Yong Deng, Jiaxing Shao, Liming Chen, and Daining Fang. "Size and shape dependent melting temperature of metallic nanomaterials." Journal of Physics: Condensed Matter 31, no. 7 (December 31, 2018): 075701. http://dx.doi.org/10.1088/1361-648x/aaf54b.
Full textRAWAT, KOMAL, and MONIKA GOYAL. "Theoretical study of Specific heat and thermal conductivity variation in nanomaterials." High Temperatures-High Pressures 49, no. 3 (2020): 279–98. http://dx.doi.org/10.32908/hthp.v49.827.
Full textSyvolozhskyi, O., I. Ovsiienko, L. Matzui, and T. Len. "The peculiarity of intercalation of carbon nanomaterials containing nanotubes." Bulletin of Taras Shevchenko National University of Kyiv. Series: Physics and Mathematics, no. 3 (2018): 109–12. http://dx.doi.org/10.17721/1812-5409.2018/3.17.
Full textZhang, Yi. "Review of Physical Properties and Preparation of Nano-Superconducting Materials." Advanced Materials Research 816-817 (September 2013): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.65.
Full textSINGH, MADAN, and MAHIPAL SINGH. "Impact of size and temperature on thermal expansion of nanomaterials." Pramana 84, no. 4 (November 20, 2014): 609–19. http://dx.doi.org/10.1007/s12043-014-0844-0.
Full textLu, H. M. "Size Dependent Interface Energy of Nanomaterials." Solid State Phenomena 155 (May 2009): 3–70. http://dx.doi.org/10.4028/www.scientific.net/ssp.155.3.
Full textDissertations / Theses on the topic "Size and temperature of nanomaterials"
Elm, Svensson Erik. "Nanomaterials for high-temperature catalytic combustion." Licentiate thesis, Stockholm : School of Chemical Science, KTH, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4360.
Full textAgnew, Rachel Elizabeth. "The Characterization and Size Distribution of Engineered Carbon Nanomaterials." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1243362684.
Full textLukawska, Anna Beata. "THERMAL PROPERTIES OF MAGNETIC NANOPARTICLES IN EXTERNAL AC MAGNETIC FIELD." Wright State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=wright1401441820.
Full textZHU, SHUN. "SYNTHESIS OF SIZE, STRUCTURE AND SHAPE CONTROLLED IRON BASED MAGNETIC NANOMATERIALS." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1322920113.
Full textHos, James Pieter. "Mechanochemically synthesized nanomaterials for intermediate temperature solid oxide fuel cell membranes." University of Western Australia. School of Mechanical Engineering, 2005. http://theses.library.uwa.edu.au/adt-WU2006.0016.
Full textElzey, Sherrie Renee. "Applications and physicochemical characterization of nanomaterials in environmental, health, and safety studies." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/494.
Full textDrake, Christina. "UNDERSTANDING THE LOW TEMPERATURE ELECTRICAL PROPERTIESOF NANOCRYSTALLINE SNO2 FOR GAS SENSOR APPLICATIONS." Doctoral diss., University of Central Florida, 2007. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3957.
Full textPh.D.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Materials Science & Engr PhD
Reeve, Michael William. "Temperature, body size and life history in Drosophila melanogaster." Thesis, University College London (University of London), 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.271338.
Full textGabrielyan, Nare. "Low temperature fabrication of one-dimensional nanostructures and their potential application in gas sensors and biosensors." Thesis, De Montfort University, 2013. http://hdl.handle.net/2086/9607.
Full textChen, Zongkun [Verfasser]. "Simple Preparation and Formation Mechanism of Two-Dimensional Nanomaterials at Room Temperature / Zongkun Chen." Konstanz : KOPS Universität Konstanz, 2020. http://d-nb.info/1213659221/34.
Full textBooks on the topic "Size and temperature of nanomaterials"
Whittenberger, J. Daniel. Effect of grain size on the high temperature properties of B2 aluminides. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textWhittenberger, J. Daniel. Effect of grain size on the high temperature properties of B2 aluminides. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textBaker, Mark D. Intriguing centrality dependence of the Au-Au source size at the AGS. [Washington, D.C: National Aeronautics and Space Administration, 1996.
Find full textAwrejcewicz, Jan, Anton V. Krysko, Maxim V. Zhigalov, and Vadim A. Krysko. Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55993-9.
Full textClaussen, Julie E. Annual variation in the reproductive activity of a bluegill population: Effect of clutch size and temperature. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1992.
Find full textVillagra, Federico. The relationships linking tremor size and skilled performance with limb temperature, and voluntary movement with tremor phase. Birmingham: University of Birmingham, 1994.
Find full textO'Mara, Duncan F. Effect of heating rate to test temperature on superplastic response in an A1-8%Mg-1%Li-0.2%Zr alloy. Monterey, California: Naval Postgraduate School, 1989.
Find full textIngebo, Robert D. Scattered-light scanner measurements of cryogenic liquid-jet breakup. [Washington, D.C: National Aeronautics and Space Administration, 1990.
Find full textBarnard, Amanda S. Size-dependent phase transitions and phase reversal at the nanoscale. Edited by A. V. Narlikar and Y. Y. Fu. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780199533053.013.5.
Full textClarke, Andrew. Temperature, growth and size. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780199551668.003.0013.
Full textBook chapters on the topic "Size and temperature of nanomaterials"
Kato, Haruhisa. "Size Determination of Nanoparticles by Dynamic Light Scattering." In Nanomaterials, 535–54. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2012. http://dx.doi.org/10.1002/9783527646821.ch8.
Full textEremeyev, Victor A. "Size Effect in Nanomaterials." In Encyclopedia of Continuum Mechanics, 2290–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-55771-6_170.
Full textEremeyev, Victor A. "Size Effect in Nanomaterials." In Encyclopedia of Continuum Mechanics, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53605-6_170-1.
Full textParitskaya, L. N., Yu Kaganovskii, and V. V. Bogdanov. "Size-Dependent Interdiffusion in Nanomaterials." In Solid State Phenomena, 123–30. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-02-7.123.
Full textHaddon, M. R., and J. N. Hay. "High-temperature size exclusion chromatography." In Size Exclusion Chromatography, 57–99. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7861-1_4.
Full textMori, Sadao, and Howard G. Barth. "High-Temperature Size Exclusion Chromatography." In Size Exclusion Chromatography, 155–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03910-6_10.
Full textChen, Liyu, and Yingwei Li. "Heterogeneous Room Temperature Catalysis - Nanomaterials." In Sustainable Catalysis, 59–88. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527693030.ch3.
Full textNambissan, P. M. G. "Doping Effects in Wide Band Gap Semiconductor Nanoparticles: Lattice Variations, Size Changes, Widening Band Gaps but no Structural Transformations!" In Nanomaterials, 37–65. Oakville, ON ; Waretown, NJ : Apple Academic Press, [2018]: Apple Academic Press, 2018. http://dx.doi.org/10.1201/b21267-3.
Full textSanchís, Josep, Marinella Farré, and Damià Barceló. "Analysis of Nanomaterials by Particle Size Distribution Methods." In Nanomaterials in the Environment, 129–57. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784414088.ch05.
Full textPilloud, David, and Jean-François Pierson. "High Temperature Oxidation Resistance of Nanocomposite Coatings." In Nanomaterials and Surface Engineering, 329–48. Hoboken, NJ USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118618523.ch12.
Full textConference papers on the topic "Size and temperature of nanomaterials"
Ko, Seung Hwan, Heng Pan, Nipun Misra, and Costas P. Grigoropoulos. "Nanomaterial Enabled Laser Transfer of Temperature Sensitive Organic Light Emitting Diode Materials." In ASME 2009 Heat Transfer Summer Conference collocated with the InterPACK09 and 3rd Energy Sustainability Conferences. ASMEDC, 2009. http://dx.doi.org/10.1115/ht2009-88061.
Full textPatel, Ghanshyam R., Nilesh A. Thakar, and Tushar C. Pandya. "Effect of size on specific heat and Debye temperature of nanomaterials." In INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946189.
Full textChhabra, Hina, and Munish Kumar. "Development of simple model for size and shape dependence of critical temperature for ferromagnetic nanomaterials." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5112957.
Full textWang, Xinwei. "Anisotropic Nature of Thermal Transport in Nanoscale Materials." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72794.
Full textYang, Hongjoo, and Debjyoti Banerjee. "Study of Specific Heat Capacity Enhancement of Molten Salt Nanomaterials for Solar Thermal Energy Storage (TES)." In ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75338.
Full textSadek, A. A., and H. G. Salem. "Construction of Consolidation Maps of Pre-ECAE Hot Compact Nanocrystalline-Micron Powders." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47026.
Full textKang, Ki Moon, Hyo-Won Kim, Il-Wun Shim, and Ho-Young Kwak. "Syntheses of Specialty Nanomaterials at the Multibubble Sonoluminescence Condition." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-68320.
Full textMostafa, Amany A., Khaled R. Mohamed, Tarek M. Dahy, and Gehan T. El-Bassyouni. "Characterization and In-Vitro Assessment of Nano-Hydroxyapatite Prepared by Polymeric Route." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47056.
Full textDevaradjane, Ramaprasath, and Donghyun Shin. "Enhanced Heat Capacity of Molten Salt Nano-Materials for Concentrated Solar Power Application." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87737.
Full textSalem, H. G., and M. Shamma. "Effect of the Compaction Parameters and Canning Material of Nanostructured Al-Powder Consolidated via Intense Plastic Straining Process." In ASME 2008 2nd Multifunctional Nanocomposites and Nanomaterials International Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/mn2008-47063.
Full textReports on the topic "Size and temperature of nanomaterials"
Yates, S. F., S. J. Zhou, D. J. Anderson, and A. E. van Til. High temperature size selective membranes. Office of Scientific and Technical Information (OSTI), October 1994. http://dx.doi.org/10.2172/10185573.
Full textO’Neal, Kenneth, and Janice Musfeldt. Spectroscopic studies of size-dependent optical properties of oxide nanomaterials, molecule-based materials in extreme condition - Spectroscopic studies of size-dependent optical properties of oxide nanomaterials, molecule-based materials in extreme condition. University of Tennessee, Knoxville, October 2019. http://dx.doi.org/10.7290/qtlpnw5g3.
Full textGonzalez, E. J., G. J. Piermarini, and B. Hockey. Low temperature fabrication from nano-size ceramic powders. Office of Scientific and Technical Information (OSTI), June 1995. http://dx.doi.org/10.2172/82428.
Full textList, III, Frederick Alyious, Ralph Barton Dinwiddie, Keith Carver, and Joy E. Gockel. Melt-Pool Temperature and Size Measurement During Direct Laser Sintering. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1399977.
Full textCiccarelli, G., T. Ginsberg, and J. L. Boccio. Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/563843.
Full textThomson, T. Silicide formation and particle size growth in high temperature annealed, self-assembled FePt nanoparticle arrays. Office of Scientific and Technical Information (OSTI), October 2003. http://dx.doi.org/10.2172/826528.
Full textNelson, walter r. A Convolution Method for Determining Temperature Rise in Targets Struck by Beams of Various Size. Office of Scientific and Technical Information (OSTI), October 2001. http://dx.doi.org/10.2172/798861.
Full textNatesan, K., and D. L. Rink. Effect of time and temperature on grain size of V and V-Cr-Ti alloys. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/415823.
Full textKumar, P. R., and Vasant B. Rao. Asymptotics in Time, Temperature and Size for Optimization by Simulated Annealing: Theory, Practice and Applications. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada217680.
Full textGarino, Terry J. The effects of composition, temperature and sample size on the sintering of chem-prep high field varistors. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/933217.
Full text