Academic literature on the topic 'Skeletal muscle dysfunction and wasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Skeletal muscle dysfunction and wasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Skeletal muscle dysfunction and wasting"
Hyatt, Hayden W., and Scott K. Powers. "Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity." Antioxidants 10, no. 4 (April 11, 2021): 588. http://dx.doi.org/10.3390/antiox10040588.
Full textMan, William D. C., Paul Kemp, John Moxham, and Michael I. Polkey. "Exercise and muscle dysfunction in COPD: implications for pulmonary rehabilitation." Clinical Science 117, no. 8 (August 24, 2009): 281–91. http://dx.doi.org/10.1042/cs20080660.
Full textIgnatieva, Elena, Natalia Smolina, Anna Kostareva, and Renata Dmitrieva. "Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype." International Journal of Molecular Sciences 22, no. 14 (July 8, 2021): 7349. http://dx.doi.org/10.3390/ijms22147349.
Full textMan, William D. C., Paul Kemp, John Moxham, and Michael I. Polkey. "Skeletal muscle dysfunction in COPD: clinical and laboratory observations." Clinical Science 117, no. 7 (August 17, 2009): 251–64. http://dx.doi.org/10.1042/cs20080659.
Full textConte, Elena, Elena Bresciani, Laura Rizzi, Ornella Cappellari, Annamaria De Luca, Antonio Torsello, and Antonella Liantonio. "Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies." International Journal of Molecular Sciences 21, no. 4 (February 13, 2020): 1242. http://dx.doi.org/10.3390/ijms21041242.
Full textÁbrigo, Johanna, Alvaro A. Elorza, Claudia A. Riedel, Cristian Vilos, Felipe Simon, Daniel Cabrera, Lisbell Estrada, and Claudio Cabello-Verrugio. "Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia." Oxidative Medicine and Cellular Longevity 2018 (2018): 1–17. http://dx.doi.org/10.1155/2018/2063179.
Full textHardee, Justin P., Ryan N. Montalvo, and James A. Carson. "Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/8018197.
Full textFurrer, Regula, and Christoph Handschin. "Muscle Wasting Diseases: Novel Targets and Treatments." Annual Review of Pharmacology and Toxicology 59, no. 1 (January 6, 2019): 315–39. http://dx.doi.org/10.1146/annurev-pharmtox-010818-021041.
Full textSilva, Kleiton Augusto Santos, Thaysa Ghiarone, Kathy Schreiber, DeAna Grant, Tommi White, Madlyn I. Frisard, Sergiy Sukhanov, Bysani Chandrasekar, Patrice Delafontaine, and Tadashi Yoshida. "Angiotensin II suppresses autophagy and disrupts ultrastructural morphology and function of mitochondria in mouse skeletal muscle." Journal of Applied Physiology 126, no. 6 (June 1, 2019): 1550–62. http://dx.doi.org/10.1152/japplphysiol.00898.2018.
Full textLeduc-Gaudet, Jean-Philippe, Dominique Mayaki, Olivier Reynaud, Felipe E. Broering, Tomer J. Chaffer, Sabah N. A. Hussain, and Gilles Gouspillou. "Parkin Overexpression Attenuates Sepsis-Induced Muscle Wasting." Cells 9, no. 6 (June 11, 2020): 1454. http://dx.doi.org/10.3390/cells9061454.
Full textDissertations / Theses on the topic "Skeletal muscle dysfunction and wasting"
Zhang, Yan. "Cytokines and skeletal muscle wasting." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ47124.pdf.
Full textTarabees, Reda Zakaria Ibrahim. "Endotoxin induced muscle wasting in avian and murine skeletal muscle." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13001/.
Full textPuthucheary, Z. A. "Acute skeletal muscle wasting in the critically ill." Thesis, University College London (University of London), 2014. http://discovery.ucl.ac.uk/1425686/.
Full textPickering, Warren Paul. "Regulation of metabolic acidosis-induced skeletal muscle wasting." Thesis, University of Leicester, 2005. http://hdl.handle.net/2381/30504.
Full textAydogdu, Tufan. "STAT3 Regulation of Skeletal Muscle Wasting in Cancer Cachexia." Scholarly Repository, 2010. http://scholarlyrepository.miami.edu/oa_dissertations/652.
Full textAntunes, Diana Sofia Ribeiro Duarte. "Lipidomic and proteomic in cancer-related skeletal muscle wasting." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11613.
Full textA caquexia associada ao cancro é uma condição fisiopatológica complexa caraterizada por acentuada perda de massa muscular.Recentemente, esta situação foi associada à disfunção mitocondrial. A relação e o papel do proteoma e lipidoma mitocondrial e a funcionalidade deste organelo permanece pouco compreendida, em particular no contexto do catabolismo muscular associado ao cancro. No sentido de melhor compreender os mecanismos moleculares subjacentes às alterações no músculo esquelético na caquexia associada ao cancro, utilizaram-se 23 ratos Wistar divididos aleatoriamente em dois grupos: com cancro da bexiga induzido pela exposição durante 20 semanas a N-butil-N-(4-hidroxibutil)-nitrosamina (grupo BBN, n=13) ou saudáveis (CONT, n=10). No final do protocolo verificou-se que os animais do grupo BBN apresentavam uma perda significativa de peso corporal e de massa muscular. Também foi observado uma diminuição da atividade da fosforilação oxidativa de mitocôndrias isoladas do músculo gastrocnemius. a qual foi acompanhada por alterações do perfil de fosfolípidos (PL) da mitocôndria. A alteração do lipidoma mitocondrial caraterizou-se pelo aumento do teor relativo de fosfatidilcolinas (PC) e fosfatidilserina (PS) e uma redução no teor relativo de cardiolipina (CL), ácido fosfatídico (PA), fosfatidilglicerol (PG) e fosfatidilinositol (PI). A análise realizada por GC-FID e HPLC-ESI-MS evidenciou ainda um aumento de ácidos gordos polinsaturados, com um aumento destacado de C22:6 em PC, PE e PS. A diminuição de CL foi acompanhada por diminuição na expressão de citocromo c e aumento da razão Bax/Bcl2, sugestivo de maior suscetibilidade à apoptose e stress oxidativo. Embora em níveis mais elevados, a UCP-3 não parece proteger as proteínas mitocondriais da lesão oxidativa atendendo ao aumento do teor de proteínas carboniladas. Em conclusão, a remodelação de PL da mitocôndria parece estar associada à disfunção da OXPHOS e, consequentemente, do catabolismo muscular associado ao cancro.
Cancer cachexia (CC) is a complex pathophysiological condition characterized by a marked muscle wasting. Recently, this situation has been associated to mitochondrial dysfunction. The interplay and role of mitochondrial proteome and lipidome and also the functionality of this organelle remains poorly understood in the context of cancer-related muscle wasting. To better understand the molecular mechanisms underlying skeletal muscle wasting, 23 Wistar rats were randomly divided in two groups: animals with bladder cancer induced by the exposition to N-butyl-N-(4-hydroxybutyl)-nitrosamine for 20 weeks (BBN, n=13) or healthy ones (CONT, n=10). At the end of the experimental protocol, BBN animals demonstrated a significant body weight and muscle mass loss and was also observed an decreased activity of oxidative phosphorylation in mitochondria isolated from gastrocnemius muscle, which was accompanied by alterations of this organelle’s phospholipids (PL) profile. The mitochondrial lipidome alterations were characterized by an increase of the relative content of phosphatidylcholines (PC) and phosphatidylserine (PS) and a decrease of cardiolipin (CL), phosphatidic acid (PA), phosphatidylglycerol (PG) and phosphatidylinositol (PI). GC-FID and HPLC-ESI-MS analysis also showed an increase of polyunsaturated fatty acids, particularly of C22:6 in PC, PE and PS. The observed decrease in CL class was accompanied by a decrease in the expression of cytochrome c, and an increase of the ratio Bax/Bcl-2, suggestive of a greater susceptibility to apoptosis and oxidative stress. Although in higher levels, UCP-3 does not seem to protect mitochondrial proteins from oxidative damage considering the increased content of carbonylated protein. In conclusion, the PL remodeling seems to be associated to OXPHOS dysfunction and consequently to muscle catabolism associated with cancer.
Aare, Sudhakar Reddy. "Intensive Care Unit Muscle Wasting : Skeletal Muscle Phenotype and Underlying Molecular Mechanisms." Doctoral thesis, Uppsala universitet, Klinisk neurofysiologi, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-180374.
Full textMoore, Tamara W. I. "The role of USP19 in denervation induced skeletal muscle wasting." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=94923.
Full textL'atrophie musculaire est une grave complication qui peut être fatale dans plusieurs maladies comme le cancer, le SIDA ou les maladies neuromusculaires. Le système ubiquitine-protéasome (UPS) est le mécanisme le plus impliqué dans la dégradation des protéines myofibrillaires durant l'atrophie. Plusieurs études ont démontré l'importance de certaines enzymes catalysant la conjugaison de l'ubiquitine aux protéines musculaires. Parcontre, le rôle des enzymes de déubiquitination durant l'atrophie musculaire est encore très peu connu. Notre laboratoire a précédemment identifié USP19, une enzyme de déubiquitination, qui est régulée à la hausse en réponse à plusieurs stimuli d'atrophie musculaire in vivo et qui est aussi capable de réguler indirectement des protéines myofibrillaires dans des cellules musculaires in vitro. Toutefois, le rôle de USP19 dans l'atrophie musculaire in vivo est encore inconnu. Afin d'aborder cette question, j'ai caractérisé le phénotype de souris dont le gène USP19 a été inactivé (KO) et j'ai déterminé les effets d'une dénervation des muscles de la patte postérieur sur ces souris KO en mesurant divers paramètres anatomiques et structuraux. Les souris USP19 KO possèdent une masse du muscle gastrocnemius (GAS) légèrement plus grande que les souris contrôles (WT) avec une tendance vers des fibers plus grosses et un contenu protéique plus élevé. Après dénervation, les muscles squelletiques des souris KO étaient 30% plus lourds que ceux des souris WT et ce dans le GAS ainsi que dans le tibialis postérieur (TA). Cette économie significative corrèle bien avec une augmentation de 30% du contenu protéique dans les muscles KO (GAS) comparé aux muscles WT, après dénervation. Aussi, les niveaux de la protéine myofibrillaire tropomyosine étaient significativement plus élevés dans le GAS KO que dans que dans le GAS WT, après dénervation, ce qui est consistant avec des études postérieures de siRNA
Rosa, Hannah Sophia. "Pathogenesis of mitochondrial dysfunction in skeletal muscle." Thesis, University of Newcastle upon Tyne, 2017. http://hdl.handle.net/10443/3969.
Full textPattison, J. Scott. "Understanding muscle wasting through studies of gene expression and function." Free to MU Campus, others may purchase, 2004. http://wwwlib.umi.com/cr/mo/fullcit?p3164536.
Full textBooks on the topic "Skeletal muscle dysfunction and wasting"
Pinheiro, Carlos Hermano J., and Lucas Guimarães-Ferreira, eds. Frontiers in Skeletal Muscle Wasting, Regeneration and Stem Cells. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-832-0.
Full textChiou, Michael, and John Bach. Physical Medicine Interventions for Skeletal and Cardiac Muscle Dysfunction. Chiou, Michael, 2021.
Find full textChiou, Michael, and John Bach. Physical Medicine Interventions for Skeletal and Cardiac Muscle Dysfunction. Chiou, Michael, 2021.
Find full textHall, Andrew, and Shamima Rahman. Mitochondrial diseases and the kidney. Edited by Neil Turner. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0340.
Full textHough, Catherine L. The Impact of Critical Illness on Skeletal Muscle Structure. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199653461.003.0034.
Full textChiou, Michael, and John Bach. Physical Medicine Interventions for Skeletal and Cardiorespiratory Muscle Dysfunction: The Conditions and Their Medical and Surgical Management. Chiou, Michael, 2020.
Find full textStevens, Robert D. Introduction: Biological Mechanisms of Injury and Repair. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199653461.003.0026.
Full textHart, Nicholas, and Tarek Sharshar. Diagnosis, assessment, and management of ICU-acquired weakness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0248.
Full textManlapaz, Mariel, and Perin Kothari. Neuromuscular Disorders and Anesthesia. Edited by David E. Traul and Irene P. Osborn. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190850036.003.0029.
Full textYaqoob, Muhammad M. Acidosis in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0148.
Full textBook chapters on the topic "Skeletal muscle dysfunction and wasting"
Caron, Marc-André, Marie-Eve Thériault, Richard Debigaré, and François Maltais. "Skeletal Muscle Dysfunction." In Chronic Obstructive Pulmonary Disease, 137–59. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-60761-673-3_9.
Full textBuck, M., and M. Chojkier. "Oxidative stress and muscle wasting of cachexia." In Oxidative Stress in Skeletal Muscle, 273–82. Basel: Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8958-2_17.
Full textHerbert, Eric K., Saul R. Herbert, and Karl E. Herbert. "Skeletal Muscle Mitochondrial Toxicity." In Mitochondrial Dysfunction Caused by Drugs and Environmental Toxicants, 111–31. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119329725.ch8.
Full textGosselin, Luc E. "Skeletal Muscle Collagen: Age, Injury and Disease." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 159–72. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_8.
Full textO’Connell, Kathleen, Philip Doran, Joan Gannon, Pamela Donoghue, and Kay Ohlendieck. "Proteomic and Biochemical Profiling of Aged Skeletal Muscle." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 259–87. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_12.
Full textDelbono, Osvaldo. "Excitation-Contraction Coupling Regulation in Aging Skeletal Muscle." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 113–34. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_6.
Full textRoth, Stephen M. "Genetic Variation and Skeletal Muscle Traits: Implications for Sarcopenia." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 223–57. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_11.
Full textHepple, Russell T. "Alterations in Mitochondria and Their Impact in Aging Skeletal Muscle." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 135–58. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_7.
Full textMuoio, Deborah M., and Timothy R. Koves. "Lipid-Induced Metabolic Dysfunction in Skeletal Muscle." In Novartis Foundation Symposia, 24–46. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470985571.ch4.
Full textRussell, Aaron P., and Bertrand Lèger. "Age-Related Changes in the Molecular Regulation of Skeletal Muscle Mass." In Sarcopenia – Age-Related Muscle Wasting and Weakness, 207–21. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9713-2_10.
Full textConference papers on the topic "Skeletal muscle dysfunction and wasting"
Burke, Hannah, C. Mirella Spalluto, Doriana Cellura, Karl J. Staples, and Tom M. A. Wilkinson. "Role of exosomal microRNA in driving skeletal muscle wasting in COPD." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.oa2930.
Full textPolverino, F., B. D'Agostino, C. Santoriello, and M. Polverino. "Cytochrome Oxidase Activity and Skeletal Muscle Dysfunction in COPD." In American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a4205.
Full textPoberezhets, Vitalii, Szymon Skoczyński, Anna Demchuk, Aleksandra Oraczewska, Ewelina Tobiczyk, Yuriy Mostovoy, and Adam Barczyk. "Skeletal muscle dysfunction among COPD patients in Eastern Europe." In ERS International Congress 2020 abstracts. European Respiratory Society, 2020. http://dx.doi.org/10.1183/13993003.congress-2020.2476.
Full textmaurya, abhishek, ankit patel, and Atul Tiwari. "Evaluation of Skeletal Muscle Dysfunction in COPD OSA Overlap Syndrome." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa2312.
Full textPoberezhets, Vitalii, Yuriy Mostovoy, and Hanna Demchuk. "Features of skeletal muscle dysfunction in COPD patients with obesity." In Annual Congress 2015. European Respiratory Society, 2015. http://dx.doi.org/10.1183/13993003.congress-2015.pa684.
Full textKrall, J. T. W., L. Belfield, L. D. Purcell, R. D. Stapleton, M. E. Poynter, M. Toth, C. Liu, K. Gibbs, and D. C. Files. "Leukocyte Kinetics in Acute Lung Injury (ALI)-Associated Skeletal Muscle Wasting and Recovery." In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a2659.
Full textFiles, D. Clark, Laura Johnston, Neil R. Aggarwal, Brian T. Garibaldi, V. Sidhaye, Eric Chau, Ronald Cohn, Franco R. D'Alessio, Landon S. King, and Michael T. Crow. "Skeletal Muscle Wasting In Acute Lung Injury Is Suppressed In The Myostatin Null Mouse." In American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a6610.
Full textPoberezhets, V., A. Demchuk, and Y. Mostovoy. "Compliance to pharmacological therapy of COPD patients with skeletal muscle dysfunction." In ERS International Congress 2022 abstracts. European Respiratory Society, 2022. http://dx.doi.org/10.1183/13993003.congress-2022.3992.
Full textShi, Lingyan, Phyllis Chang, Audrey Zeng, Yajuan Li, and Bryan Bergman. "SRS imaging of lipid-associated mitochondrial dysfunction in human skeletal muscle." In Multiphoton Microscopy in the Biomedical Sciences XXII, edited by Ammasi Periasamy, Peter T. So, and Karsten König. SPIE, 2022. http://dx.doi.org/10.1117/12.2614093.
Full textPoberezhets, Vitalii, Yuriy Mostovoy, and Anna Demchuk. "COPD patients with skeletal muscle dysfunction VS patients without impairment of skeletal muscle. Comparing features of COPD and life quality." In ERS International Congress 2019 abstracts. European Respiratory Society, 2019. http://dx.doi.org/10.1183/13993003.congress-2019.pa4309.
Full textReports on the topic "Skeletal muscle dysfunction and wasting"
Jalil, Yorschua, and Ruvistay Gutierrez. Myokines secretion and their role in critically ill patients. A scoping review protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2021. http://dx.doi.org/10.37766/inplasy2021.9.0048.
Full text