To see the other types of publications on this topic, follow the link: Size effect in micro-mesoscale.

Dissertations / Theses on the topic 'Size effect in micro-mesoscale'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Size effect in micro-mesoscale.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Mian, Aamer Jalil. "Size effect in micromachining." Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/size-effect-in-micromachining(91bf7280-a937-4509-9c40-4ff2e36d26c6).html.

Full text
Abstract:
The world is experiencing a growing demand for miniaturised products. Micro-milling, using carbide micro tools has the potential for direct, economical manufacture of micro parts from a wide range of workpiece materials. However, in previous studies several critical issues have been identified that preclude the direct application of macro machining knowledge in the micro domain through simple dimensional analysis. The research presented in this thesis focused on some of the areas that require development of the scientific knowledge base to enable determining improved microscale cutting performance. In the mechanical micro machining of coarse grained materials, the programmed undeformed chip thickness can be lower than the length scale of the workpiece grains. Moreover, when the microstructure of such materials is composed of more than one phase, the micro cutting process can be undertaken at a length scale where this heterogeneity has to be considered. Driven by this challenge, the material microstructure 'size effect' on micro-machinability of coarse grain steel materials was investigated in this PhD. In this regard, a predominantly single phase ferritic workpiece steel material and another workpiece material with near balanced ferrite/pearlite volume fractions was studied over a range of feedrates. The results suggested that for micro machined parts, differential elastic recovery between phases leads to higher surface roughness when the surface quality of micro machined multiphase phase material is compared to that of single phase material. On the other hand, for single phase predominantly ferritic materials, reducing burr size and tool wear are major challenges. In micro machining the so called 'size effect' has been identified as critical in defining the process performance. However, an extensive literature search had indicated that there was no clear reported evidence on the effect of process variables on driving this size effect phenomenon. It is often assumed in literature that the un-deformed chip thickness was the main factor driving the size effect. This limit manufactures to only altering the feedrate to try and influence size effect. To explore the significance of a range of inputs variables and specifically, cutting variables on the size effect, micro cutting tests were conducted on Inconel 718 nickel alloy. Taguchi methodology along with signal processing techniques were applied to micro milling acoustic emission signals to identify frequency/energy bands and hence size effect specific process mechanism. The dominant cutting parameters for size effect characteristics were determined by analysis of variance. These findings show that despite most literature focussing on chip thickness as the dominant parameter on size effect, the cutting velocity is a dominant factor on size effect related process performance. This suggests that manipulating the cutting speed can also be a very effective strategy in optimising surface finish in micro machining and in breaking the lower limit of micro machining.In micro machining the lower limit of the process window is set by the minimum chip thickness. Identifying this limit is thus important for establishing the process window. Process windows are valuable guidelines for industrial selection of cutting conditions. Additionally, understanding factors that influence the value of minimum chip thickness is even more important for progressing micro machining capability to the nano-scale machining regime. For this reason, in this PhD study, acoustic emission signatures emanating from microscale milling of six different workpiece materials were characterised to identify the rubbing mode and this enabled the identification of the threshold conditions for occurrence of minimum chip thickness. The minimum chip thickness predicted by this novel approach compares reasonably well to the values that exist in published literature. Additionally, the decomposition of raw acoustic signal allowed the determination of energy levels corresponding to deformation mechanisms. The PhD work provides significant and new knowledge on the utility and importance of acoustic emission signals in characterising chip formation in micro machining. A novel method for determining the minimum chip thickness was developed, micro machining chip formation mechanisms were identified and the machinability of coarse grained multiphase material is presented.
APA, Harvard, Vancouver, ISO, and other styles
2

Leung, Pak Kin. "Size effect in micro and nano bubble actuators /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20LEUNG.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Rui, and 顧瑞. "Size effect on deformation of aluminum and duralumin micro-pillars." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206336.

Full text
Abstract:
It is by now well-known that micron-sized metallic crystals exhibit a smaller-being-stronger size effect: the yield strength σvaries with specimen size D approximately as a power law σ~D^(-m)_, and the exponent m has been found to vary within a range of ~0.3 to ~1.0 for different metals. However, little is known about why such a power law comes into play, and what determines the actual value of the exponent m involved. In this study, the power-law scaling of size effect on strength in micro-crystals is explained in terms of the Taylor-type resistance in the dislocation network distribution in the specimen. Theoretical analysis shows that the power-law dependence of yield strength of metallic micro-specimens is derived from a fractal geometry of the initial dislocation network, with m = 3/(q + n) where q is the fractal dimension and n the stress exponent of dislocation velocity. Moderate departures of the initial dislocation structure from an exact fractal geometry may also yield approximate power-law dependence of strength on size. The plastic deformation of micro-pillars is also known to be affected by whether dislocations can escape easily from the material volume, and the extent to which they mutually interact during the deformation. In the present work, pre-straining and coating are used to modify the initial dislocation content and the constraints on the escape of dislocations. Aluminum micro-pillars with or without thin coating by tungsten deposition and pre-straining, were compressed using a flat-punch nanoindenter to study their plasticity behavior. The results reveal very different behavior between specimens in the size regime of a few microns and that about one micron, suggesting that the dominant hardening mechanisms are different. As mentioned above, pure and pristine metal micro-specimens have been found to exhibit very strong size dependence of strength, but alloyed counterparts with a much refined microstructural length scale due to the precipitates present are unknown in this aspect. Here, compression tests on duralumin (aluminum 2025 alloy) micro-pillars reveal a much weaker size dependence of strength compared to pure Al, indicating the predominance of the internal length scale in determining strength. Moreover, two-dimensional dislocation dynamics simulations are used to study precipitate strengthening effects in duralumin micro-pillars. The results show that a refined microstructure may resist and slow down the movement of dislocations inside the confined volume, leading to hardening and weak size dependence of strength. In addition to the compression behavior, the size dependence of the creep behavior of duralumin micro-pillars is also investigated at room temperature. The effects of an internal grain boundary are also investigated. The results reveal that peak-aged duralumin pillars show increasingly significant creep with increasing pillar size, with a typical creep rate of ~〖10〗^(-4) S^(-1) which is drastically larger than that of bulk at room temperature. The bi-crystalline pillars creep even faster than the single crystalline counterparts. TEM examination of the deformed microstructures reveals that the creep rate depends on the residual dislocation density, indicating that dislocations are the agents for creep. Theoretical modeling suggests that the steadystate creep rate is proportional to the lifetime of mobile dislocations, which rises with specimen size in the microns range due to the fact that the dislocations are not easily pinned in this range, therefore they spend longer time in viscous motion across the specimen, leading to a higher strain rate according to the Orowan equation.
published_or_final_version
Mechanical Engineering
Doctoral
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Yuan. "General size effect in the Hall-Petch effect and in micromechanical deformation." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/25904.

Full text
Abstract:
This thesis is a study of the size effect. Improvements on both theoretical work and experimental design are involved in this thesis. The theoretical section focuses on the grain size effect, while the experimental section is related to the micro-foil bending test. Both classic experimental data and theories for the Hall-Petch relationship are reviewed comprehensively. The fitting of the datasets show that the inverse square-root dependence and simple inverse expressions are equally good. The fully Bayesian analysis strongly suggests that the latter is correct. Since the physical mechanism underlying the simple inverse dependence is a general size effect, the precise description of the Hall-Petch effect is that it is a manifestation of the general size effect, instead of having its own special character. Improvements on the classic Stolken and Evans' micro-foil bending experiments are also carried out in this thesis. The smart design of the new equipment eliminates the big risk of error in the classic experiment. By using the new device, precise datasets from the elastic region through the yield point and to high plastic strain area can be obtained. The initial results correspond well with the old published data.
APA, Harvard, Vancouver, ISO, and other styles
5

Jiao, Feifei. "Investigation on micro-cutting mechanics with application to micro-milling." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/12066.

Full text
Abstract:
Nowadays technology development places increasing demands on miniature and micro components and products, and micro-milling is one of the most flexible machining processes in manufacturing 3D structures and complex structured surfaces. A thorough and scientific understanding on fundamentals of the micro-milling process is essential for applying it in an industrial scale. Therefore, in-depth scientific understanding of the micro-cutting mechanics is critical, particularly on size effect, minimum chip thickness, chip formation, tool wear and cutting temperature, etc. so as to fulfil the gap between fundamentals and industrial scale applications. Therefore, three key fundamental research topics are determined for this research, and a comprehensive study on those topics is conducted by means of modeling, simulation, experiments. The topics include chip formation process in micro-milling, novel cutting force modeling in multiscale and study on the tool wear and process monitoring. The investigation into chip formation process in micro-milling consists of three stages; the micro-cutting process is firstly simulated by means of FEA with a primary focus on finding the minimum chip thickness for different tool/material pair and explaining the size effect; the simulation results are then validated by conducting micro-cutting experiment on the ultra-precision lathe. Experiments are carried out on aluminium 6082-T6 with both natural diamond and tungsten carbide tool. By knowing the minimum chip thickness for different tool/material pair, the chip formation process is investigated by performing comparative study by using the diamond and tungsten carbide micro-milling tools. As the minimum chip thickness for diamond micro-milling tool is smaller than that for tungsten carbide tool compared to nominal chip thickness, MCT is ignored in diamond micro-milling. Thus the comparative study is conducted by utilizing both tools with perfectly sharpened cutting edge and tools with the rounded cutting edge in micro-milling. The chips are inspected and associated with cutting force variations in the micro-milling process. The findings are further consolidated by comparing with research results by other researchers. The cutting force modeling is developed in three different aspects, e.g. cutting force on the unit length or area and cutting force on the unit volume in order to better understand the micro-cutting mechanics in aspects of size effect, tool wear mechanism and the cutting energy consumption. The mathematical modeling firstly starts with a novel instantaneous chip thickness algorithm, in which the instantaneous chip thickness is computed by taking account of the change of tool geometry brought about by the tool runout; then the collected cutting forces are utilized to calibrate the model coefficients. For accurate measurement on cutting forces, the Kalman Filter technique is employed to compensate the distortion of the measured cutting force. Model calibration is implemented using least-square method. The proposed cutting force model is then applied in micro-milling to represent the conditions of tool wear and the cutting energy consumption. Further study on the surface generation simulation is based on force model and its comparison with the machined surface is also performed. Cutting experiments using the new tungsten carbide tool are carried out and the tool wear is monitored offline at different machining stages. The dominant tool wear types are characterised. Tool wear is investigated by mainly analysing cutting force at different tool wear status. Frequency analysis by Fourier Transform and Wavelet Transform are carried out on the force signals, and features closely related to the tool wear status are identified and extracted. The potential of applying these features to monitoring the tool wear process is then discussed. Experimental studies to machine the structured surface and nano-metric level surface roughness are presented, the machining efficiency, dimensional accuracy and tool-path strategies are optimised so as to achieve the desired outcomes. Moreover, investigation on cutting temperature in micro-cutting is also studied to some extent by means of simulation; the influence of cutting edge radius on cutting temperature is particularly investigated. Investigation on above aspects provides systematic exploration into the micro-milling process and can contribute substantially to future micro-milling applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Liu, Kai. "Process modeling of micro-cutting including strain gradient effects." Diss., Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-11112005-142011/.

Full text
Abstract:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2006.
Melkote, Shreyes, Committee Chair ; Zhou, Min, Committee Member ; Liang, Steven, Committee Member ; Thadhani, Naresh, Committee Member ; Haj-Ali, Rami, Committee Member. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
7

Subbiah, Sathyan. "Some Investigations of Scaling Effects in Micro-Cutting." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/13938.

Full text
Abstract:
The scaling of specific cutting energy is studied when micro-cutting ductile metals. A unified framework for understanding the scaling in specific cutting energy is first presented by viewing the cutting force as a combination of constant, increasing, and decreasing force components, the independent variable being the uncut chip thickness. Then, an attempt is made to isolate the constant force component by performing high rake angle orthogonal cutting experiments on OFHC Copper. The data shows a trend towards a constant cutting force component as the rake angle is increased. In order to understand the source of this constant force component the chip-root is investigated. By quickly stopping the spindle at low cutting speeds, the chip is frozen and the chip-workpiece interface is examined in a scanning electron microscope. Evidence of ductile tearing ahead of the cutting tool is seen at low and high rake angles. At higher cutting speeds a quick-stop device is used to obtain chip-roots. These experiments also clearly indicate evidence of ductile fracture ahead of the cutting tool in both OFHC Copper and Al-2024 T3. To model the cutting process with ductile fracture leading to material separation the finite element method is used. The model is implemented in a commercial finite element software using the explicit formulation. Material separation is modeled via element failure. The model is then validated using the measured cutting and thrust forces and used to study the energy consumed in cutting. As the thickness of layer removed is reduced the energy consumed in material separation becomes important. Simulations also show that the stress state ahead of the tool is favorable for ductile fracture to occur. Ductile fracture in three locations in an interface zone at the chip root is seen while cutting with edge radius tool. A hypothesis is advanced wherein an element gets wrapped around the tool edge and is stretched in two directions leading to fracture. The numerical model is then used to study the difference in stress state and energy consumption between a sharp tool and a tool with a non-zero edge radius.
APA, Harvard, Vancouver, ISO, and other styles
8

Elbishari, Haitham Idris. "Characterisation of the effect of filler size on handling, mechanical and surface properties of resin composites." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/characterisation-of-the-effect-of-filler-size-on-handling-mechanical-and-surface-properties-of-resin-composites(64a8b96f-1cd0-459c-9865-1c5f35567982).html.

Full text
Abstract:
Resin composites have been in the dental field for over forty years. They are now thought to be the most commonly used restorative material due to their aesthetic and mechanical properties. Although resin composites have high success rates as restorations, they do not offer all properties of an ideal restorative material. The aims of this research were to characterise the effects of variation in resin composite formulation on handling, mechanical; and physical properties. In particular the influence of the size and distribution of the inorganic components was investigated through the study of experimental formulations. Packing stress and viscosity were assessed with pentrometer principle at two different temperatures (23 and 37 ºC). It was found that filler size was strongly correlated with both packing stress and viscosity. Additionally, temperature has a dominant effect on packing stress and viscosity. Micro computed tomography [μCT] was used to investigate percentage of voids [% voids] in 3D dimensions. It was found that smaller filler size incorporated less % voids. In contrast filler size and disruption had a little effect on fracture toughness of resin composites. 3D surface topography was used to investigate the surface roughness before and after tooth brush abrasion. It was found filler size had a significant influence in both gloss retention and surface roughness (smaller filler size exhibited higher surface gloss). Finally, the effect of different storage media (distilled water, Coca Cola and red wine) on colour stability and gloss were investigated. It was found that dietary habits effect discolouration of resin composite restorations with the acidic drinks caused more staining.
APA, Harvard, Vancouver, ISO, and other styles
9

Sjölander, Anna. "The effect of water chemistry and fibre-size distribution on dissolved air flotation efficiency." Thesis, Linköping University, Department of Physics, Chemistry and Biology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-19306.

Full text
Abstract:

The purpose of this diploma work was to investigate the problem of insufficient fibre recovery in the dissolved air flotation-cell at the new thermomechanical pulping-line at Braviken Paper Mill. An investigation of the effect of process parameters on the removal efficiency in the micro-flotation process was undertaken.

The experiments were carried out for two setups at the Noss pilot plant with a small-scale flotation unit. Factorial design helped plan the experiments and four factors were controlled; temperature, fibre-size distribution, water quality and feed concentration. Three samples, feed, overflow and filtrate, were taken from each experiment and concentration measurements were made. The results were analyzed using the software MODDE.

The results from showed an influence from the fibre-size distribution. To see if the fibre-size distribution really had an effect on the results, follow-up experiments were carried out. These experiments showed no influence from temperature, fibre-size distribution or water quality. This concludes that none of those three factors influenced the results significantly.

Additional experiments were done to examine the influence from concentration and fibre-size distribution on the flotation efficiency and these showed an influence from the feed concentration. When increasing the feed concentration the efficiency of the flotation process decreased.

APA, Harvard, Vancouver, ISO, and other styles
10

Demiral, Murat. "Enhanced gradient crystal-plasticity study of size effects in B.C.C. metal." Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/11634.

Full text
Abstract:
Owing to continuous miniaturization, many modern high-technology applications such as medical and optical devices, thermal barrier coatings, electronics, micro- and nano-electro mechanical systems (MEMS and NEMS), gems industry and semiconductors increasingly use components with sizes down to a few micrometers and even smaller. Understanding their deformation mechanisms and assessing their mechanical performance help to achieve new insights or design new material systems with superior properties through controlled microstructure at the appropriate scales. However, a fundamental understanding of mechanical response in surface-dominated structures, different than their bulk behaviours, is still elusive. In this thesis, the size effect in a single-crystal Ti alloy (Ti15V3Cr3Al3Sn) is investigated. To achieve this, nanoindentation and micropillar (with a square cross-section) compression tests were carried out in collaboration with Swiss Federal Laboratories for Materials Testing and Research (EMPA), Switzerland. Three-dimensional finite element models of compression and indentation with an implicit time-integration scheme incorporating a strain-gradient crystal-plasticity (SGCP) theory were developed to accurately represent deformation of the studied body-centered cubic metallic material. An appropriate hardening model was implemented to account for strain-hardening of the active slip systems, determined experimentally. The optimized set of parameters characterizing the deformation behaviour of Ti alloy was obtained based on a direct comparison of simulations and the experiments. An enhanced model based on the SGCP theory (EMSGCP), accounting for an initial microstructure of samples in terms of different types of dislocations (statistically stored and geometrically necessary dislocations), was suggested and used in the numerical analysis. This meso-scale continuum theory bridges the gap between the discrete-dislocation dynamics theory, where simulations are performed at strain rates several orders of magnitude higher than those in experiments, and the classical continuum-plasticity theory, which cannot explain the dependence of mechanical response on a specimen s size since there is no length scale in its constitutive description. A case study was performed using a cylindrical pillar to examine, on the one hand, accuracy of the proposed EMSGCP theory and, on the other hand, its universality for different pillar geometries. An extensive numerical study of the size effect in micron-size pillars was also implemented. On the other hand, an anisotropic character of surface topographies around indents along different crystallographic orientations of single crystals obtained in numerical simulations was compared to experimental findings. The size effect in nano-indentation was studied numerically. The differences in the observed hardness values for various indenter types were investigated using the developed EMSGCP theory.
APA, Harvard, Vancouver, ISO, and other styles
11

Ben, Hmida Ramzi. "Identification de lois de comportement de tôles en faibles épaisseurs par développement et utilisation du procédé de microformage incrémental." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2042.

Full text
Abstract:
La miniaturisation des composants est aujourd’hui un challenge mondial. La fabrication de ces composants est rendue difficile par un certain nombre de phénomènes liés aux effets d’échelle. Il est ainsi nécessaire de répondre à ces contraintes de réduction d’échelle en termes de conception, de réalisation et de fonctionnement de ces systèmes. Cette étude aborde la problématique de la miniaturisation des procédés et plus particulièrement du procédé de micro-formage incrémental « mono-point » (micro-SPIF) à travers des études expérimentales et numériques. Le micro-formage incrémental de tôles est présenté comme une approche intéres sante de fabrication de structures minces. La géométrie désirée est assurée par la trajectoire d’un outil imposant une déformation locale sur la tôle serrée en son contour. Dans un premier temps, une approcheexpérimentale consistant à analyser le comportement mécanique des éprouvettes en alliage de cuivre avec différentes tailles de grains par des essais de traction a été proposée. L’interaction entre la géométrie et la microstructure est évaluée à l’aide du ratio de l'épaisseur par la taille moyenne de grains Φ=t/d. Un pilote de formage incrémental « mono-point » instrumenté a été également développé. Une campagne d'essais expérimentaux de micro-SPIF a été ainsi réalisée sur des flans par différentes tailles de grains afin d'étudier les effets de la microstructure sur la géométrie, l’état de surface, la distribution des épaisseurs et sur l’évolution des efforts. Dans un second temps, un modèle paramétrique de type éléments finis simulant le micro-SPIF a été développé en langage MATLAB®. Le code de calculs LS-DYNA® a été utilisé pour simuler le procédé en adaptant une loi de comportement élastoplastique. Ensuite, les résultats obtenus en termes de géométrie,d’évolution de l’épaisseur et d’efforts de formage sont confrontés aux relevés expérimentaux afin de valider la procédure numérique. Dans un troisième temps, une loi élastoplastique endommageable décrivant les principaux phénomènes physiques intervenant durant le formage des métaux en grandes déformations a été présentée. Une procédure d'identification de cette loi basée sur une analyse inverse de l’effort au cours du procédé de micro-SPIF a été proposée et des tests de validation du modèle ont été discutés. Enfin, une analyse de l'identifiabilité locale basée sur un indice de multicolinéarité des fonctions de sensibilité est effectuée pour valider la procédure d’identification paramétrique et quantifier l’intérêt du procédé pour la caractérisation quantitative des tôlesminces en très grandes déformations
The miniaturization of components is now a world challenge. The manufacture of these componentsis difficult because of several phenomena related to the so-called size effect. It is thus necessary to fulfill theserequirements of scaling down in terms of design, implementation and operations. This study deals with theproblems of miniaturization processes, especially the “micro-Single Point" Incremental Forming process (micro-SPIF) through experimental and numerical studies. Micro-single point incremental forming process is presentedas an interesting approach for thin structures manufacturing. The desired geometry is provided by the tool pathrequiring a local deformation in a sheet clamped along its contour. Firstly, an experimental approach consistingin analyzing the mechanical behaviour of copper alloy specimens with various grain sizes by tensile tests hasbeen proposed. The interaction between the geometry and the microstructure is evaluated using the ratio of thethickness by the average grain size Φ=t/d. An instrumented micro-SPIF device was also developed. A set ofsingle point incremental sheet forming experimental tests were conducted on blanks with several grain sizesusing two forming strategies in order to study the effect of microstructure on the geometry, the surface topology,the thickness distribution and the forming forces evolutions. Secondly, a finite element parametric model capableof simulating the micro-SPIF process was developed in MATLAB® language. The commercial LS-DYNA® codewas used to simulate this process using an elastic-plastic constitutive law. Then, the results obtained in terms ofgeometry, thickness evolution and forming forces are compared with the experimental results in order to validatethe numerical procedure. Thirdly, an elastic-plastic damage model describing the main physical phenomenainvolved during metal forming by large deformation was presented. An identification procedure of thisbehaviour law based on the inverse analysis of the axial forming force during micro-SPIF process was proposedand several validation tests of the model were discussed. Finally, local identifiability analysis based on an indexof multicollinearity of the sensitivity functions was performed in order to validate the parameters identificationprocedure and quantify the advantage of the process for quantitative mechanical behaviour characterization ofthin metal sheets at large strains
APA, Harvard, Vancouver, ISO, and other styles
12

Scerrato, Daria. "Effect of Micro-Particle Addition on Frictional Energy Dissipation and Strength of Concrete : Experiments and Modelling." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0101.

Full text
Abstract:
Si un béton classique est constitué d'éléments de granulométrie décroissante, en commençant par les granulats, le spectre granulométrique se poursuit avec la poudre de ciment puis parfois avec un matériau de granulométrie encore plus fine comme une fumée de silice (récupérée par exemple au niveau des filtres électrostatiques dans l'industrie de l'acier). L'obtention d'un spectre granulométrique continu et étendu vers les faibles granulométries permet d'améliorer la compacité, donc les performances mécaniques. L'idée de base de cette thèse a été d'utiliser comme éléments de granulométrie fine des fillers à base de calcaire. Ces fillers ont des granulométries très fines qui leur permettent de remplir les micro-fissure généralement présentes à l'intérieur du béton. La surface rugueuse des grains de ces fillers permet de modifier le coefficient de frottement entre les lèvres de chaque fissure. Le résultat souhaité est celui de produire un béton qui dissipe par frottement plus d'énergie par rapport à un béton standard. Un béton de ce type pourrait avoir des applications importantes dans l'ingénierie civile, surtout pour ce qui concerne l'absorption des vibrations dans la ville et les constructions en régions séismiques. Les théories des milieux continus généralisés permettent de tenir compte de l’effet de la microstructure des matériaux sur leur comportement macroscopique et, en particulier, de décrire la dissipation d’énergie dans le béton sujet à des chargements cycliques. Un modèle continu généralisé avec une variable cinématique supplémentaire a été développé dans le cadre de cette thèse qui permet de décrire le glissement relatif des lèvres des fissures dans le béton à l'échelle microscopique. La relation entre ces micro-mouvements au niveau des lèvres de fissures et la dissipation d'énergie observée à l'échelle macroscopique a ensuite été étudiée. Les équations en forme forte qui dérivent de cette modélisation continue sont obtenues à l'aide d'un principe variationnel de Hamilton-Rayleigh dans lequel on a intégré la nature dynamique du problème ainsi que la possibilité de décrire des phénomènes de dissipation au niveau microscopique. Le modèle obtenu permet de décrire les cycles d'hystérésis typiques du béton sujet à des chargement cycliques et ses paramètres ont été calés sur des essais menés au LGCIE de l'INSA de Lyon. Des études paramétriques concernant les paramètres reliés à la microstructure du matériau ont permis d'identifier l'effet que l'addition des micro-fillers a sur le comportement mécanique global du béton lorsque il est sujet à des chargement dynamiques
In this thesis, a two-degrees-of-freedom, non-linear model is introduced aiming to describe internal friction phenomena which have been observed in some modified concrete specimens undergoing slow dynamic compression loads and having various amplitudes but never inducing large strains. The motivation for the theoretical effort presented here arose because of the experimental evidence described in some papers in which dissipation loops for concrete-type materials are shown to have peculiar characteristics. Since viscoelastic models –linear or non-linear– do not seem suitable to describe either qualitatively or quantitatively the measured dissipation loops, it is proposed to introduce a micro-mechanism of Coulomb-type internal dissipation associated to the relative motion of the faces of the micro-cracks present in the material. In addition, numerical simulations, showing that the proposed model is suitable to describe some of the available experimental evidences, is presented. These numerical simulations motivate further developments of the considered model and supply a tool for the design of subsequent experimental campaigns. Furthermore, the effect of micro-particle additives such as calcium carbonate on internal dissipation of concrete was experimentally investigated. The damping performance of concrete can be improved by adding to the mixture different kinds of micro-particles with suitable size which fill the pores of the matrix and change the contact interaction between internal surfaces of voids. It was determined that the energy dissipation of the concrete increases with the increasing content of micro particles at least when the concrete matrix is “soft” enough to allow microscopic motions. On the other hand, the increasing percentage of micro-particles addition can affect the mechanical strength of the material. Thus, there is a reasonable compromise in incorporating these micro-particles to obtain higher damping with- out weakening the mechanical properties. Several concrete mixes were prepared by mixing cement powder with different percentages of micro-fillers. A concrete mix without addition of micro-particles was molded as a reference material for the sake of comparison. All these specimens were tested under cyclic loading in order to evaluate energy dissipation starting from the area of a dissipation loop detected in the diagram relative to a representative cycle. The experimental determination of the dissipated energy shows a significant increase in the damping capability of the cement-based materials with micro-filler compared to the standard concrete. The experimental results presented seem to indicate that the proposed model is suitable to describe the mechanical behavior of modified and unmodified concrete, provided that the introduced parameters are suitably tuned in order to best fit the available experimental data
APA, Harvard, Vancouver, ISO, and other styles
13

Wernsdorfer, Wolfgang. "Magnétométrie à micro-SQUID pour l'étude de particules ferromagnétiques isolées aux échelles." Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00010959.

Full text
Abstract:
Au cours de ce travail de thèse, nous avons effectué les premières mesures de l'aimantation d'une seule particule ferromagnétique à basse température (0.1 - 6 K) à l'aide de SQUID hystérétiques continus extrêmement performants : la sensibilité de nos mesures est de 10^4 µB. Nous avons étudié des systèmes multiples et variés, tout d'abord des particules faites par lithographie électronique de forme elliptiques et de dimensions supérieures à 50 nm, mais aussi des fils magnétiques et des agrégats.
En ce qui concerne les particules élaborées par lithographie électronique, les plus petites ont montré que la variation du champ de retournement en fonction de l'angle est en accord qualitatif avec le modèle de rotation uniforme de Stoner Wohlfarth. Cependant le déclenchement du retournement de l'aimantation s'effectue par un processus de nucléation. Les études de la dynamique de retournement de l'aimantation faites sur ces particules et les fils magnétiques ont montré que le retournement de l'aimantation est activé thermiquement et peut être approximativement décrit par le modèle de Kurkijärvi pour les températures comprises entre 1 et 6 K. En dessous de 1 K, ce modèle est mis en défaut ce qui pourrait être expliqué par un effet quantique. En ce qui concerne la probabilité de retournement de l'aimantation nous avons trouvé pour les plus petites particules que cette probabilité est proche d'une exponentielle. Cependant il existe de nouveau une déviation à plus basse température, probablement de même origine que la déviation observée sur le modèle de Kurkijärvi. Enfin, la largeur de la distribution des champs de retournement augment à basse température. Ceci est sans doute dû à l'existence de défauts (rugosité de surface, défauts cristallins, impuretés, etc.) qui créent de multiples vallées et cols sur la surface d'énergie potentielle décrivant le système, ceux-ci étant en fait révélés lorsque l'énergie thermique est du même ordre de grandeur ou inférieure à ces fluctuations de la surface d'énergie.
APA, Harvard, Vancouver, ISO, and other styles
14

Zhao, Ruiting. "Microindentation of Bi57In26Sn17 Lead-Free Alloy." UKnowledge, 2015. http://uknowledge.uky.edu/cme_etds/53.

Full text
Abstract:
There is great need to understand the mechanical properties of lead-free alloys—an alternative of lead-based alloys—to address the environmental problems associated with the use of lead-based materials in microelectronics. In this work, the microstructures of Bi57In26Sn17 lead-free alloy were examined using Optical Microscopy and Energy Dispersive X-ray Spectroscopy analysis. The micro-indentation technique was used to study the mechanical properties of Bi57In26Sn17 lead-free alloy. The experimental results of the hardness and contact modulus were presented and discussed. Local creep during the indentation was observed from the load-displacement curves. The Vickers hardness (HV) increases with the decrease of the indentation depth, suggesting that the alloy exhibits indentation size effect.
APA, Harvard, Vancouver, ISO, and other styles
15

Davoodi, Ali. "Mechanistic studies of localized corrosion of Al alloys by high resolution in-situ and ex-situ probing techniques." Doctoral thesis, Stockholm : Kemivetenskap, Kungliga Tekniska högskolan, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4588.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Guyout, Laurent. "Usinabilité d'aciers inoxydables type 316 L : application au micro-fraisage." Thesis, Besançon, 2014. http://www.theses.fr/2014BESA2002/document.

Full text
Abstract:
Le micro-fraisage (diamètre fraise < 1 mm) permet l’usinage précis de structures en 3D, à des dimensions micrométriques, dans desmatériaux d’ingénierie, se plaçant aux frontières de deux mondes : d’une part, le fraisage traditionnel appelé « fraisage macro » et d’autre part,la micro-fabrication et ses techniques dites de « salle blanche ».L'étude innovante porte sur le micro-fraisage d’aciers inoxydables 316L avec des micro-fraises cylindriques en carbure de tungstèneavec un équipement industriel (machine outil commercialisée et non optimisée) permet d’accentuer les nombreuses difficultés technologiquesliées à la mise en oeuvre du micro-fraisage et d’effectuer directement un transfert de compétences vers l’industrie. L’acier 316L(biocompatible, réputé de difficilement usinable) n’a jamais été étudié en micro-fraisage.L’étude aborde, au travers de neufs ratios caractéristiques du micro-fraisage, les problématiques de choix de moyens et de méthodespour caractériser la technique du micro-fraisage.Après analyses des paramètres de l’étude et des caractérisations des usinages, la définition géométrique optimale d’une micro-fraiseinnovante est proposée. Sa tenue en service est validée par des tests en usinage dans l’acier 316L, répondant ainsi, à une problématique decoupe négative à basse vitesse de coupe avec des effets d’échelle du matériau.Une originalité de l’étude est d’aborder l’effet de la population inclusionnaire visant à améliorer l’usinabilité. En comparant lesrésultats obtenus par micro-fraisage de 2 nuances d’acier 316L, la population inclusionnaire de l’acier 316L n’est pas identifiée comme unfacteur améliorant l’usinabilité à l’échelle de la coupe micro
The micro-milling ( tool diameter < 1 mm) target the precise machining of 3D structures to micrometric dimensions, in engineeringmaterials, to be placed at the borders of two worlds : the one hand , the traditional milling called "macro milling" and other hand, the microfabricationand its so-called "clean room" techniques.The innovative study focuses on the micro-milling of 316L steel with carbide micro end mills with industrial equipment (machine toolmarketed unoptimized) can caricature the many technological challenges related to the implementation of the micro-milling and make a directtransfer of skills to the industry. 316L steel (biocompatible, reputed difficult to machine) has never been studied in micro-milling.The study looks at ratios through new features of the micro-milling, the problems of choice of means and methods to characterizemicro-milling.After analysis study parameters and machined parts, the optimal geometric definition of an innovative micro end mill is proposed.Service behavior is validated by testing machining in 316L steel, responding to a question of negative cutting with low cutting speeds andscale effects of the material.An originality of the study is to address the effect of the inclusion population to improve machinability. Comparing the resultsobtained by micro-milling two 316L steel grade, the inclusion population of 316L steel is not identified as a factor improving themachinability cutting at micro scale
APA, Harvard, Vancouver, ISO, and other styles
17

Pereira, Thiago Soares. "Bauschinger effect in macro and micro sized high strength low alloy pipeline steels." Thesis, University of Birmingham, 2017. http://etheses.bham.ac.uk//id/eprint/7265/.

Full text
Abstract:
The Bauschinger effects in X70, X80 and X100 high strength low alloy pipeline steels were presented. The microstructure of the as-received alloys was characterized. A variety of microstructures was present across the different alloys, ranging from a refined granular ferrite with small amounts of perlite to a bainitic structure containing martensite/austenite islands, retained austenite and small cementite constituents along with a small amount carbides. Similarly, the dislocation structures varied from homogeneously distributed across the ferrite grains to clusters/walls of dislocations. Mechanical tests on macro and micro sized samples were carried out up to 1% and 2% plastic strains. A micro-device for Bauschinger test was designed and manufactured using micro-electro-mechanical-system (MEMS) technology and was incorporated onto a FIB/SEM in order to prepare the micro sized samples and perform the micro Bauschinger tests. The Bauschinger stress parameter showed that the Bauschinger effect becomes more obvious in samples with higher yield strength and also with increasing pre-strain. In addition, the Bauschinger effect remained similar on the samples of different sizes in the current study. The results indicate that the cause of the early yielding during reverse loading of these alloys is dominated by the dislocation-dislocation interaction.
APA, Harvard, Vancouver, ISO, and other styles
18

Bultongez, Kevin Kombo. "Experimental investigation on the effects of channel material, size, and oil viscosity in horizontal mini-channels." Thesis, Kansas State University, 2017. http://hdl.handle.net/2097/35568.

Full text
Abstract:
Master of Science
Department of Mechanical and Nuclear Engineering
Melanie M. Derby
Oil-water separation is an important process in the petroleum industry. This research investigates the use of surface tension forces to improve current oil-water separation technologies. An understanding of oil-water flows in surface tension driven mini-channels is necessary. This work investigates the effects of mini-channel wall material and tube diameter, along with oil viscosity, on flow regimes and pressure drops in mini-channel oil-water flows. A horizontal closed-loop, adiabatic experimental apparatus was constructed and validated using single-phase water. 2.1-mm and 3.7-mm borosilicate glass, 3.7-mm stainless steel and 4.0-mm Inconel tubes, resulting in Eötvös numbers of 0.2, 0.6 and 0.7 were tested. The experimental data were analyzed and compared using two mineral oils (i.e., Parol 70 and 100) with densities of 840 kg/m³ for both and viscosities of 11.7 and 20.8 mPa-s, respectively. Experiments included a wide range of oil superficial velocities (e.g., 0.28-6.82 m/s for glass, 0.28-2.80 m/s for stainless steel and 0.21-2.89 for Inconel) and water superficial velocities (e.g., 0.07-6.77 for glass, 0.07-4.20 m/s for stainless steel and 0.06-3.86 m/s). Flow regimes were observed and classified as stratified, annular, intermittent, and dispersed flow regimes. Effects of tube diameter were observed. For example, the 2.1-mm glass tube had the smaller range of stratified flows and the larger range of annular and intermittent flows compared to the 3.7-mm glass tube. At the same oil and water superficial velocities and relatively the same flow regime, stainless steel and Inconel always displayed higher pressure drop than the glass tube. However, pressure drops were a strong function of flow regime; lowest pressure drops were found for annular flows and highest pressure drops for dispersed flows. Flow regime maps and pressure drop graphs were created. Overall effects of oil viscosity were modest; however, an increase in oil viscosity enhanced flow stability which affected flow regime transition points.
APA, Harvard, Vancouver, ISO, and other styles
19

Yang, Bo [Verfasser]. "Grain Size Effects on the Mechanical Behaviour of Polycrystalline Nickel from Micro to Nanoscale / Bo Yang." Aachen : Shaker, 2007. http://d-nb.info/1170526934/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zerounian, Nicolas. "Etudes experimentales et modelisation de composants micro-ondes bipolaires et a effet de champ sige." Paris 11, 2000. http://www.theses.fr/2000PA112067.

Full text
Abstract:
Cette these a pour objet l'etude du comportement haute frequence de nouveaux transistors iv-iv a heterostructures si/sige, qu'ils soient bipolaires (tbh) ou a effet de champ, en fonction de la temperature entre 300k et 50k. Quatre technologies differentes de transistors compatibles avec une production industrielle, sont etudiees : - deux filieres de tbh a base sige abrupte, l'une pour des circuits rf hybrides (temic), l'autre pour des circuits mmic (daimlerchrysler), - une filiere de tbh a base sige graduelle integree aux circuits bicmos (cnet cns/ stmicroelectronics) et, - des transistors a effet de champ sige canal n (n-modfet) (daimlerchrysler). Une masse importante de donnees experimentales est obtenue par la mise en oeuvre d'outils de mesure et de traitement semi-automatique. Des simulations hydrodynamiques 2d a elements finis sont realisees et les resultats sont compares aux experiences afin d'aider a la comprehension des phenomenes physiques qui sont responsables des excellentes performances dynamiques. L'etude a temperature cryogenique des tbh a base sige abrupte a mis en exergue les phenomenes d'exodiffusion de bore a partir du contact de base extrinseque, et l'amelioration des performances dynamiques avec une frequence de transition du gain en courant de 213ghz a 80k, ce qui constitue un record mondial. L'etude en fonction de la largeur du doigt d'emetteur des tbh a base sige graduelle, conduit a des valeurs de frequence de coupure de 45-50ghz a 300k. L'analyse des n-modfet si/sige a montre les performances de ces transistors voues a jouer un role de tout premier plan dans le monde des micro-ondes a moyen terme.
APA, Harvard, Vancouver, ISO, and other styles
21

Hagelin, Susanna. "Optical Turbulence Characterization for Ground-Based Astronomy." Doctoral thesis, Uppsala universitet, Institutionen för geovetenskaper, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-132798.

Full text
Abstract:
The optical turbulence, which creates perturbations of the wavefronts coming from the stars, is caused by small-scale fluctuations in the index of refraction of the atmosphere and is a problem for astronomers because it limits the maximum resolution of the ground-based telescopes. One way of identifying the best sites to build astronomical observatories, where the influence of the optical turbulence is as small as possible, is to use the standard meteorological parameters to get a first idea of the potential of a site. In the first part of this thesis the three sites on the Internal Antarctic Plateau that are the most interesting for astronomers (Dome A, Dome C and the South Pole) are investigated using the operational analyses of the ECMWF and a ranking of these three sites is presented. The second part of this thesis focuses on the ability of the mesoscale model Meso-NH to simulate the optical turbulence as well as the wind speed at Mt Graham (AZ, USA). A rich sample of measurements of the vertical distribution of the optical turbulence, the largest sample used in this type of study so far, is used to calibrate the Meso-NH model and to quantify its ability to simulate the optical turbulence. The measurements are distributed over different periods of the year thus making it possible to evaluate the performance of the model in different seasons. Both the vertical distribution of the optical turbulence and the astroclimatic parameters (seeing, wavefront coherence time and isoplanatic angle) are investigated.
Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 708
APA, Harvard, Vancouver, ISO, and other styles
22

Purushottam, Raj Purohit Ravi Raj Purohit. "Understanding mechanical size effects in metallic microwires : synergy between experiment and simulation." Thesis, Poitiers, 2018. http://www.theses.fr/2018POIT2290/document.

Full text
Abstract:
Les microfils métalliques polycristallins produits par étirage à froid présentent une résistance mécanique significative en faisant des candidats idéaux pour les renforts de composites. Des études antérieures sur des fils de nickel polycristallin pur ont montré une dépendance importante par rapport à la taille de la limite d'élasticité et de la résistance à la traction, ainsi que de la ductilité.Le but de cette étude est de comprendre cet effet de la taille dans les microfils de nickel pur polycristallin par analyse de diffraction des rayons X in-situ (DRX) et simulations de la plasticité cristalline par éléments finis (CPFE). Des essais de traction monotone et cyclique in-situ sous rayonnement synchrotron ont été réalisés sur des microfils de diamètres allant de 100 à 40 μm. Les fils étirés à 100 micromètres obtenus dans le commerce présentent une architecture cœur-coquille avec une texture de fibre <111> dominante dans le cœur et une texture à double fibre hétérogène <111> et <100> dans la coquille. La réduction de la taille de l'échantillon par polissage électrolytique conduit à des fils ayant une microstructure homogène, tandis que la réduction de la taille de l'échantillon par un étirage à froid supplémentaire conduit à des fils avec une texture plus intense tout en conservant l'architecture cœur-coquille.La limite d'élasticité et la résistance à la traction des fils électropolis augmentent avec la diminution du diamètre, tandis que la ductilité diminue avec la réduction du diamètre. Dans le cas des fils étirés à froid, on observe que la limite d'élasticité et la résistance à la traction, ainsi que la ductilité, augmentent avec la diminution du diamètre. L'analyse DRX indique une plasticité successive des familles de grains sous iso-déformation. Nous avons observé que le gradient de la texture du microfil active des mécanismes de déformation qui ne sont pas observés pour les microfils à texture homogène. Pour comprendre l'influence de différents paramètres microstructuraux, notamment l'influence de la texture cristallographique, une microstructure représentative 3D a été générée et des simulations CPFE ont été réalisées. Le comportement simulé moyen des différentes familles de grains (<111>, <100>) concorde bien avec les résultats expérimentaux. La simulation CPFE indique une hétérogénéité du champ de contrainte à travers la microstructure en présence d'un gradient de texture cristallographique.Nous montrons que la micro-texture (texture simple ou double texture) et leur dispersion spatiale (homogène ou architecturée) peuvent être utilisées comme stratégie de conception pour obtenir une microstructure optimale en fonction de l’ensemble désiré de propriétés mécaniques
Polycrystalline metallic microwires produced by cold-drawing exhibit significant mechanical strength that make them ideal candidates for reinforcement of composites. Previous studies on polycrystalline pure nickel wires have indicated a significant size dependence of their yield and tensile strength as well as their ductility. The aim of this study is to understand these size effects by in-situ X-ray diffraction (XRD) analysis and crystal plasticity finite element (CPFE) simulations. In-situ monotonous and cyclic tensile tests under synchrotron radiation were carried on microwires with diameters ranging from 100 to 40 µm. The commercially obtained 100µm as-drawn wires exhibit a core-shell architecture with <111> fiber texture dominant in core and heterogeneous dual fiber texture <111> and <100> in the shell. Reduction of specimen size by electropolishing leads to wires having a homogeneous microstructure, whereas reduction of specimen size by further cold drawing leads to wires with a sharper texture while retaining the core-shell architecture.The yield and tensile strength of the electropolished wires increase with decreasing diameter, whereas the ductility decrease with decreasing diameter. In the case of cold-drawn wires, the yield and tensile strength, and also the ductility was observed to increase with decreasing diameter. The XRD analysis indicates successive yielding of grain families under iso-strain condition. The gradient in the texture of the microwire was seen to activate deformation mechanisms which are not seen for microwires with homogeneous texture. To understand the influence of different microstructural parameters, and notably the influence of crystallographic texture, 3D representative microstructure was generated and CPFE simulations were carried out. The simulated average behavior of different grain families (<111>, <100>) agrees well with the experimental results. The CPFE simulations indicate heterogeneity in stress field across the microstructure in the presence of a gradient in crystallographic texture.We show that the microstructure engineering of micro-texture components (single- or dual-texture) and their spatial spread (homogenous or architectured) can be used as design guidelines for obtaining optimal microstructure in accordance with desired set of mechanical properties
APA, Harvard, Vancouver, ISO, and other styles
23

Butlanska, Joanna. "Cone penetration test in a virtual calibration chamber." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/279364.

Full text
Abstract:
Cone penetration test (CPT) is a fast and reliable site investigation tool for exploring soils and soft ground. While the interpretation of the test results in clay has advanced considerably from a theoretical and numerical viewpoint that of tests in sands still relies largely on empirical correlations. A major source of such correlations comes from tests done in calibration chambers (CC), where soil state and properties might be tightly controlled. Calibration chambers are relatively large pieces of equipment, and calibration chamber testing is expensive and time consuming. Moreover, CC tests are performed on freshly reconstituted sands whose fabric may vary from that of natural sand deposits. Hence, correlations developed for one type of sand might not be suitable for another sand deposit. Numerical DEM-based calibration chambers might offer an interesting alternative to the more cumbersome physical tests. This study is the first attempt to perform a three-dimensional DEM-based simulation of cone penetration test. The three-dimensional commercial DEM code (PFC3D) is used to develop Virtual Calibration Chamber CPT (VCC CPT) model. To achieve that objective, several steps were necessary. First, calibration of an analogue discrete material to represent Ticino sand was performed using single-element tests. Afterwards, the mechanical response of the discrete material was further validated by performing additional triaxial tests with different initial conditions. The VCC CPT model was then constructed. Comprehensive dimensional analysis showed that the best option to balance computational efficiency and realism was to fill the chamber with a scaled-up calibrated discrete material. An original filtering technique was proposed to extract steady state cone resistances. A basic series of simulations was performed to explore the effect of initial stress and relative density in cone resistance. The results obtained from the simulations did fit closely the trends that had been previously established using physical chambers. That result was taken as a general validation of the proposed simulation approach. From the micromechanical point of view, the granular material is highly discontinuous and inhomogeneous. Obtaining a homogeneous initial state (especially in the zone of the penetrating cone) is crucial to obtain easily interpretable results. Specific procedures to assess initial state inhomogeneities were developed. DEM-based models can provide results at various level of resolution i.e. the microscale, the meso-scale and the macro-scale. A large series of VCC CPT has been performed. Simulations were performed for models with different horizontal servo-control walls, various sizes of chamber, cone and particles and two boundary conditions. The results were analyzed, focusing on aspects such as chamber size, particle size and boundary condition effects on steady state cone resistance values. A smaller number of tests have also been examined from the point of view of shaft resistance. Most trends and results obtained are shown to be in agreement with previous physical tests. When disagreements appear, the causes are identified: the most severe disagreements result from initial inhomogeneities in the discrete model. The work described in this thesis showed ease the burden of future CPT calibrations in granular materials.
Los ensayos de penetración estática de cono (CPT) son una de las herramientas más importantes en el reconocimiento geotécnico. La interpretación de los resultados de ensayo en arcilla ha avanzado considerablemente desde un punto de vista teórico y numérico. Sin embargo la interpretación de los resultados en los materiales granulares por ejemplo arena) todavía está basada en correlaciones empíricas provenientes de las pruebas realizadas en cámaras de calibración (CC), donde el estado del suelo y sus propiedades pueden ser controlados. Las cámaras de calibración son equipos relativamente grandes, y los ensayos en ellas son bastante costosos en tiempo y recursos. Por otra parte, las pruebas se realizan en muestras de arenas reconstituidas cuyas propiedades varían respecto de los depósitos naturales de donde provienen. Por lo tanto, las correlaciones desarrolladas en un tipo de arena podrían no ser adecuadas para otro depósito distinto. Cámaras de calibración numéricas (virtuales) basadas en el método de elementos discretos (DEM) podrían ofrecer una alternativa interesante a los ensayos físicos. Este estudio es el primer intento de realizar una simulación basadas en el método de los elementos discretos tridimensionales de ensayos de penetración de cono. El código comercial tridimensional (PFC3D) ha sido usado para desarrollar el modelo de CPT de Cámara de Calibración Virtual (CPT VCC). Para alcanzar este objetivo fueron necesarios varios pasos. En primer lugar, se llevó acabo la calibración de un material discreto análogo a arena de Ticino mediante ensayos elementales. A continuación se construyó el modelo CPT VCC. Un análisis dimensional exhaustivo mostró que la mejor opción para crear un modelo eficiente y real era llenar la cámara con un material con el tamaño de grano 50 veces mayor que el de la arena de Ticino. Se propuso una técnica original de filtrado para extraer la resistencia de punta estacionaria. Se realizó una serie básica de simulaciones para explorar el efecto de la tensión inicial y la densidad relativa sobre la resistencia de cono. Los resultados obtenidos de las simulaciones se ajustan estrechamente a las tendencias establecidas previamente en cámaras físicas. Este resultado fue tomado como una validación general del programa de simulación propuesto. Desde el punto de vista de la micro-mecánica, el material granular es muy discontinuo y no homogéneo. La obtención de un estado inicial homogéneo (especialmente en la zona de penetración del cono) es crucial para obtener resultados fácilmente interpretables. Por lo tanto se han desarrollado procedimientos específicos para evaluar heterogeneidades del estado inicial. Los resultados manifestaron el papel clave del contorno de modelo (paredes rígidas), tanto pasivo como activo (servo-controlados), durante la formación del modelo. Los modelos basados en el DEM puede proporcionar resultados a varios niveles de la resolución, es decir del micro-, meso- y macro escala. Se ha realizado una gran serie de VCC CPT. Las simulaciones se realizaron para modelos con diferentes posiciones en las paredes horizontales de servo-control, varios tamaños de cámara, varios tamaños del cono y de las partículas y dos condiciones de contorno. Los resultados se analizaron centrándose en varios aspectos como el tamaño de la cámara, el tamaño de las partículas y los efectos de condiciones de contorno sobre el valor de la resistencia de punta. Un número limitado de los CPT fue examinado desde el punto de vista de la resistencia del fuste del cono. Se observó que la mayoría de las tendencias y los resultados obtenidos estaban de acuerdo con resultados previos obtenidos en ensayos físicos. El trabajo presentado en esta tesis debería facilitar futuras calibraciones CPT en materiales granulados.
APA, Harvard, Vancouver, ISO, and other styles
24

Llanos, Villarreal Jenny A. "Comportement vis-à-vis des métaux lourds de micro-organismes thermophiles isoles d'un site hydrothermal profond." Brest, 2000. http://www.theses.fr/2000BRES2021.

Full text
Abstract:
La sensibilité aux métaux de 30 souches thermophiles isolées du site hydrothermal du bassin de Lau a été mesurée. Les 14 bactéries aérobies hétérotrophes sporulantes appartenant a genre bacillus, les 6 bactéries anaérobies fermentatives appartenant a l'ordre des thermotogales et les 10 archæbactéries anaérobies fermentatives réductrices de soufre appartenant a l'ordre des thermococcales ont pu être différenciées par leur sensibilité aux métaux. Les thermococcales étaient les plus résistantes au cadmium et au zinc alors que les thermotogales s'avéraient les plus sensibles. En revanche, les thermotogales s'avéraient les résistances au cobalt. Aucune différence significative n'a été mise en évidence entre les niveaux de résistance de ces organismes et sept organismes de référence ; ceci suggère que les concentrations en métaux mesurées dans les fluides hydrothermales ne sont pas présents sous des formes toxiques dans le site étudie. La résistance au cd s'est avérée inductible chez les souches de bacillus les plus résistantes à ce métal. Cette réponse n'est pas liée à la présence d'ADN extrachromosomique. L'analyse des profils électrophorétiques de b. Thermoleovorans souche sg1 montre que deux protéines sont surexprimées en présence de cd et de cu et qu'une troisième protéine est surexprimée en présence de cu. Ces 3 protéines ont été identifiées par séquençage partiel comme une superoxyde dismutase a manganèse (mn-sod), la sous-unité de l'atp synthase (-atpase) et une cystéine synthase (cysk). Les gènes soda, atpd et cysk codant respectivement pour la mn-sod, la -atpase et la cysk ont été amplifies par pcr, clones et séquences. Le rôle du superoxyde dismutases dans la réponse aux métaux a été étudié chez des souches mutantes d'escherichia coli et de bacillus subtilis. Chez E. Coli, l'absence de superoxyde dismutase est associée a une sensibilité accrue au cd, au co et au ni. Les mutants soda ou sodb ont démontré des niveaux de résistance aux métaux comparables a ceux de leur souche parentale. Chez b. Subtilis, la résistance au cd et au cu n'est pas affectée par la mutation du gène soda. Les résultats obtenus suggèrent que la production intracellulaire de superoxyde est induite par le cd, le ni et le co et qu'elle participe a la toxicité de ces métaux chez E. Coli. Le rôle possible des gènes atpd et cysk dans la résistance aux métaux est aussi évoquée.
APA, Harvard, Vancouver, ISO, and other styles
25

Lee, Jae Woo. "Caractérisation électrique et modélisation des transistors à effet de champ de faible dimensionnalité." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00666486.

Full text
Abstract:

  • Introduction

  • La réduction des dimensions des composants microélectroniques a été le principal moteur pour l'amélioration des performances, en particulier l'augmentation de la vitesse de commutation et la réduction de la consommation. Actuellement les technologies dites 32 nm sont utilisées dans la production de masse. D'après la loi de Moore, des longueurs de grille de quelques nanomètres, qui représentent une limitation physique pour les transistors MOS, devraient être utilisées dans quelques années. Cependant la simple réduction des dimensions est actuellement en train d'atteindre ses limites car elle soulève divers problèmes.
    - La fabrication devient plus difficile. Par exemple, les circuits deviennent plus denses et plus complexes. Des difficultés apparaissent pour la lithographie, les interconnexions et les procédés de fabrication.
    - Dans les transistors à canal long, les équipotentielles sont parallèles à la grille de sorte que le canal est confiné de façon efficace à l'interface. Quand la longueur de grille décroît, la distribution du potentiel est modifiée. Les équipotentielles se déforment en direction du substrat de sorte que le canal n'est plus contrôlé uniquement par la grille. Ce phénomène est à l'origine des effets de canal courts qui se traduisent par le décalage de la tension de seuil, une réduction de la barrière de potentiel source-canal sous l'effet de la tension de drain (DIBL), un percement éventuel, des effets de transport non stationnaire ou de saturation de la vitesse, des effets de porteurs chuads, etc. De ce fait, un changement de perspective est nécessaire pour poursuivre l'augmentation de la densité d'intégration et l'amélioration des performances anticipées par la loi de Moore. De nouveaux concepts sont nécessaires. Ils peuvent être classés de la façon suivante: empilement de grille, substrats silicium sur isolant (SOI), et ingénierie du canal. Sous cette dernière dénomination, nous incluons l'architecture du canal, le choix du matériau et l'ingénierie de la contrainte mécanique.
    - L'épaisseur de l'oxyde de grille doit décroître pour maintenir un champ électrique suffisant à l'interface. En 2009, la feuille de route ITRS prévoyait à terme une épaisseur effective d'oxyde inférieure à 1 nm. A cette épaisseur, l'oxyde de silicium SiO2 n'assure plus une isolation suffisante et une fuite de grille apparaît par couplage quantique entre la grille et le canal. SiO2 doit donc être remplacé par un diélectrique à plus haute permittivité (diélectrique dit high-k). Par exemple, avec une épaisseur physique de 5nm, un diélectrique dont la permittivité relative vaut 20 peut remplacer 1 nm de SiO2. L'augmentation de l'épaisseur de diélectrique permet alors d'éviter les fuites par effet tunnel à travers la grille. Cependant, ces diélectriques peuvent sont fréquemment sujets à un piégeage du niveau de Fermi à l'interface avec le métal de grille. Intrinsèquement, ils génèrent également des phonons optiques de faible énergie qui peuvent interagir avec les électrons du canal. Avec une grille métallique la forte concentration d'électrons peut cependant écranter ces vibrations dipolaires. Enfin, les tensions de seuil du PMOS et du NMOS dépendent directement des travaux de sortie des matériaux utilisés pour la grille et le choix de l'empilement high-k/métal doit donc être fait en intégrant cette contrainte.
    - Les substrats SOI sont constitués d'un film de silicium (body), séparé du substrat proprement dit par une couche enterrée de silice (BOX). Les composants sont isolés verticalement ce qui assure un premier niveau de protection contre certains effets parasites qui peuvent apparaître dans les substrats massifs, tels que courant de fuite par le substrat, photo-courant ou déclenchement parasite (latch-up) sous irradiation. L'utilisation d'un substrat SOI permet également de réduire la profondeur des jonctions, le courant de fuite et la capacité de jonction. Selon leur épaisseur, les substrats SOI sont de deux types: partiellement désertés (PD-SOI) ou totalement désertés (FD-SOI).
    Les substrats PD-SOI utilisent un film silicium relativement épais (tSi > 45 nm). La charge de déplétion sous le canal ne s'étend pas jusqu'au BOX de sorte qu'une partie du film reste neutre et peut collecter les porteurs majoritaires. Si un contact supplémentaire n'est pas introduit pour les évacuer, ce type de substrat est sujet aux effets de body flottant. En effet, lorsqu'un mécanisme tel que l'ionisation par impact génère des porteurs majoritaires, ces derniers sont susceptibles de s'accumuler dans la zone neutre du body et d'induire une polarisation parasite de la jonction source qui provoque l'injection d'un courant en excès, une variation transitoire de la tension de seuil et du potentiel de body. Les substrats FD-SOI on tune épaisseur de silicium plus faible, typiquement inférieure à 20 nm. De ce fait, le film est entièrement déserté et la charge de déplétion est constante. L'excellent couplage entre la grille et le canal améliore els performances en termes de courant de drain, de pente sous le seuil et de temps de réponse à une variation de commande de grille. L'utilisation du substrat comme grille arrière est également plus efficace que pour les substrats PD-SOI. Cette propriété peut par exemple être utilisée pour contrôler électriquement la tension de seuil. Les effets de body flottant sont fortement réduits. La faible épaisseur du body et son isolation thermique par le BOX peuvent toutefois conduire à un auto-échauffement du composant et à un couplage éventuel entre les défauts des deux interfaces. Malgré ces quelques inconvénients, la technologie SOI apporte toutefois un net bénéfice en termes de performances.
    - L'immunité aux effets de canal court peut être encore améliorée par rapport à celle des composants planaires grâce à l'utilisation de structures à grilles multiples qui renforcent le contrôle électrostatique du canal. Intel a annoncé récemment que sa prochaine génération de microprocesseurs, dénommée Ivy Bridge, utilisera une technologie 22 nm en remplacement de la technologie 32 nm de Sandy Bridge. Ivy Bridge utilisera des transistors de type Tri-gate FinFET pour éviter les effets de canal court. Cette architecture rend possible la réduction des dimensions du transistor, et en conséquence une réduction de la consommation et une augmentation de la fréquence d'horloge. Intel prévoit que cette technologie FinFET 22 nm sera 37% plus rapide et économisera 50% de la puissance active par rapport à la technologie 32 nm actuelle. Au-delà, les architectures à grille complètement enrobante (GAA, pour Gate-All-Around) constituent l'architecture optimale en termes de contrôle électrostatique du canal. Ce sont des architectures 3D dans lesquelles la grille entoure complètement le canal. Pour les sections les plus faibles, le canal tend vers une structure de nanofil pseudo-1D. On parle alors de NW-FET (Nanowire FET).

  • Le transistor FinFET - Influence de la rugosité de surface

  • Pour résumer ce qui vient d'être dit, la première amélioration qui peut être apportée pour repousser l'apparition des effets de canal court, et permettre ainsi une réduction des dimensions, consiste à réduire l'épaisseur du body en utilisant un substrat FD-SOI. Le contrôle électrostatique est encore amélioré grâce à l'utilisation de grilles multiples, ce qui permet de relâcher un peu les contraintes sur les épaisseurs de diélectrique de grille et du body, réduisant de ce fait le risque de dispersion technologique. Les premières mises en œuvre industrielles utilisent l'architecture FinFET. Outre son excellente résistance aux effets de canal court, celle-ci présente l'atout de ne pas nécessiter de prise de contact enterrée. Dans le FinFET, la largeur de l'aileron joue le même rôle que l'épaisseur du body et son ajustement permet d'obtenir une pente sous le seuil élevée, un coefficient de body faible et une vitesse de commutation élevée, ce qui le rend très attractif. Certaines étapes de fabrication restent toutefois délicates. C'est le cas de la structuration des ailerons. Par exemple, le parfait contrôle de la largeur des ailerons et de la forme des flancs qui doivent être parfaitement verticaux impose de faire appel à une gravure ionique réactive (RIE). Ce n'est pas gênant pour la face supérieure de l'aileron, qui est protégée par un masque dur, mais cela peut dégrader les faces verticales et les rendre rugueuses. Or l'interaction avec la rugosité de surface est le mécanisme principal qui limite la mobilité des porteurs en forte inversion. Il y a donc un risque de dégrader les propriétés de transport et, dans le pire des cas, de réduire le courant Ion en régime passant. C'est ce que nous avons voulu étudier. Comme la rugosité a un impact direct sur le transport, elle peut en principe être extraite d'une analyse détaillée de la mobilité. Ceci permet d'obtenir une information directe sur l'état des interfaces dans le transistor réel, information précieuse pour guider l'optimisation technologique. Nous présentons ici une méthode expérimentale qui fournit une évaluation quantitative de la contribution de la rugosité. Elle est basée sur une analyse détaillée de l'influence de la largeur de l'aileron sur les caractéristiques électriques en fonction de la polarisation de grille et de la température. Les FinFETs utilisés pour cette étude ont été fabriqués par l'IMEC (Leuven) sur substrat SOI, avec une épaisseur de BOX de 145 nm. Ils n'utilisent pas de technique de contrainte mécanique intentionnelle. Le canal est non dopé, avec une concentration résiduelle de bore de 10^15 cm^-3, de façon à éviter les interactions avec les impuretés ionisées et à atteindre une mobilité plus élevée. Le diélectrique de grille, HfSiON, est déposé par MOCVD, pour une épaisseur équivalente d'oxyde de 1.7 nm. Une couche de TiN, déposée par PVD est utilisée comme métal de grille. Elle est recouverte de 100 nm de silicium polycristallin. Les plots de source et de drain sont fortement dopés, à 2x10^20 cm^-3, et sont séparés de la grille de 0.2 µm. La zone d'accès sous les espaceurs verticaux est longue de 50 nm, avec un dopage de 5x10^19 cm-3. La hauteur de l'aileron est constante sur la plaque, avec une valeur de 65 nm, et le masque intègre des transistors de largeur d'aileron variable de 10 nm à 10 µm. Notez que la pente des courbes ID-VG, la transconductance, est nettement plus faible à 77 K qu'à température ambiante. Dans les transistors NMOS, le courant de drain décroît même à forte tension de grille (au dessus de 1.3 V). Il est possible de décorréler les composantes associées à la surface supérieure et aux flancs de l'aileron en analysant la variation du courant avec la largeur Wfin de l'aileron. On obtient une variation linéaire dont l'extrapolation à largeur nulle fournit la composante IDside du courant associée aux parois latérales, avec une largeur de grille équivalente égale à 2xHfin. Ce courant ne représente bien entendu pas le courant qui circulerait dans un aileron de largeur nulle, mais la composante du courant qui circule le long des flancs dans les ailerons de largeur suffisante pour que les effets de couplages entre faces soient négligeables. Le courant qui circule le long de la face supérieure de l'aileron est obtenu par différence de IDside avec le courant total. Pour analyser ces courbes il faut se rappeler des caractéristiques des principaux processus d'interaction qui sont susceptibles de limiter la mobilité: les interactions Coulombiennes sont d'autant plus efficaces qu'on est en plus faible inversion, elles sont écrantées en forte inversion et varient peu avec la température ; l'interaction avec les phonons décroît fortement quand la température décroît, du fait du gel des phonons ; enfin, l'interaction avec la rugosité de surface prend progressivement le pas sur les autres mécanismes d'interaction en forte inversion, du fait de sa variation en carré du champ effectif Eeff, elle dépend peu de la température. On retrouve ces différents comportements sur les courbes mesurées. On observe en premier lieu que les courbes µeff(Ninv) présentent en faible inversion une pente positive caractéristique d'une interaction Coulombienne. Cette contribution Coulombienne est encore plus visible à basse température dans la mesure où elle devient le mécanisme d'interaction dominant du fait du gel des phonons. En forte inversion, l'interaction avec la rugosité de surface prend progressivement le pas sur les autres mécanismes d'interaction, du fait de sa variation en carré du champ effectif Eeff. Or en forte inversion (Ninv>5x10^12 cm^-2), on observe que la mobilité associée aux flancs décroît plus fortement que celle de la face supérieure, ce qui indiquerait donc que les flancs sont plus rugueux que la face supérieure. En ce qui concerne les flancs, l'analyse qualitative de ces courbes indique donc que la mobilité μeffside est dominée par la rugosité en forte inversion, tandis qu'en faible inversion on est en présence d'interactions avec les phonons et les impuretés Coulombiennes. En ce qui concerne la face supérieure, on observe un comportement général similaire mais μefftop reste sensible à la température même en forte inversion ce qui montre que l'interaction avec les phonons n'est pas complètement masquée par l'interaction avec la rugosité de surface ce qui correspondrait bien à une rugosité moindre pour la face supérieure. Cette différence de rugosité se traduit par une mobilité maximum plus faible sur les flancs (μeffside=600 cm2/Vs and μefftop=650 cm2/Vs at 77K). Dans PMOS, μeffside ne présente pas une aussi forte dégradation en forte inversion que pour les NMOS et elle reste sensible à la température, ce qui indique que la mobilité le long des flancs n'est pas autant dégradée par la rugosité dans le PMOS que dans le NMOS. Ceci ne signifie pas que les caractéristiques physiques de la rugosité sont différentes dans les deux types de composants. C'est son influence sur la mobilité qui est différente. Ce résultat est à rapprocher de résultats antérieurs obtenus dans des transistors sur substrat massif pour expliquer pourquoi les mobilités de trous et d'électrons présentent une dépendance différente avec le champ effectif dans le régime de forte inversion dominé par l'interaction avec la rugosité de surface. Il a été montré par simulation que cette différence de comportement pouvait s'expliquer en tenant compte du fait que, du fait de la différence des structures de bandes, le vecteur d'onde des trous à l'énergie de Fermi, kF, est plus grand pour les trous que pour les électrons, de sorte que les deux types de porteurs ne sont pas sensibles aux mêmes longueurs d'ondes dans la statistique de distribution spatiale de la rugosité. Afin de quantifier la contribution de l'interaction avec la rugosité de surface au courant pour les deux types d'interface, nous avons extrait directement le paramètre de dégradation de la mobilité par le champ effectif, θ2. Ce paramètre traduit le terme de dégradation de second degré, associé à la présence d'une rugosité de surface. Pour obtenir une information quantitative, il faut cependant le normaliser par rapport μ0. Il ne peut pas être utilisé directement car il dépend de la température alors que l'interaction avec la rugosité n'en dépend pas. Cette dépendance est en réalité un reflet de la dépendance en température de μ0. Le paramètre adéquat pour caractériser l'influence de la rugosité est donc θ2/μ0. Ce paramètre peut être également extrait directement de la dérivée par rapport à VG de l'inverse de la mobilité effective. Pour les NMOS, l'interaction avec la rugosité d'interface est environ trois fois plus élevée pour les flancs que pour la face supérieure. Cela correspond à une augmentation d'un facteur 1.7 du coefficient Δ*λ, où Δ est l'écart-type de la rugosité et λ la longueur d'auto-corrélation. Pour les PMOS, on n'observe pas de différence significative entre les valeurs de θ2/μ0 obtenues pour les flancs et pour la face supérieure. Ceci indiquerait que, comme pour les transistors sur substrat massif, les trous sont moins affectés par la rugosité d'interface ou, du moins, sont affectés par une rugosité à plus grande longueur d'onde pour laquelle le procédé RIE joue un rôle négligeable. Il n'en reste pas moins que la rugosité des flancs dégrade la mobilité des NMOS de façon significative, ce qui confère toute leur importance aux études menées actuellement pour améliorer la gravure et mettre au point des procédés de post-traitement.

  • MOSFET SiGe à nanofils: Interactions avec les phonons et les défauts Coulombiens

  • Avec la technologie CMOS conventionnelle, les MOSFET de type P présentent une mobilité plus faible que les MOSFET de type N, du fait des différences dans les structures des bandes de valence et de conduction et, en particulier, des différences de masse effective, plus grande pour les trous que pour les électrons. L'ingénierie de la contrainte et l'utilisation de germanium ou d'alliages SiGe dans les PMOS permet de compenser ce handicap. L'application d'une contrainte mécanique se traduit par une modification de la masse effective et par une levée de dégénérescence des bandes de trous lourds et de trous légers. En particulier, l'application d'une contrainte compressive uniaxiale se traduit par une diminution de la masse effective des trous et par une réduction des interactions inter-vallées qui améliorent toutes deux la mobilité. Avec l'amélioration des technologies de fabrication des substrats SOI, il est désormais possible de réaliser des substrats de silicium contraint sur isolant (s-SOI, pour strained SOI). Ceux-ci sont obtenus en transférant sur isolant une couche de silicium contraint épitaxié sur un substrat SiGe relaxé. Le silicium ainsi transféré est en contrainte biaxiale en tension. L'amélioration de la mobilité des trous est moins importante que pour la contrainte uniaxiale et le décalage de tension de seuil est plus grand. Les PMOS SiGe à nanofils que nous avons caractérisés ont été fabriqués au CEA/LETI sur des substrats de type SOI d'orientation (100). Deux types de substrats ont été utilisés: un substrat standard et un substrat en tension biaxiale (1.3 GPa) qui ont été utilisés pour réaliser des nanofils SiGe respectivement en compression (sur substrat SOI) et non contraints (sur substrat s-SOI). Ils intègrent dans les deux cas une grille high-k/metal. Les détails du processus de fabrication sont décrits dans la référence. Les caractéristiques sont mesurées dans le régime linéaire de fonctionnement, avec une polarisation de drain VD faible, fixée à 10 mV, et pour une tension de grille variant de 0.3 V à 2 V. Ces mesures sont faites à température ambiante. On constate que les différentes structures présentent un bon contrôle de grille à l'exception notable des composants non contraints et courts pour lesquels la pente sous le seuil atteint 580 mV/dec. Les dispositifs longs présentent des pentes sous le seuil (SS) de 67 mV/dec et 65 mV/dec, donc proches de leur valeur idéale à cette température (60 mV/dec), pour les canaux non contraints et contraints. En revanche, la pente sous le seuil ne reste maîtrisée en canal court que dans le cas où SiGe est contraint en compression (100 mV/dec). Nous avons analysé également la dépendance en température de la tension de seuil Vth. La dérivée dVth/dT peut en effet être utilisée pour extraire le dopage moyen dans le canal. Nous en déduisons que le dopage moyen dans le canal des transistors à canal SiGe non contraint est environ 25 fois plus élevé que dans les transistors contraints en compression, bien que le procédé de fabrication soit identique. Les courbes µeff(Ninv) ainsi extraites ont été tracées, pour les transistors non contraints et contraints en compression, pour des canaux courts et longs, et pour des températures allant de 77 K à 300 K. Avec SiGe contraint, les transistors courts et longs se comportent de façon similaire, avec une augmentation de la mobilité à basse température. Ce comportement est typique d'un transport dominé par les phonons (gel des phonons à basse température). On retrouve ce comportement pour SiGe non contraint, mais seulement pour les canaux longs. Pour les canaux longs, on trouve que la mobilité est améliorée d'un facteur 3,5 environ pour les transistors à canal SiGe contraint en compression. Cette amélioration attendue théoriquement montre que la contrainte en compression est bien présente, même pour les canaux de 600 nm, malgré le début de relaxation que peut produire le flambage des fils pour cette longueur. Par opposition, les canaux courts non contraints montrent un comportement opposé avec les autres cas, avec une diminution de mobilité à basse température, particulièrement en faible inversion. Ce type de comportement est normalement observé lorsque les interactions Coulombiennes prennent le pas sur les interactions avec les phonons. La mobilité est alors dégradée. De façon cohérente, on observe de fait que la mobilité apparente des transistors à canal court est environ 6.5 fois plus faible pour les canaux non contraints que pour les canaux contraints, au lieu du facteur 3.5 observé pour les canaux plus longs. Dans une deuxième étape, de façon à décorréler les différents types d'interaction présentes de façon plus quantitative, nous avons extrait des courbes µeff(Ninv) la mobilité en champ faible µ0 qui permet d'obtenir un bon accord entre la courbe expérimentale et le modèle classique. Dans ce modèle, θ1 est le facteur d'atténuation de premier ordre de la mobilité. Il intègre tous les effets participant à la dégradation de mobilité sous l'effet d'un champ transverse et, par conséquent, l'influence de la rugosité de surface. Au premier ordre, la mobilité à faible champ µ0 résulte donc des rôles combinés des interactions avec les phonons et avec les défauts, neutres ou chargés. La mobilité faible champ augmente à basse température dans tous les cas, sauf pour les transistors à canal SiGe non contraint les plus courts. Les dépendances en température pour les interactions avec les phonons, les défauts neutres et les défauts chargés étant connues, il est possible de reconstituer ces courbes µ0(T) expérimentales par une combinaison linéaire de ces trois types d'interactions. C'est ce qui a été fait dans une troisième étape. Les trois types d'interactions sont nécessaires pour obtenir un bon accord. Il n'est pas possible de négliger les interactions avec les défauts neutres. Les interactions avec les défauts neutres et avec les défauts chargés (centres Coulombiens) ont été regroupées entre elles sous le terme interaction avec les défauts. On constate bien que l'interaction avec les phonons est prépondérante pour tous les transistors contraints en compression ainsi que pour les transistors non contraints les plus longs (600 nm). L'interaction avec les défauts est prépondérante sur toute la gamme de température pour les transistors non contraints les plus courts (40 nm). Les canaux de 100 nm représentent un cas intermédiaire où les interactions avec les défauts sont prépondérantes à basse température tandis que l'interaction avec les phonons reprend le dessus à température ambiante. Pour les transistors à canal SiGe contraint, le raccourcissement du canal ne modifie pas significativement le poids relatif des interactions avec les défauts. Pour les transistors à canal non contraint, la contribution relative des défauts est beaucoup plus importante. Elle peut atteindre 98% du total pour les canaux les plus courts. Nous proposons d'interpréter l'ensemble de ces résultats de façon cohérente en considérant d'une part que le dopant utilisé pour implanter les source et drain du transistor diffuse vers le canal par un processus de diffusion assistée par les défauts ponctuels d'implantation (lacunes, interstitiels et amas neutres ou chargés) et, d'autre part, que cette diffusion assistée est moins rapide lorsque SiGe est contraint en compression. La première hypothèse est cohérente avec de nombreuses études sur la diffusion accélérée du bore des source et drain pendant les recuits d'activation, aussi bien dans les transistors bipolaires que dans les transistors MOS. La seconde est cohérente avec des conclusions proposées dans la littérature dans le cas de films SiGe. C'est cependant la première fois qu'un tel effet serait mis en évidence dans des nanofils. Avec ces hypothèses, une zone perturbée comportant des défauts neutres et chargés serait présente près des source et drain du transistor. Cette zone d'étendrait sur une distance plus importante dans les canaux SiGe non contraints. Elle expliquerait que ces dispositifs soient moins résistants aux effets de canal court puisque leur longueur effective de canal serait plus courte. Elle expliquerait également que le dopage moyen dans le canal paraisse plus élevé dans les transistors non contraints. Elle expliquerait enfin l'importance des interactions avec les défauts dans les dispositifs SiGe non contraints les plus courts. Notons que du point de vue des applications, ces résultats sont également importants en ce qu'ils montrent que l'utilisation de SiGe contraint en compression a en réalité un intérêt double: il permet d'augmenter la mobilité et permet en outre d'atteindre des longueurs de canal plus faibles en limitant la diffusion latérale des zones dopées de source et drain.

  • Le transistor sans jonction (JLT) - Conduction en volume et réduction des effets de canal court

  • Le transistor sans jonction est un transistor dans lequel le dopage est de même type de la source au drain. Dans les versions les plus simples d'un point de vue technologique, les implantations de source et drain sont même supprimées et le dopage est entièrement uniforme. C'est donc un dispositif dans lequel la conduction est bloquée par désertion de ce canal dopé et dans lequel il est possible de créer un canal d'accumulation à forte tension de grille. Ce dispositif n'est devenu intéressant qu'avec la capacité à maîtriser des films semi-conducteurs très minces sur isolant. Ce n'est qu'à cette condition qu'il est possible d'obtenir un dispositif normalement bloqué (composant bloqué à tension de grille nulle, propriété nécessaire au fonctionnement normal d'une porte CMOS) avec des matériaux de grille présentant des valeurs usuelles de travail de sortie. Le fonctionnement du JLT est déterminé par deux tensions de référence: la tension de grille Vfb permettant d'obtenir des bandes plates à l'interface semi-conducteur / oxyde de grille et la tension de seuil Vth permettant de déserter le film dopé. En dessous de Vth le canal est complètement déserté ; entre Vth et Vfb il est partiellement déserté, avec une conduction en volume ; au dessus de Vfb un canal d'accumulation se forme en outre à l'interface avec l'oxyde de grille. De par son principe de fonctionnement, le JLT est en principe moins sensible aux défauts d'interface. Dans un MOS à inversion classique, ces défauts sont en partie écrantés en forte inversion. Ils se font sentir principalement en faible inversion, lorsqu'on passe du régime de déplétion au régime d'inversion: le niveau de Fermi au voisinage de l'interface balaye alors la totalité de la bande interdite, ce qui n'est pas le cas dans le JLT. Il est également possible d'obtenir une même charge surfacique avec des champs transverses plus faibles que dans les MOS à inversion, un canal moins confiné en surface et par conséquent une moindre dégradation des propriétés de transport par la rugosité de surface. En contrepartie, l'interaction avec les dopants est toutefois plus importante. Le JLT présente par rapport au MOS à inversion un certain nombre d'avantages, qui motivent les recherches actuelles sur ce composant: (i) il est plus facile à fabriquer puisqu'il n'est plus nécessaire d'assurer l'auto-alignement des source et drain par rapport à la grille (le dopage est uniforme), (ii) les effets de canal court sont en principe réduits ce qui permet de contrôler le DIBL et la pente sous le seuil jusqu'à des longueurs de grille très agressives, (iii) la dégradation de mobilité avec le champ transverse est en principe réduite, (iv) la résistance aux effets de canal court permet de relaxer les contraintes sur l'épaisseur du diélectrique de grille. Cependant ce dispositif demande à être étudié plus en détail. Au cours de cette thèse nous avons pu vérifier sur des composants de Tyndall le rôle important des impuretés ionisées sur la mobilité de canal qui est de ce fait très faible par rapport à ce qui peut être obtenu dans un MOS à inversion.

  • Les nanofils silicium en tant que capteurs - Bruit basse fréquence et limite de détection

  • Dans le dernier chapitre de cette thèse, nous nous intéressons enfin à l'utilisation des nanofils de silicium pour la réalisation de capteurs. La structuration du matériau sous forme de nanofils permet en effet d'augmenter le rapport surface/volume. Une modification minime de la charge sur la surface externe peut modifier le niveau de Fermi dans la section entière du nanofil, ce qui ouvre la voie à une détection électrique de cette modification de charge. Cette dernière peut résulter par exemple d'une transition entre deux états rédox d'une molécule ou d'une hybridation d'ADN. La possibilité de faire croître ces nanofils par des techniques de type "bottom-up" permet d'envisager des techniques de fabrication faible coût où le capteur est réalisé au niveau du "back-end of line" ou en "above-IC", au dessus du circuit d'adressage et de contrôle qui pourrait être intégré à l'étage CMOS. Avant d'envisager une fabrication, nous avons abordé ce sujet de façon théorique pour disposer dans un premier temps d'ordres de grandeur concernant les sensibilités qui peuvent être espérées en fonction des dimensions et du niveau de dopage des nanofils. Nous avons établi un modèle analytique simplifié, validé par des simulations par éléments finis réalisées sous FlexPDE. Pour cette approche simplifiée, nous avons supposé que la charge externe est répartie de façon homogène à la surface du nanofil. Les effets de discrétisation de la charge ne sont pas pris en compte. On calcule la variation relative de conductance G/G0, G0 étant la conductance en l'absence de charge externe, qui résulte d'une variation de la densité surfacique de charges externe Next en résolvant l'équation de Poisson dans une section transverse et une équation de dérive-diffusion selon l'axe du nanofil. Dans la plupart des publications, c'est cette variation relative de conductance qui est utilisée pour caractériser la sensibilité du nanofil en tant que capteur. Par définition, la sensibilité d'un capteur ne devrait pas dépendre de la valeur particulière de la valeur d'entrée. Dans la suite, nous considérons en fait G/G0 comme la réponse du capteur et nous définissons la sensibilité par le paramètre G/G0/Next. Ce paramètre est bien indépendant au premier ordre de la valeur particulière de Next et permet donc de comparer des dispositifs entre eux sans ambiguïté. Une légère dépendance avec Next est cependant introduite si l'on tient compte de l'atténuation de mobilité avec le champ transverse. La sensibilité maximale est alors obtenue près du seuil et décroît progressivement en accumulation. Ceci signifie qu'il est nécessaire d'adapter le type de dopage selon le signe des charges que l'on veut détecter. Par ailleurs, la sensibilité est d'autant plus grande que le diamètre des nanofils est petit. Pour un nanofil de rayon rSi, de dopage Nd (type N), recouvert d'un diélectrique d'épaisseur tox. Cependant, avec la réduction du volume actif, on s'attend également à une augmentation des fluctuations de courant associées au piégeage / dépiégeage des porteurs du canal par des pièges d'interface. Ces fluctuations sont une des causes du bruit basse fréquence dans les composants. Elles risquent de limiter le seuil de détection des capteurs à nanofils. C'est ce que nous avons voulu évaluer. Là encore, nous avons supposé que les pièges d'interface étaient répartis uniformément, avec une densité surfacique Nit à l'interface Si/SiO2 entre le canal semi-conducteur et le diélectrique entourant le nanofil. Les charges externes sont réparties avec la densité Next sur la face externe de ce diélectrique. En supposant que les phénomènes de piégeage/dépiégeage sont poissonniens, nous avons calculé l'écart-type des fluctuations de conductance qui en résultent. Nous avons défini le seuil de détection Next_th comme la densité de charge externe limite pour laquelle la variation de conductance apportée par Next_th est égale à la variation de conductance du au bruit de piégeage dépiégeage. Au premier ordre, Next_th décroît en raison inverse de la racine carrée du diamètre externe et de la longueur du nanofil. La limitation par le bruit basse fréquence peut donc être surmontée par une augmentation de la surface active du capteur. Ceci peut s'obtenir en augmentant la longueur et le diamètre du nanofil, mais au détriment de la sensibilité du capteur et de la valeur nominale de la conductance G0. Le seul degré de liberté permettant d'ajuster ces deux derniers paramètres est alors le dopage. Cette modélisation qui décrit les corrélations entre leur sensibilité et leur seuil de détection permet donc de déterminer une stratégie d'optimisation pour les capteurs à nanofils.

  • Conclusion

  • Cette thèse m'a permis d'aborder des sujets variés allant de la fabrication des composants à leur modélisation. Au début de ce résumé, j'écrivais que la réduction des dimensions est en train d'atteindre ses limites. On pourrait en déduire qu'il n'y a plus moyen d'améliorer le transistor. En réalité, ainsi que je l'ai expérimenté au cours de ce travail, il reste une multitude de pistes à explorer et la recherche sur le transistor est très loin de la fin de son histoire.
    APA, Harvard, Vancouver, ISO, and other styles
    26

    Peng, Haonan. "Synthesis of spin crossover micro-and nano-particles and study of the effect of their sizes and morphologies on their bistability properties." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30082/document.

    Full text
    Abstract:
    De nos jours, l'idée qu'une molécule puisse être utilisée comme élément actif dans un dispositif électronique stimule l'activité scientifique des laboratoires de chimie et de physique dans le monde entier. Les demandes technologiques en termes de capacité de stockage d'informations sont en croissance exponentielle et repose maintenant sur le développement des nanosciences. L'objectif consiste à stocker les données aussi rapidement que possible dans un dispositif aussi petit que possible. Une des stratégies les plus prometteuses est basée sur le concept de bistabilité moléculaire : la commutation entre deux états électroniques de la molécule de la même manière qu'un interrupteur binaire. Il est ainsi possible de passer d'une manière réversible et de façon détectable d'un état (OFF = 0) à un autre état (ON = 1) sous l'influence d'un stimulus externe contrôlé. Le phénomène de transition de spin (TS) qui commute le système entre états haut spin (HS) et bas spin (BS) est un exemple typique de bistabilité moléculaire. Les deux états peuvent être distingués par des propriétés magnétiques, optiques et structurelles différentes ; ces modifications pouvant être provoquées par différent stimuli comme la température, la lumière, la pression, un champ magnétique ou l'inclusion d'une molécule invitée. Lorsque les changements structurels associés à la transition de spin sont transmis d'une manière coopérative à travers les molécules du réseau, les transitions se produisent de manière abrupte et éventuellement s'accompagnent de boucle d'hystérésis (transition du premier ordre). Ainsi, les matériaux moléculaires à transition de spin devraient offrir de nombreuses possibilités en termes d'applications dans le domaine de l'électronique, le stockage de l'information, l'affichage numérique, la photonique et le photo-magnétisme. Parmi les différentes familles de composés, les polymères de coordination suscitent beaucoup d'intérêts en raison de leur bistabilité proche de la température ambiante. Le choix judicieux des ligands et des contre-anions permet de moduler les propriétés finales de ces composés, et même dans certains cas, de combiner de manière synergétique des propriétés physiques différentes. Le travail développé dans ces travaux de thèse vise à répondre aux différentes questions liées au défi des polymères de coordination à base de matériaux à transition de spin à l'échelle nanométrique. La synthèse de matériaux inorganiques bistables, leur développement dans des nanoparticules, des couches minces, leur organisation ainsi que leurs propriétés physiques sont présentés. Les matériaux à l'échelle microscopique ont généralement les mêmes propriétés physiques que celles mesurées à l'échelle macroscopique. Cependant, à l'échelle nanométrique, les matériaux peuvent présenter des propriétés physiques qui sont différentes de celles des composés massifs. Il est donc impératif de mieux comprendre les phénomènes liés à la diminution de la taille pour développer les nanotechnologies. L'étude fondamentale de ces nanomatériaux est nécessaire et représente aujourd'hui un défi majeur et essentiel pour le développement d'applications futures. Le développement de matériaux à l'échelle nanométrique à travers le contrôle de certains modèles systématiques permet d'améliorer notre compréhension sur les effets spécifiques à l'échelle nanométrique. Par exemple, dans le cas des complexes à transition de spin, la question la plus importante est : comment influence la réduction de taille des matériaux sur la température de transition, la coopérativité et la largeur de la boucle d'hystérésis ? Dans ce contexte, cette thèse est consacrée à la conception et à la synthèse de nano- et microparticules à transition de spin de différentes tailles et de différentes morphologies. Pour ce faire, nous avons développé la technique des micelles inverses et adopté de nouvelles approches de synthèse innovantes en l'absence de matrice
    Nowadays, the idea that molecule can be used as an active element in an electronic device stimulates scientific activity of chemistry and physics laboratories worldwide. The information storage capacity from technological demands is growing exponentially, which relies much on the development of nanosciences. The objective is to store data as quickly as possible in a device as small as possible. One of the most promising strategies is based on the concept of molecular bistability, the switching between two electronic states of a molecule in the same way that a binary switch. It is thus possible to pass in a reversible and detectable manner from one state (OFF = 0) to another state (ON = 1) under the influence of a controlled external stimulus. The spin transition (ST) phenomenon that switches the system between high spin (HS) and low spin (LS) states is a typical example of molecular bistability. The two states can be distinguished with different magnetic, optical and structural properties and can be induced by an external perturbation like the temperature, the light, the pressure, a magnetic field or the inclusion of a guest molecule. When the structural changes associated with the spin transition are transmitted in a cooperative manner across the network molecules, the transitions will occur with steepness and possibly accompanied by hysteresis loop (the first order transition). So, spin transition molecular materials should offer many opportunities in terms of applications in the field of electronics, information storage, digital display, photonics and photo-magnetism. Among the different families of compounds, coordination polymers arouse much interest due to their bistability near room temperature. The judicious choice of ligands and counter-anions make possible to modulate the final properties of these compounds and even in some cases to synergistically combine different physical properties. The work developed in this thesis attempt to address the different issues related to the challenge of coordination polymers based nanoscale materials with spin transition. The synthesis of inorganic bistable materials, their development in micro- and nanoparticles, thin layers, their organization and their physical properties are shown. The materials in the microscopic scale have mostly the same physical properties as those measured at the macroscopic scale. However, at the nanoscale, materials can exhibit physical properties that are far from those of bulk compounds. It is therefore imperative to understand more about the phenomena related to material size decrease to develop nanotechnology. The fundamental study of these nanomaterials is necessary and represents a major challenge today, which is of prime importance for the development of future applications. The development of nanoscale materials through the control of certain systematic models permits to improve our understanding of specific effects at the nanoscale. For example, in the case of spin crossover complex, the most important question is: how downsizing effect influences the transition temperature, the cooperativity and the width of hysteresis loop? In this context, this thesis is devoted to the design and the synthesis of various size spin crossover nano and micro-materials with different morphologies. To accomplish this, we developed the reverse-micelle technique and adopted innovative matrix-free synthetic approaches
    APA, Harvard, Vancouver, ISO, and other styles
    27

    McWilliam, Lyn. "Combined hydrogen diesel combustion : an experimental investigation into the effects of hydrogen addition on the exhaust gas emissions, particulate matter size distribution and chemical composition." Thesis, Brunel University, 2008. http://bura.brunel.ac.uk/handle/2438/3611.

    Full text
    Abstract:
    This investigation examines the effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the exhaust gas emissions, particulate matter size distribution and chemical composition. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 10% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOX) and the filter smoke number (FSN) were all measured. The in-cylinder pressure was also captured to allow the heat release rate to be calculated and, therefore, the combustion to be analysed. A gravimetric analysis of the particulate matter size distribution was conducted using a nano-MOUDI. Finally, a GC-MS was used to determine the chemical composition of the THC emissions. The experimental data showed that although CO, FSN and THC increase with EGR, NOX emissions decrease. Inversely, CO, FSN and THC emissions decrease with hydrogen, but NOX increases. When hydrogen was introduced the peak cylinder pressure was increased, as was the maximum rate of in-cylinder pressure rise. The position of the peak cylinder pressure was delayed as hydrogen addition increased. This together with the obtained heat release patterns shows an increase in ignition delay, and a higher proportion of premixed combustion. The experimental work showed that the particulate matter size distribution was not dramatically altered by the addition of EGR, but the main peak was slightly shifted towards the nucleation mode with the addition of hydrogen. Hydrogen addition does not appear to have a large effect on the chemical composition of the THC, but does dramatically decrease the emissions.
    APA, Harvard, Vancouver, ISO, and other styles
    28

    Rennane, Abdelali. "Caractérisation et modélisation du bruit basse fréquence des composants bipolaires et à effet de champ pour applications micro-ondes." Toulouse 3, 2004. http://www.theses.fr/2004TOU30236.

    Full text
    Abstract:
    Le travail présenté dans ce mémoire a pour objet principal l’étude des phénomènes de bruit du fond électrique basse fréquence dans des transistors pour applications micro-ondes de type effet de champ (HEMT) sur SiGe et GaN ainsi que de type bipolaire à hétérojonction (TBH) à base de silicium-germanium (SiGe). Dans un premier chapitre nous rappelons les caractéristiques et propriétés essentielles des sources de bruit en excès que l’on rencontre généralement dans ce type de composants et proposons une description des bancs de mesure de bruit mis en oeuvre. Dans les deuxième et troisième chapitres, nous proposons une analyse détaillée de l’évolution du bruit observé en fonction de la fréquence, de la polarisation, et de la géométrie sur des HEMTs des deux familles technologiques SiGe et GaN. Nous avons en particulier étudié les deux générateurs de bruit en courant en entrée et en sortie respectivement iG et iD ainsi que leur corrélation. Ceci nous a permis, en nous appuyant aussi sur l’analyse des caractéristiques statiques des transistors, d’identifier les diverses sources de bruit en excès présentes dans ces composants et de faire des hypothèses sur leurs origines. Le dernier chapitre est consacré aux TBHs à base de SiGe. Dans une première partie nous établissons comment varie le bruit basse fréquence de TBHs, fabriqués par un premier constructeur, en fonction de la polarisation, de la géométrie et de la fraction molaire de germanium. Dans une seconde partie nous mettons en évidence, d’après nos observations effectuées sur des TBHs fabriqués par un second constructeur, l’impact important sur le bruit BF de stress thermiques appliqués sur ce type de composants
    This thesis deals mainly with electrical noise in microwave silicon germanium (SiGe) and gallium nitride (GaN) field effect transistors (HEMT’s) and SiGe heterojunction bipolar transistors (HBT’s). The organisation of this memory is as follows, in first chapter, we remember the important properties of excess noise sources encountered in these type devices. In addition, we describe the measurement set-ups used for static and noise characterization. In the second and third chapters, a thoroughful analysis of the noise dependence on frequency, bias, and geometry of both SiGe and GaN HEMT’s, has been carried out, specifically, the input and output current noise sources respectively iG and iD and their correlation. This in combination with static characterization, allowed to identify the different noise sources present in these devices and their supposed origin. .
    APA, Harvard, Vancouver, ISO, and other styles
    29

    Hardie, Christopher David. "Micro-mechanics of irradiated Fe-Cr alloys for fusion reactors." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:a3ac36ba-ca6f-4129-8f37-f1278ef8a559.

    Full text
    Abstract:
    In the absence of a fusion neutron source, research on the structural integrity of materials in the fusion environment relies on current fission data and simulation methods. Through investigation of the Fe-Cr system, this detailed study explores the challenges and limitations in the use of currently available radiation sources for fusion materials research. An investigation of ion-irradiated Fe12%Cr using nanoindentation with a cube corner, Berkovich and spherical tip, and micro-cantilever testing with two different geometries, highlighted that the measurement of irradiation hardening was largely dependent on the type of test used. Selected methods were used for the comparison of Fe6%Cr irradiated by ions and neutrons to a dose of 1.7dpa at a temperature of 288°C. Micro-cantilever tests of the Fe6%Cr alloy with beam depths of 400 to 7000nm, identified that size effects may significantly obscure irradiation hardening and that these effects are dependent on radiation conditions. Irradiation hardening in the neutron-irradiated alloy was approximately double that of the ion-irradiated alloy and exhibited increased work hardening. Similar differences in hardening were observed in an Fe5%Cr alloy after ion-irradiation to a dose of 0.6dpa at 400°C and doses rates of 6 x 10-4dpa/s and 3 x 10-5dpa/s. Identified by APT, it was shown that increased irradiation hardening was likely to be caused by the enhanced segregation of Cr observed in the alloy irradiated with the lower dose rate. These observations have significant implications for future fusion materials research in terms of the simulation of fusion relevant radiation conditions and micro-mechanical testing.
    APA, Harvard, Vancouver, ISO, and other styles
    30

    RENNANE, Abdelali. "Caracterisation et modelisation du bruit basse frequence des composants bipolaires et a effet de champ pour applications micro-ondes." Phd thesis, Université Paul Sabatier - Toulouse III, 2004. http://tel.archives-ouvertes.fr/tel-00009299.

    Full text
    Abstract:
    Le travail presente dans ce memoire a pour objet principal l'etude des phenomenes de bruit du fond electrique basse frequence dans des transistors pour applications micro-ondes de type effet de champ (HEMT) sur SiGe et GaN ainsi que de type bipolaire a heterojonction (TBH) a base de silicium-germanium (SiGe). Dans un premier chapitre nous rappelons les caracteristiques et proprietes essentielles des sources de bruit en exces que l'on rencontre generalement dans ce type de composants et proposons une description des bancs de mesure de bruit mis en oeuvre. Dans les deuxieme et troisieme chapitres, nous proposons une analyse detaillee de l'evolution du bruit observe en fonction de la frequence, de la polarisation, et de la geometrie sur des HEMTs des deux familles technologiques SiGe et GaN. Nous avons en particulier etudie les deux generateurs de bruit en courant en entree et en sortie respectivement iG et iD ainsi que leur correlation. Ceci nous a permis, en nous appuyant aussi sur l'analyse des caracteristiques statiques des transistors, d'identifier les diverses sources de bruit en exces presentes dans ces composants et de faire des hypotheses sur leurs origines. Le dernier chapitre est consacre aux TBHs a base de SiGe. Dans une premiere partie nous etablissons comment varie le bruit basse frequence de TBHs, fabriques par un premier constructeur, en fonction de la polarisation, de la geometrie et de la fraction molaire de germanium. Dans une seconde partie nous mettons en evidence, d'apres nos observations effectuees sur des TBHs fabriques par un second constructeur, l'impact important sur le bruit BF de stress thermiques appliques sur ce type de composants.
    APA, Harvard, Vancouver, ISO, and other styles
    31

    Ayad, Mohammad. "Homogenization-based, higher-gradient dynamical response of micro-structured media." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0062.

    Full text
    Abstract:
    Une approche dynamique discrète (DDM) est proposée dans le contexte de la mécanique des poutres pour calculer les caractéristiques de dispersion des structures périodiques. Cette démarche permet de calculer les caractéristiques de dispersion de milieux périodiques unidimensionnels et bidimensionnels. Il est montré qu’un développement d'ordre supérieur suffisamment élevé des forces et des moments d’éléments structuraux est nécessaire pour décrire avec précision les modes de propagation d’ordre supérieur. Ces résultats montrent dans l’ensemble que les calculs des caractéristiques de dispersion de systèmes structurels périodiques peuvent être abordés avec une bonne précision par la dynamique des éléments discrets. Les comportements non classiques peuvent être capturés non seulement par une expansion d'ordre supérieur mais aussi par des formulations à gradient supérieur. Nous calculons ainsi les paramètres constitutifs macroscopiques jusqu'au deuxième gradient du déplacement en utilisant deux formulations différentes, soit selon une méthode d'homogénéisation dynamique à gradient supérieur (DHGE) prenant en compte les effets de micro-inertie, ou alternativement selon le principe de Hamilton. Nous analysons ensuite la sensibilité des termes constitutifs du second gradient aux paramètres microstructuraux pour des matériaux composites à microstructure périodique de type laminés. En plus, on montre que les modèles du deuxième gradient formulés à partir de l'énergie interne totale en tenant compte des termes de gradient d'ordre supérieur donnent la meilleure description du propagation d’onde à travers ces milieux. On analyse les contributions d'ordre supérieur et de micro-inertie sur le comportement mécanique de structures composites en utilisant une méthode d'homogénéisation dynamique d'ordre supérieur qui intègre les effets de micro-inertie. Nous calculons la réponse effective statique longitudinale à gradient d’ordre supérieur, en quantifiant la différence relative par rapport à la formulation classique de type Cauchy qui repose sur le premier gradient du déplacement. Nous analysons ensuite les propriétés de propagation d’ondes longitudinales en termes de fréquence propre de composites, en tenant compte de la contribution de la micro-inertie. La longueur interne joue un rôle crucial dans les contributions de micro-inertie avec un effet substantiel pour les faibles valeurs de longueur interne, et qui correspond à une large gamme de matériaux utilisés en ingénierie des structures. La méthode d’homogénéisation développée montre un effet de taille important pour les modules élastiques homogénéisés d’ordre supérieur. Par conséquent, nous développons une formulation indépendante de la taille qui est basée sur des termes de correction liée aux moment quadratique. Dans ce contexte, on analyse l’influence des termes de correction sur le comportement statique et dynamique de composites à inclusion
    A discrete dynamic approach (DDM) is developed in the context of beam mechanics to calculate the dispersion characteristics of periodic structures. Subsequently, based on this dynamical beam formulation, we calculate the dispersion characteristics of one-dimensional and two-dimensional periodic media. A sufficiently high order development of the forces and moments of the structural elements is necessary to accurately describe the propagation modes of higher order. These results show that the calculations of the dispersion characteristics of structural systems can be approached with good accuracy by the dynamics of the discrete elements. Besides, non-classical behaviors can be captured not only by higher order expansion but also by higher gradient formulations. To that scope, we develop a higher gradient dynamic homogenization method with micro-inertia effects. Using this formulation, we compute the macroscopic constitutive parameters up to the second gradient, using two distinct approaches, namely Hamilton’s principle and a total internal energy formulation. We analyze the sensitivity of the second gradient constitutive terms on the inner material and geometric parameters for the case of composite materials made of a periodic, layered microstructure. Moreover, we show that the formulations based on the total internal energy taking into account higher order gradient terms give the best description of wave propagation through the composite. We analyze the higher order and micro-inertia contributions on the mechanical behavior of composite structures by calculating the effective static and dynamic properties of composite beams using a higher order dynamic homogenization method. We compute the effective longitudinal static response with higher order gradient, by quantifying the relative difference compared to the classical formulation of Cauchy type, which is based on the first gradient of displacement. We then analyze the propagation properties of longitudinal waves in terms of the natural frequency of composite structural elements, taking into account the contribution of micro-inertia. The internal length plays a crucial role in the contributions of micro-inertia, which is particularly significant for low internal length values, therefore for a wide range of materials used in structural engineering. The developed method shows an important size effect for the higher gradients, and to remove these effects correction terms have been incorporated which are related to the quadratic moment of inertia. We analyze in this context the influence of the correction terms on the static and dynamic behavior of composites with a central inclusion
    APA, Harvard, Vancouver, ISO, and other styles
    32

    Julienne, Fanon. "Fragmentation des plastiques : effet de l’environnement et de la nature du polymère sur la taille et la forme des fragments générés." Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1033.

    Full text
    Abstract:
    Les déchets plastiques s'accumulent depuis plusieurs décennies dans les océans où ils se fragmentent en particules appelés microplastiques lorsque leur taille est inférieure à 5 mm. Ces microplastiques sont retrouvés dans toutes les eaux du globe, dans les sédiments ainsi que dans de nombreux organismes marins. Le devenir physicochimique à long terme de ces particules et leur possible fragmentation en nanoplastiques sont complexes, encore peu documentés et nécessitent des études en laboratoire.Afin de comprendre les processus liés à la photodégradation et à la fragmentation des polymères dans l’environnement, mais également dans le but d’'appréhender l’évolution des fragments générés au cours de l’irradiation, un protocole de vieillissement accéléré en milieu abiotique a été mis en place sur des polymères modèles. Le suivi de l’oxydation et de la fragmentation des deux polymères étudiés,polyéthylène basse densité et polypropylène, a été mené à l’aide de techniques spectroscopiques (infrarouge, Raman), DSC, angles de contact, et microscopiques (lumière polarisée, MEB, AFM…).Ce travail a permis de mettre en évidence l’influence significative de l’environnement et de la morphologie initiale des polymères sur leurs cinétiques de vieillissement et leurs mécanismes de fissuration. Ainsi des distributions en nombres, tailles et formes de fragments très différentes ont été obtenues pour les deux polymères selon la présence d’eau. Enfin, après un long temps d’irradiation, des produits de dégradation ont pu être détectés mais la production significative de nanoplastiques n’a pas été démontrée. L'hypothèse d'une taille limite de fragmentation devrait être envisagée
    Plastic wastes have been accumulating for several decades in the oceans where they break up into particles called microplastics when their size is less than 5 mm. These microplastics are found in all earth’s waters, in sediments and in many marine organisms. Their long-term physico-chemical fate and their possible fragmentation into nanoplastics are complex, still poorly documented and require laboratory studies.In order to understand the processes related to photodegradation and fragmentation of polymers, but also in order to understand the evolution of these fragments during irradiation, an accelerated aging protocol in abiotic conditions has been set up. The oxidation and fragmentation of two model polymers, low density polyethylene and polypropylene, were monitored using spectroscopic techniques (InfraRed, Raman), DSC, contact angles and microscopic technics (light microscopy, polarized light, SEM, AFM ...).This work has demonstrated a significant influence of the environment and the initial morphology of the polymers on their kinetics of aging and cracking mechanisms. This lead to significantly different distributions in numbers, sizes and shapes of the generated fragments. Moreover, after a long time of irradiaiton, other degradation products could be detected but the significant production of nanoplastics has not been demonstrated. The possibility of a size limit below which the fragmentation rate of plastics would strongly decrease should be considered
    APA, Harvard, Vancouver, ISO, and other styles
    33

    Préault, Valentin. "Méthodes d'homogénéisation pour la modélisation électromagnétique de matériaux composites. Application au blindage de boîtiers d’équipement électronique." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112302/document.

    Full text
    Abstract:
    Le nombre d’appareils électroniques et de systèmes de communication sans fil a considérablement augmenté au cours des 20 dernières années. Les boîtiers de blindage utilisés pour protéger les appareils électroniques contre les radiations externes, mais aussi pour limiter leurs émissions sont généralement conçus en alliages d’aluminium. Mais la nécessité de réduire le poids des aéronefs incite l’industrie aéronautique à l’utilisation de matériaux composites.La modélisation de boîtiers de blindage composés de matériaux homogènes est possible par l’utilisation d’outils numériques tels que la méthode des éléments finis. Mais la discrétisation de boîtiers constitués de matériaux composites impliquerait un nombre d’éléments trop important rendant impossible toute modélisation numérique. Le recours à l’homogénéisation semi-analytique est une possibilité pour s’affranchir de cette restriction. Les milieux homogènes équivalents obtenus avec ces méthodes peuvent être insérés dans des outils numériques pour simuler le comportement électromagnétique de boîtiers de blindage complexes. Les modèles d’homogénéisation existants, tel que le modèle de Maxwell-Garnett, sont toutefois limités a des applications quasi-statiques.La définition des propriétés effectives de matériaux composites illuminés par des ondes électromagnétiques est l’objectif principal de ce travail. Il en résulte deux méthodes d’homogénéisation dynamiques. La première introduit un effet de taille entre les fibres et la longueur d'onde. Elle permet ainsi d’étendre une méthode basée sur des problèmes d'inclusion aux micro-ondes. Mais elle reste limitée par l’apparition de l’effet de peau dans les renforts conducteurs. La seconde est basée sur la définition des pertes par effet Joule dans les fibres, permettant ainsi d’étendre la première méthode après l’apparition de l’effet de peau. Cette dernière est enfin utilisée pour modéliser le comportement électromagnétique d’un boîtier de blindage réaliste
    The number of electronic devices and wireless communication systems has significantly increased over the past 20 years. Shielding enclosures used to protect electronic devices against radiated waves and to limit their emissions are usually designed in aluminum alloys. But the need to reduce the weight of aircraft incites the aerospace industry to the use of composite materials.Modeling shielding enclosures composed of homogeneous materials is possible by the use of numerical tools such as the finite element method. But considering every details of the microstructure would involve a excessive number of unknowns preventing numerical modelings. The use of semi-analytical homogenization methods is a possibility to overcome this restriction. The equivalent homogeneous mediums obtained with these methods can be inserted into numerical tools to simulate the electromagnetic behavior of complex shielding enclosures. But classical homogenization models such as Maxwell-Garnett model, are limited to quasi-static applications.Calculating the effective properties of composite materials illuminated by electromagnetic waves is the main objective of this work. This leads to two dynamic homogenization methods. The first one introduces a size effect between the fibers and the wavelength. It allows to extend a method based on inclusion problems to microwave frequencies. However it is limited by the occurrence of the skin effect in conductive inclusions. The second consider Joule losses and extends the first method after the occurrence of the skin effect. This second homogenization method is finally used to model the behavior of a realistic shielding enclosure
    APA, Harvard, Vancouver, ISO, and other styles
    34

    Severac, Fabrice. "Jonctions ultra-minces p+/n pour MOS "ultimes étude de l'impact des défauts sur la mobilité et l'activation du bore." Phd thesis, Université Paul Sabatier - Toulouse III, 2009. http://tel.archives-ouvertes.fr/tel-00390908.

    Full text
    Abstract:
    La réalisation des transistors MOS de taille "ultime" nécessite la fabrication de jonctions source et drain ultra-minces (quelques dizaines de nanomètres), abruptes et fortement dopées. L'optimisation du procédé de fabrication de ces jonctions nécessite la compréhension des phénomènes physiques qui interviennent lors des différentes étapes de fabrication, en particulier l'impact des défauts cristallins sur leurs paramètres électriques. Dans ce travail, nous avons étudié l'impact des précipités de bore (BICs, Boron-Interstitial Clusters) mais aussi des défauts EOR (End-Of-Range), sur la mobilité des porteurs et l'activation des dopants (principalement le bore dans le silicium). Tout d'abord, nous avons développé un modèle d'analyse mathématique basé sur le profil de concentration des dopants mesuré par SIMS et sur les valeurs " standards " de mobilité des porteurs. Ce modèle permet de déterminer par le calcul les trois paramètres électriques mesurés par effet Hall : la résistance carrée, la dose active de dopants et la mobilité des porteurs. A partir de l'utilisation de ce modèle, nous démontrons qu'en présence de BICs, il s'avère nécessaire de modifier la valeur d'un facteur correctif, le facteur de scattering, essentiel pour les mesures par effet Hall, et nous déterminons sa valeur. Nous mettons ensuite en évidence la dégradation de la mobilité des porteurs par les BICs, puis étudions de manière plus quantitative l'évolution de cette dégradation en fonction de la quantité de BICs. Par la suite, une étude sur l'activation du bore en présence de défauts EOR est menée. Enfin, nous élargissons notre étude sur ces mêmes paramètres électriques au cas de nouveaux matériaux tels que le SOI (Silicon-On-Insulator) ou le SiGe (alliage silicium/germanium), matériaux utilisés pour les dernières générations de transistors.
    APA, Harvard, Vancouver, ISO, and other styles
    35

    Frischbier, Nico. "Untersuchungen zur einzelbaumverursachten kleinräumigen Variabilität und regenhöhenbasierten Dynamik des Bestandesniederschlages am Beispiel zweier Buchen-Fichten-Mischbestände." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-94870.

    Full text
    Abstract:
    Trifft herabfallender Regen auf Waldflächen, so wird dieser Niederschlag umverteilt zu Interzeption, Stammabfluss, durchfallenden und abtropfenden Niederschlag. Besonders hohe Stammablaufmengen im Kronenzentrum und markante Abtropfstellen am Kronenrand einzelner Baumarten lassen sich zudem nur erklären, wenn am jeweiligen Messplatz unter Baumkronen eine weitere Niederschlagskomponente zugelassen wird, mit der laterale Wasserbewegungen innerhalb der expliziten Einzelbaumkrone beschrieben und bilanziert werden (lateraler [Zu- oder Ab-]Fluss). Ziel dieser Arbeit war es deshalb, der niederschlagsabhängigen und kleinräumigen Dynamik dieser Umverteilung im Wald am Beispiel der Baumarten Buche (Fagus sylvatica L.) und Fichte (Picea abies (L.) Karst.) durch Aufnahmen und Auswertungen in zwei Mischbeständen beider Baumarten nachzugehen. Wiederholende Niederschlagsaufzeichnungen einzelner Regenereignisse wurden hierzu in Relation zur jeweiligen Freilandniederschlagsmenge, zur Art der Messplatzüberschirmung im Kronendach und zur Distanz des Messplatzes zum ihn dominierenden Baum varianz- und regressionsanalytisch untersucht und um Ergebnisse aus Stammablaufanalysen und Streumodellen ergänzt. Auf dieser Basis konnten Kausalmodelle zur Schätzung des Unterkronenniederschlages mit hoher Güte hergeleitet werden, die im Detail ein baumartspezifisches räumliches Verhalten der einzelnen Niederschlagskomponenten beim Passieren der Baumkrone belegen. Neben den Besonderheiten, die sich bei Messungen in Bestandeslücken einstellen, ergeben sich so z.B. in der Vegetationsperiode je nach Messplatzposition und Freilandniederschlagsmenge Unterschiede im Niederschlag unter beiden Baumartenkronen von bis zu 35 % des Freilandniederschlages je Einzelereignis und zwar stets zugunsten der Buchenüberschirmung. Am Stammfuss von Buchen kann darüber hinaus zusätzliches Wasser durch den Stammabfluss eingetragen werden. Hierfür notwenige Wassermengen können plausibel aus dem nachgewiesenen lateralen Wasserabfluss im inneren Kronendrittel von Buchen gedeckt werden. Über ein räumlich konkretes Interzeptionsmodell, kombiniert mit Blattflächenschätzungen für Einzelbäume konkreter Dimension, konnte ein räumliches LAI-Modell für Buchen abgeleitet werden, dass höchste LAI-Werte im Kronenzentrum annimmt. Da der Bestandesniederschlag hinsichtlich Niederschlagsmenge, Bestockung, Belaubungszustand und zum räumlich konkreten Messplatz unter der einzelnen Baumkrone veränderlich ist, wird die gewissenhaftere Berücksichtigung dieser Einflussvariablen angeregt und der bisher häufig praktizierten pauschalen Aufteilung des Niederschlages in einzelne Niederschlagskomponenten auf Basis von Flächen- und Messphasendurchschnittswerten widersprochen
    Forests redistribute the precipitation falling on their canopy into interception, stemflow, drip or direct throughfall. Extremely high amounts of stemflow in the centre of the crown and distinct drip points along the crown edge of certain tree species can only be explained by admitting an additional precipitation component at these measurement locations that describes and captures the lateral movement of water within the individual tree crown (lateral in- or outflow). The aim of this study was therefore to analyse these precipitation-dependent, small-scale dynamics of precipitation redistribution in forests using field-measurements from two mixed stands of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.). Periodic measurements of individual precipitation events were examined in relation to the respective gross precipitation, the type of canopy above a plot and the distance of a plot to its dominant sheltering canopy tree using variance and regression analysis, and complemented with stemflow analyses and litterfall models. Using this dataset, causal models for the high-precision estimation of throughfall were derived, showing tree species-specific pathways of the individual precipitation components through the tree crown. Apart from the particularities of measurements in canopy gaps, differences in throughfall between spruce and beech during the vegetation period amount to up to 35 % of gross precipitation per event, in favour of the beech canopy and depending on plot location. At the stem base of beech trees additional water can reach the forest floor via stemflow. The amount of water required to generate this stemflow can plausibly be explained by means of the verified lateral water flow in the inner third of beech crowns. Using a spatially explicit interception model combined with LAI estimates for specific individual trees, a spatial LAI model was developed for beech, showing maximal LAI values in the crown centre. As the net forest precipitation is sensitive with respect to precipitation amount, stand type, foliage status and the spatially explicit plot location below an individual tree crown, this study recommends the consideration of these influential factors and contradicts the commonly practiced blanket partitioning of precipitation into individual components based on spatial and temporal averages
    APA, Harvard, Vancouver, ISO, and other styles
    36

    Zhi, Luo-Shi, and 羅時治. "Effect of Grain Size on Forming of Micro Brass Screw." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/03476258932941741143.

    Full text
    Abstract:
    碩士
    國立高雄應用科技大學
    模具工程系
    99
    This study is to investigate the effect of grain size on forming of micro brass screw. The proposed forming process consists of a two-stage heading process and a threading process including a rolling for fabricating the grooves in the upper part of the screw and a flat-die threading for shaping the threads with curved profiles. The brass (JIS C2700) wire with 1.38 mm diameter was first annealed at different temperatures in order to adjust the microstructure and thus obtain different grain sizes. The annealed brass was then carefully machined for the use in simple upsetting tests to establish stress-strain curves. The curves and appropriate boundary conditions were used in a finite element package, DEFORM 3D, to simulate the proposed heading and threading processes. The predicted results including loads, die filling, and material flow were analyzed in order to organize the forming procedures and design the dies for experiments. Finally, the produced screws were carefully examined by measuring dimensions, micrographs and hardness for investigating the influence of grain size on load, die filling, material flow and strain distribution of the micro screw. The results show that the proposed two-stage heading process achieves the die filling of the head of the screw. The tested threading process is able to produce the threads with curved profiles but its dimension accuracy needs an improvement. Moreover, the forming load decreases with the increase in grain size. However, the brass having smaller grain size results in more homogeneous material flow, and thus leads to better die filling and surface quality.
    APA, Harvard, Vancouver, ISO, and other styles
    37

    Liu, Ming-lun, and 劉銘倫. "Size Effect on Mechanical Property in Micro Copper Sheet Forming." Thesis, 2008. http://ndltd.ncl.edu.tw/handle/75119371581754674858.

    Full text
    Abstract:
    碩士
    國立臺灣科技大學
    機械工程系
    96
    Metal micro-forming process is a developing technology in precision manufacturing. This technology has many advantages over conventional MEMS technology, such as high producing efficiency, low cost, and the ability to produce products with complicated geometrical shape, etc. But when the dimensions reduce to the micro scale, the material properties change dramatically due to the reduction of dimensions. This is called the “size effect”. This effect causes a lot of problems with further research. The research on metal micro-forming has been developed more and more since ten years. However, neither a correct methodology nor a clear micro mechanical property has been well determined. Hence, in this research several experiments are carried out to point out the influence of “size effect”. According to comparisons between the experiment data and relevant parameters, the material characteristics in micro scale can be found. In order to find the mechanical properties in micro scale, this study shows the effect of specimen size and grain size on the micro tensile test of copper material. Firstly, five copper micro-sheets with different thicknesses have been chosen for the experiment materials. Because the minimum standard test piece formulated in ASTM is still too big for this micro tensile test, this study decide to shrink the sample size of specimen shape to 1/2 . This way is able to get the important factor which influence the flow stress on the micro tensile test. Secondly, these samples of different grain size are made by heat treatment. Then these samples of different grain size are used to conduct the experiment in the process. According to the experiment result, the change of flow stress which is influenced by the various grain size can be found. Finally, the change of the mechanical behavior between specimen size and grain size is obtained.
    APA, Harvard, Vancouver, ISO, and other styles
    38

    Lin, Li-Yi, and 林儷伊. "Effect of Grain Size on Micro Bulging of SUS304 Stainless Steel." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/29392544825743664059.

    Full text
    Abstract:
    碩士
    國立高雄應用科技大學
    模具工程系
    99
    This study uses commercial simulation package and Nomalized Cockcroft and Latham fracture theory to presict the micro bulging tests and to investigate the effect of grain size on the formability of SUS 304 stainless steel. The study employed annealing treatments in order to alter the microstructures of the stainless steel sheets with three thicknesses of 0.05 mm, 0.1 mm and 0.2 mm and prepare the sheets with four grain sizes. Tensile tests at different strain rates were performed in order to obtain the stress-strain curves for the use in the numerical simulations. By using three punches with various diameters in associated with three dies having an inner diameter of 2 mm and various radii, it was possible to perform micro bulging tests for measuring the maximum bulging depth which is used to assess the formability of the sheet at micro scale. The results show that the sheets with annealing have larger bulging depths than those without annealing. The bulging depth increases with the die radius. Moreover, the bulging depth increases with the ratio of thickness to grain size as the ratio is less than a critical value. However, the depth decreases as the ratio is greater than the critical vale.
    APA, Harvard, Vancouver, ISO, and other styles
    39

    Yeh, Kuo-Liang, and 葉國良. "Effect of Grain Size on Micro Deep Drawing of SUS304 Stainless Steel." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/34380875071706012694.

    Full text
    Abstract:
    碩士
    國立高雄應用科技大學
    模具系碩士在職專班
    101
    Effect of Grain Size on Micro Deep Drawing of SUS304 Stainless Steel Student:Kuo-LiangYeh Advisor:Dr. Chao-Cheng Chang Institute of Mold and Die Engineering National Kaohsiung University of Applied Sciences Abstract Micro metal parts have been widely used in electronics products which are in great demand in our daily lives. The development of manufacturing technologies of the parts is thus broadly attracted. Micro metal forming processes have characteristics of high product rate, good quality of products and improvement on mechanical properties. The processes are also suitable for mass production with low costs. They have great potentials on manufacturing micro metal parts. This study used annealing techniques to adjust the grain size of SUS304 stainless steel. Three sheets with different thicknesses 0.05, 0.1 and 0.2 mm were used in the micro deep drawing process for producing2 mm diameter cups. The purpose of the study was to investigate the grain size of the stainless steel on the micor deep drawing. The study developed a micro deep drawing system for preforming the processes under different forming conditions. The surface roughness, rim height varation and thicknessvariation of the draw cups were carefully examined. The results show that the grain size does affect material flows. The sheets with fine grains lead to homogeneous material flows, and thus result in less dimension varations and good surface quality of the drawn cups. Keywords:Micro Metal Forming, Micro Deep Drawing, Grain Size
    APA, Harvard, Vancouver, ISO, and other styles
    40

    Chi-HanChen and 陳麒翰. "Forming Limit Prediction of Micro Sheet Metal Forming due to Grain Size Effect." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/86350503554601068524.

    Full text
    Abstract:
    博士
    國立成功大學
    機械工程學系碩博士班
    98
    Due to the miniaturization trend of the devices in electronic, medical and 3C industries, the improvements for manufacturing efficiency and product quality are important means to keep competitive. Micro metal forming is the most suitable and cost effective manufacturing process for mass production of micro metal parts because of its high production rate, low material scrap rate, net shape production and superior mechanical properties. However, when the material deforms in the micrometer range, the forming feature may only have few grains. The microstructure becomes more important when miniaturization and exhibits grain size effect which influences material flow and formability in micro metal forming process. The plasticity theory and the know-how of conventional metal forming technology developed under macro scale cannot directly apply to micro metal forming. In this paper, the influence of grain size effect on forming process and formability of micro sheet metal forming was investigated. For the experimental study, a series of micro scale tensile tests, dome height tests and deep drawing experiments were conducted for investigating the grain size effect on mechanical properties and formability of stainless steel 304 and C2600 brass alloy foils. The FLDs of micro sheet metal forming were established by local strain measurements of the micro grids and spots through image measurement and management processes. In forming limit prediction, finite element code LS-DYNA was used to calculate the ductile fracture constants in the ductile fracture criteria and develop predicted forming limit curves. Based on the experimental results, simulation results and Oh’s fracture criterion, two new models were proposed in this paper for predicting the forming limit of stainless steel 304 and C2600 brass alloy foils in micro sheet metal forming. The first proposed model includes the effect of strain path while the second proposed model considers the coupling effect of strain path and thickness to grain size ratio. The first model is superior to the Oh’s criterion on predicting forming limit strain of the foils, but it is not suitable for the foils that are thinner than 100μm. However, the second proposed model can be used for forming limit prediction of the stainless steel 304 and C2600 brass alloy foils with the foil thickness less than 100μm where the grain size effect must be considered.
    APA, Harvard, Vancouver, ISO, and other styles
    41

    Chang, Yao-Min, and 張堯閔. "The study of size effect and ultrasonic assisted in micro foil forming processes." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/44068996928443068079.

    Full text
    Abstract:
    博士
    國立臺灣科技大學
    機械工程系
    100
    This research focused on the influence of size effect during micro-metal forming processes and attempted to understand the difference between macro and micro forming processes by finite element program simulation. In order to solve these influences from size effect, this research also presented a concept of ultrasonic assistance on micro forming processes. Firstly, this research conducted a micro tensile test for variable thicknesses of copper foil. Heat treatment process had been used for generating different grain size on each thickness. And two different shapes of specimen were also chosen for this test. Then the relationship between the decreasing of flow stress curve and the size effect was found. Secondly, the finite element program was used for the simulation of micro stretching process. After comparing with the results between the simulation and the experiment, the limitation of this analysis on micro stretching process was determined to be 0.1 mm of specimen thickness. Finally, this research presented the concept of ultrasonic assistance on micro bending process and micro deep drawing process. Different amplitudes were also chosen for both processes to reduce the springback angle on micro bending process and to reduce the friction force between blank and mother die on micro deep drawing process. The limit drawing ratio also increased and the wrinkle effect was restrained with applying ultrasonic vibration on micro deep drawing process. This dissertation conducted three different micro forming processes to find the influences of size effect on each process and present a concept of ultrasonic assistance on micro forming processes. All results and conclusions in this dissertation could be the reference for further researches and the micro product fabrication.
    APA, Harvard, Vancouver, ISO, and other styles
    42

    Chen, Han-Sheng, and 陳漢生. "Effect of Grain Size on Micro Square Deep Drawing of SUS304 Stainless Steel." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/11217536938502515014.

    Full text
    Abstract:
    碩士
    國立高雄應用科技大學
    模具工程系碩士班
    102
    The study investigated the grain size of the SUS 304 stainless steel on the micro square deep drawing. The stainless steel sheets with different thicknesses of 0.05, 0.1 and 0.2 mm were treated by annealing techniques to adjust the grain size and were used in the micro deep drawing process for producing the square cups with 3 mm side length. The study used a finite element package, DEFORM 3D, to simulate the micro square drawing process. According to the design rules from references, punch corner radius, punch section radius, die corner radius and die section radius were considered for the design of the drawing die. The dimensions of the sheet billet were determined by the references and predicted results to reduce the variation on the rim height. The study showed that the as-received sheet with smaller grain size led to the lightest load in both simulation and experiment. The predicted load curves had similar trends to experimental ones but the predicted values were lower than the measured ones. Moreover, the thickness variation of the draw cups increased as the grain size increased. However, the decrease in grain size resulted in lower values of surface roughness and smoother surfaces on the sides and corners of draw cups.
    APA, Harvard, Vancouver, ISO, and other styles
    43

    "Resonant Microbeam High Resolution Vibrotactile Haptic Display." Doctoral diss., 2019. http://hdl.handle.net/2286/R.I.53611.

    Full text
    Abstract:
    abstract: One type of assistive device for the blind has attempted to convert visual information into information that can be perceived through another sense, such as touch or hearing. A vibrotactile haptic display assistive device consists of an array of vibrating elements placed against the skin, allowing the blind individual to receive visual information through touch. However, these approaches have two significant technical challenges: large vibration element size and the number of microcontroller pins required for vibration control, both causing excessively low resolution of the device. Here, I propose and investigate a type of high-resolution vibrotactile haptic display which overcomes these challenges by utilizing a ‘microbeam’ as the vibrating element. These microbeams can then be actuated using only one microcontroller pin connected to a speaker or surface transducer. This approach could solve the low-resolution problem currently present in all haptic displays. In this paper, the results of an investigation into the manufacturability of such a device, simulation of the vibrational characteristics, and prototyping and experimental validation of the device concept are presented. The possible reasons of the frequency shift between the result of the forced or free response of beams and the frequency calculated based on a lumped mass approximation are investigated. It is found that one of the important reasons for the frequency shift is the size effect, the dependency of the elastic modulus on the size and kind of material. This size effect on A2 tool steel for Micro-Meso scale cantilever beams for the proposed system is investigated.
    Dissertation/Thesis
    Doctoral Dissertation Systems Engineering 2019
    APA, Harvard, Vancouver, ISO, and other styles
    44

    Wang, Chi-Yuan, and 王祺元. "A Study of Grain Size Effect on Pure Iron Sheet under Micro Stretching Forming Process." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/52993000973012275215.

    Full text
    Abstract:
    碩士
    國立臺灣科技大學
    機械工程系
    97
    Metal microforming process is a developing technology in precision manufacturing. This technology has many advantages, such as high producing efficiency, low cost, and the ability to produce products with complicated geometrical shape. But when the dimensions reduce to the micro scale, the forming parameters and material properties change due to the reduction of dimensions. This is called the “size effect”. A methodology of formulating an elastic-plastic three-dimensional finite element model to simulate sheet metal forming process is developed using Prandtl-Reuss flow rule and von Mises yield criterion respectively in association with an updated Lagrangian formulation. The shape function derived from a four-node quadrilateral degenerated shell element was combined into the stiffness matrix to constitute the finite element model. An extended algorithm was proposed to formulate the boundary condition, such as nodal penetration and separation, strain increment and rotation increment, and altered elasto-plastic state of material. This study will discuss thickness respectively the pure iron sheet of 0.2mm, 0.1mm, 0.075mm, 0.05mm, after different temperature and time recrystallization annealing, its micro stretch forming the formability change, and compare with the analysis result of numerical simulation, the relationship between punch load and punch stoke, the breakage stroke, the distribution of stress, the distribution of thickness. In order to obtain the minimum suitable range of plasticity theory at present, and discuss the accuracy and suitability in micro scale.
    APA, Harvard, Vancouver, ISO, and other styles
    45

    楊修維. "The Studies of Ultra-thin Micro Size Permalloy Disks by Means of Magneto-optic Kerr Effect." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/72900576800803783332.

    Full text
    Abstract:
    碩士
    國立清華大學
    物理系
    100
    This work takes advantage of Magneto-optical Kerr Effect (MOKE) to study the magnetic properties of 50-nm-thick disks grown on the /Si (100) wafer. The diameters of disks were roughly from 100 m to 650 m, which were fabricated by means of e-beam lithography, sputtering deposition and lift-off process. Our results show that the changes of magnetization direction on disks during sweep of magnetic field conform to the previous results of researches that the magnetization component perpendicular to outer magnetic field does not exist and our disks have the characteristic of vortex state, but coercivity seems to have no direct relationship with size of disks. They are all between about 15 Oe and 40 Oe. In addition, signals of hysteresis loops from our MOKE system change linearly with the area of disks.
    APA, Harvard, Vancouver, ISO, and other styles
    46

    Huang, Zong-han, and 黃宗漢. "Grain Size Effect on Mechanical Properties and Deformability of Titanium Alloy in Micro-gear Squeezing Process." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/29ex2g.

    Full text
    Abstract:
    碩士
    國立虎尾科技大學
    機械與機電工程研究所
    102
    To improve the mechanical properties and service life, Many studies investigating grain refinement effects of mechanical properties and formability in manufacturing micro component, Used molds to plastic deformation of metallic materials, the grain will be refinement and improve the mechanical properties, The aim of this research is to investigate the effect of grain size on the mechanical properties and deformability of titanium alloy in micro-gear squeezing process. Specimens made of Grade 2Ti alloy with diameter 4 mm were annealed to temperature of 500,600,700,80,850,900,1000˚C resulting in different initial grain sizes, The initial mechanical properties and hardness of rods were obtained by means of tensile and micro-hardness test. Design the mold shape of micro-gear. the microstructure in squeezing micro-gear process was obtain the grain refinement. Operating finite element analysis(MSC.marc) to predict the forming force. The experimental results can be summarized as followed:(1)the microstructure of α-phase can be observed in a range of annealing temperature of 700 to 900˚C and 1000˚C precipitate β-phase. but 500、600˚C grain not precipitates (2)microstructure of α-phase the strength coefficient(K)、strain-harding exponent increased as the average grain size increased, The hardness values decrease, but hardness values increased whenβ-phase precipitates(3) Annealing temperature 700 ˚C micro-squeezing filling rate the best than not homogenizing annealing, but squeezing too fast can cause crown gear(4) When the α-phase plastic deformation, mechanical strength to reach the β-phase hardness values, Although material have grain refinement, but grain structure does not accumulate enough strength.
    APA, Harvard, Vancouver, ISO, and other styles
    47

    Chen, Shan-Lung, and 陳善隆. "Effect of adding a small amount of micro-size powder on the dynamic properties in a rotating drum." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/n735w8.

    Full text
    Abstract:
    碩士
    國立高雄應用科技大學
    模具工程系
    105
    Effects of the adding a small amount of micro-size powder and the rotating speed on the dynamic properties of the granular materials in the rotating drum was studied in this thesis The average velocity, fluctuation velocity, granular temperature and dynamic angle of repose were obtained by the particle tracking method and the image analysis technology. The results indicate that the amount of micro-size powder and rotating speed have a significant effect on the dynamic properties and dynamic angle of repose in the rotating drum. The dynamic properties is strengthened with the increase of the addition mount of micro-size powder because of the bearing effect and reduces the friction between particles. Additionally, the dynamic properties is enhanced with the increasing rotational speed.
    APA, Harvard, Vancouver, ISO, and other styles
    48

    HUANG, TSUNG-HAN, and 黃宗漢. "Development of Micro Squeezing Technology in Titanium Alloy Microgear Fabrication and Investigation of Grain Size Effect on Mechanical Property." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/e44tq7.

    Full text
    Abstract:
    博士
    國立虎尾科技大學
    動力機械工程系機械與機電工程博士班
    107
    The size effect of micro-forming occurs in downsizing, non-uniform flow of material and can’t be predicted and traditional plastic theory can’t be used for simulation of micro-parts, the method for reducing the size effect in micro-forming was heat forming. Micro-forming processing is applied to micro-extension, micro-punching, micro-stamping, however, gear is largely applied in several areas, but doesn't have development of micro gear technology. The aim of this research is developing the forming technology of micro gears with involute micro spur gear, micro helical gear and micro double spur gear, and using titanium alloy heated squeezing to the fabrication of micro gears. The specimen with diameter 5mm homogenization heat treatments resulting in different initial grain sizes with different hot tensile speeds to obtain mechanical properties, and operating finite element analysis (Deform 2D/3D) to predict the forming speed, forming force and geometry of micro gears. The squeezing speed of 0.5,1,10 mm/s with 400℃ forming temperature boundary in fabrication micro spur gear, founded that low squeezing speed (0.5, 1mm/s) can obtain the maximal die cavity filling rate. According to the die of skd-61 mechanical properties, if die heated over 600℃ was weakening of metal, therefore, the experimental temperature 500℃ and squeezing speed 0.5mm/s for squeezing micro spur gear, experiment results show that tooth profile of grain size in deddendum circle area grain refinement and enhanced mechanical properties, the cavity filling rate has a 99%. The boundary conditions of temperature 400℃ with squeezing speed 0.5 mm/s in micro helical gear simulation can fill the cavity, and different material grain sizes of cavity filling rate experimental can also 99%, effective filling rate factor of grain size is temperature. The fabrication of micro double spur gear only from squeezing two-side can fill the cavity, simulation and experiment show that used diameter 3mm of punch to squeeze one-side can’t succeed. The two-side squeezing speed 0.5mm/s to fabrication gear, but volume of gear forming is different can’t fill the cavity at the same time, it need to be squeezed again to obtain 99% of cavity filling rate. Hot squeezing experiment of micro gear, heating can improve the formation of materials on plastic deformation, more easily to fabrication high precision micro gear.
    APA, Harvard, Vancouver, ISO, and other styles
    49

    Srikanth, K. "A Dynamical Approach to Plastic Deformation of Nano-Scale Materials : Nano and Micro-Indentation." Thesis, 2016. http://hdl.handle.net/2005/2783.

    Full text
    Abstract:
    Recent studies demonstrate that mechanical deformation of small volume systems can be significantly different from those of the bulk. One such interesting length scale dependent property is the increase in the yield stress with decrease in diameter of micrometer rods, particularly when the diameter is below a micrometer. Intermittent flow may also result when the diameter of the rods is decreased below a certain value. The second such property is the intermittent plastic deformation during nano-indentation experiments. Here again, the instability manifests due to smallness of the sample size, in the form of force fluctuations or displacement bursts. The third such length scale dependent property manifests as ’smaller is stronger’ property in indentation experiments on thin films, commonly called as the indentation size effect (ISE). More specifically, the ISE refers to the increase in the hardness with decreasing indentation depth, particularly below a fraction of a micrometer depth of indentation. The purpose of this thesis is to extend nonlinear dynamical approach to plastic deformation originally introduced by Anantha krishna and coworkers in early 1980’s to nano and micro-indentation process. More specifically, we address three distinct problems : (a) intermittent force/load fluctuations during displacement controlled mode of nano-indentation, (b) displacement bursts during load controlled mode of nano-indentation and (c) devising an alternate framework for the indentation size effect. In this thesis, we demonstrate that our approach predicts not just all the generic features of nano-and micro-indentation and the ISE, the predicted numbers also match with experiments. Nano-indentation experiments are usually carried-out either in a displacement controlled (DC) mode or load controlled (LC) mode. The indenter tip radius typically ranges from few tens of nanometer to few hundreds of nanometers-meters. Therefore, the indented volume is so small that the probability of finding a dislocation is close to zero. This implies that dislocations must be nucleated for further plastic deformation to proceed. This is responsible for triggering intermittent flow as indentation proceeds. While several load drops are seen beyond the elastic limit in the DC controlled experiments, several displacement jumps are seen in the LC experiments. In both cases, the stress corresponding to load maximum on the elastic branch is close to the theoretical yield stress of an ideal crystal, a feature attributed to the absence of dislocations in the indented volume. Hardness is defined as the ratio of the load to the imprint area after unloading and is conventionally measured by unloading the indenter from desired loads to measure the residual plastic imprint area. Then, the hardness so calculated is found to increase with decreasing indentation depth. However, such size dependent effects cannot be explained on the basis of conventional continuum plasticity theories since all mechanical properties are independent of length scales. Early theories suggest that strong strain gradients exist under the indenter that require geometrically necessary dislocations (GNDs) to relax the strain gradients. In an effort to explain the the size effect, these theories introduce a length scale corresponding to the strain gradients. One other feature predicted by subsequent models of the ISE is the linear relation between the square of the hardness and the inverse of the indentation depth. Early investigations on the ISE did recognize that GNDs were required to accommodate strain gradients and that the hardness H is determined by the sum of the statistically stored dislocation (SSD) and GND densities. Following these steps, Nix and Gao derived an expression for the hardness as a function of the indentation depth z. The relevant variables are the SSD and GND densities. An expression for the GND density was obtained by assuming that the GNDs are contained within a hemispherical volume of mean contact radius. The authors derive an expression for the hardness H as a function of indentation depth z given by [ HH 0 ]2 = 1+ zz ∗ . The intercept H0 represents the hardness arising only from SSDs and corresponds to the hardness in the limit of large sample size. The slope z ∗ can be identified as the length scale below which the ISE becomes significant. The authors showed that this linear relation was in excellent agreement with the published results of McElhaney et al for cold rolled polycrystalline copper and single crystals of copper, and single crystals of silver by Ma and Clarke. Subsequent investigations showed that the linear relationship between H2 verses 1/z breaks down at small indentation depths. Much insight into nano-indentation process has come from three distinct types of studies. First, early studies using bubble raft indentation and later studies using colloidal crystals (soft matter equivalent of the crystalline phase) allowed visualization of dislocation nucleation mechanism. Second, more recently, in-situ transmission electron microscope studies of nano-indentation experiments have been useful in understanding the dislocation nucleation mechanism in real materials. Third, considerable theoretical understanding has come largely from various types of simulation studies such as molecular dynamics (MD) simulations, dis¬location dynamics simulations and multiscale modeling simulations (using MD together with dislocation dynamics simulations). A major advantage of simulation methods is their ability to include a range of dislocation mechanisms participating in the evolution of dislocation microstructure starting from the nucleation of a dislocation, its multiplication, formation of locks, junctions etc. However, this advantage is offset by the serious limitations set by short time scales inherent to the above mentioned simulations and the limited size of simulated volumes that can be implemented. Thus, simulation approaches cannot impose experimental parameters such as the indentation rates or radius of the indenter and thickness of the sample, for example in MD simulations. Indeed, the imposed deformation rates are often several orders of magnitude higher than the experimental rates. Consequently, the predicted values of force, indentation depth etc., differ considerably from those reported by experiments. For these reasons, the relevance of these simulations to real materials has been questioned. While several simulations, particularly MD simulation predict several force drops, there are no simulations that predict displacement jumps seen in LC mode experiments. The inability of simulation methods to adopt experimental parameters and the mismatch of the predicted numbers with experiments is main motivation for devising an alternate framework to simulations that can adopt experimental parameters and predict numbers that are comparable to experiments. The basic premise of our approach is that describing time evolution of the relevant variables should be adequate to capture most generic features of nano and micro-indentation phenomenon. In the particular case under study, this point of view is based on the following observation. While one knows that dislocations are the basic defects responsible for plastic deformation occurring inside the sample, the load-indentation depth curve does not include any information about the spatial location of dislocation activity inside the sample. In fact, the measured load and displacement are sample averaged response of the dislocation activity in the sample. This suggests that it should be adequate to use sample averaged dislocation densities to obtain load-indentation depth curve. Keeping this in mind, we devise a method for calculating the contribution from plastic deformation arising from dislocation activity in the entire sample. This is done by setting up rate equations for the relevant sample averaged dislocation densities. The first problem we consider is the force/load fluctuations in displacement controlled nano-indentation. We devise a novel approach that combines the power of nonlinear dynamics with the evolution equations for the mobile and forest dislocation densities. Since the force serrations result from plastic deformation occurring inside the sample, we devise a method for calculating this contribution by setting-up a system of coupled nonlinear time evolution equations for the mobile and forest dislocation densities. The approach follows closely the steps used in the Anantha krishna (AK) model for the Portevin-Le Chatelier (PLC) effect. The model includes nucleation, multiplication and propagation of dislocation loops in the time evolution equation for the mobile dislocation density. We also include other well known dislocation transformation mechanisms to forest dislocation. Several of these dislocation mechanisms are drawn from the AK model for the PLC effect. To illustrate the ability of the model to predict force fluctuations that match experiments, we use the work of Kiely at that employs a spherical indenter. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rate, the radius the indenter etc. The model predicts all the generic features of nano-indentation such as the Hertzian elastic branch followed by several force drops of decreasing magnitudes, and residual plas¬ticity after unloading. The stress corresponding to the elastic force maximum is close to the yield stress of an ideal solid. The predicted values for all the quantities are close to those reported by experiments. Our model allows us to address the indentation-size effect including the ambiguity in defining the hardness in the force drop dominated regime. At large indentation depths where the load drops disappear, the hardness shows decreasing trend, though marginal. The second problem we consider is the load controlled mode of indentation where sev¬eral displacement jumps of decreasing magnitudes are seen. Even though, the LC mode is routinely used in nano-indentation experiments, there are no models or simulations that predict the generic features of force-displacement curves, in particular, the existence of sev¬eral displacement jumps of decreasing magnitudes. The basic reason for this is the inability of these methods to impose constant load rate during displacement jumps. We then show that an extension of the model for the DC mode predicts all the generic features when the model is appropriately coupled to an equation defining the load rate. Following the model for DC mode, we retain the system of coupled nonlinear time evolution equations for mobile and forest dislocation densities that includes nucleation, multiplication, and propagation threshold mechanisms for mobile dislocations, and other dislocation transformation mechanisms. The commonly used Berkovich indenter is considered. The equations are then coupled to the force rate equation. We demonstrate that the model predicts all the generic features of the LC mode nano-indentation such as the existence of an initial elastic branch followed by several displacement jumps of decreasing magnitudes, and residual plasticity after unloading for a range of model parameter values. In this range, the predicted values of the load, displacement jumps etc., are similar to those found in experiments. Further, optimized set of parameter values can be easily determined that provide a good fit to the load-indentation depth curve of Gouldstone et al for single crystals of Aluminum. The stress corresponding to the maximum force on the Berkovich elastic branch is close to the theoretical yield stress. We also elucidate the ambiguity in defining hardness at nanometer scales where the displacement jumps dominate. The approach also provides insights into several open questions. The third problem we consider is the indentation size effect. The conventional definition of hardness is that it is the ratio of the load to the residual imprint area. The latter is determined by the residual plastic indentation depth through area-depth relation. Yet, the residual plastic indentation depth that is a measure of dislocation mobility, never enters into most hardness models. Rather, the conventional hardness models are based on the Taylor relation for the flow stress that characterizes the resistance to dislocation motion. This is a complimentary property to mobility. Our idea is to provide an alternate way of explaining the indentation size effect by devising a framework that directly calculates the residual plastic indentation depth by integrating the Orowan expression for the plastic strain rate. Following our general approach to plasticity problems, we set-up a system of coupled nonlinear time evolution equations for the mobile, forest (or the SSD) and GND densities. The model includes dislocation multiplication and other well known dislocation transformation mechanisms among the three types of dislocations. The main contributing factor for the evolution of the GND density is determined by the mean strain gradient and the number of sites in the contact area that can activate dislocation loops of a certain size. The equations are then coupled to the load rate equation. The ability of the approach is illustrated by adopting experimental parameters such as the indentation rates, the geometrical quantities defining the Berkovich indenter including the nominal tip radius and other parameters. The hardness is obtained by calculating the residual plastic indentation depth after unloading by integrating the Orowan expression for the plastic strain rate. We demonstrate that the model predicts all features of the indentation size effect, namely, the increase in the hardness with decreasing indentation depth and the linear relation between the square of the hardness and inverse of the indentation depth, for all but 200nm, for a range of parameter values. The model also predicts deviation from the linear relation of H2 as a function of 1/z for smaller depths consistent with experiments. We also show that it is straightforward to obtain optimized parameter values that give a good fit to polycrystalline cold-worked copper and single crystals of silver. Our approach provides an alternate way of understanding the hardness and indentation size effect on the basis of the Orowan equation for plastic flow. This approach must be contrasted with most models of hardness that use the SSD and GND densities as parameters. The thesis is organized as follows. The first Chapter is devoted to background material that covers physical aspects of different kinds of plastic deformation relevant for the thesis. These include the conventional yield phenomenon and the intermittent plastic deformation in bulk materials in alloys exhibiting the Portevin-Le Chatelier (PLC) effect. We then provide background material on nano-and micro-indentation, both experimental aspects and the current status of the DC controlled and LC controlled modes of nano-indentation. Results of simulation methods are briefly summarized. The chapter also provides a survey of hardness models and the indentation size effect. A critical survey of experiments on dislocation microsructure that contradict / support certain predictions of the NixGao model. The current status of numerical simulations are also given. The second Chapter is devoted to introducing the basic steps in modeling plastic deformation using nonlinear dynamical approach. In particular, we describe how the time evolution equations are constructed based on known dislocation mechanisms such as nucleation, multiplication formations of junctions etc. We then consider a model for the continuous yield phenomenon that involves only the mobile and forest densities coupled to constant strain rate condition. This problem is considered in some detail to illustrate how the approach can be used for modeling nano-indentation and indentation size effect. The third Chapter deals with a model for displacement controlled nano-indentation. The fourth Chapter is devoted to adopting these equation to the load controlled mode of nano¬indentation. The fifth Chapter is devoted to modeling the indentation size effect based on calculating residual plastic indentation depth after unloading by using the Orowan’s expression for the plastic strain rate. We conclude the thesis with a Summary, Discussion and Conclusions.
    APA, Harvard, Vancouver, ISO, and other styles
    50

    Gajraj, Rhiad. "A Study of Drug Transport in the Vitreous Humor: Effect of Drug Size; Comparing Micro- and Macro-scale diffusion; Assessing Vitreous Models; and Obtaining In Vivo Data." Thesis, 2012. http://hdl.handle.net/1807/33202.

    Full text
    Abstract:
    Treatment of vision impairing diseases involves drug transport through the vitreous humor. Diffusion cells were used to measure macro-scale (mutual) diffusivity (Dm) to understand how solute size affects diffusion through the vitreous humor of rabbit and porcine eyes. Solutes examined included timolol maleate, dexamethasone sodium phosphate (DMSP), sodium fluorescein, and FITC-dextrans (4, 40, and 150kDa). Diffusivity was inversely dependent on solute size. The Dm's of small solutes in the vitreous were 30 – 65% of that in PBS, while the Dm's of large solutes were 40 – 60% of that in PBS. Extrapolations to the human eye produced similar results using diffusivities based on either species. We used Diffusion Ordered NMR Spectroscopy to measure micro-scale (self) diffusivity (Ds) of DMSP through vitreous humor. The Ds and Dm were significantly different in PBS, but similar in vitreous. A method for obtaining in vivo imagery and data of vitreous fluorophore distribution is also presented.
    APA, Harvard, Vancouver, ISO, and other styles
    We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

    To the bibliography