Journal articles on the topic 'Skeletal muscle dysfunction and wasting'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Skeletal muscle dysfunction and wasting.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hyatt, Hayden W., and Scott K. Powers. "Mitochondrial Dysfunction Is a Common Denominator Linking Skeletal Muscle Wasting Due to Disease, Aging, and Prolonged Inactivity." Antioxidants 10, no. 4 (April 11, 2021): 588. http://dx.doi.org/10.3390/antiox10040588.
Full textMan, William D. C., Paul Kemp, John Moxham, and Michael I. Polkey. "Exercise and muscle dysfunction in COPD: implications for pulmonary rehabilitation." Clinical Science 117, no. 8 (August 24, 2009): 281–91. http://dx.doi.org/10.1042/cs20080660.
Full textIgnatieva, Elena, Natalia Smolina, Anna Kostareva, and Renata Dmitrieva. "Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype." International Journal of Molecular Sciences 22, no. 14 (July 8, 2021): 7349. http://dx.doi.org/10.3390/ijms22147349.
Full textMan, William D. C., Paul Kemp, John Moxham, and Michael I. Polkey. "Skeletal muscle dysfunction in COPD: clinical and laboratory observations." Clinical Science 117, no. 7 (August 17, 2009): 251–64. http://dx.doi.org/10.1042/cs20080659.
Full textConte, Elena, Elena Bresciani, Laura Rizzi, Ornella Cappellari, Annamaria De Luca, Antonio Torsello, and Antonella Liantonio. "Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies." International Journal of Molecular Sciences 21, no. 4 (February 13, 2020): 1242. http://dx.doi.org/10.3390/ijms21041242.
Full textÁbrigo, Johanna, Alvaro A. Elorza, Claudia A. Riedel, Cristian Vilos, Felipe Simon, Daniel Cabrera, Lisbell Estrada, and Claudio Cabello-Verrugio. "Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia." Oxidative Medicine and Cellular Longevity 2018 (2018): 1–17. http://dx.doi.org/10.1155/2018/2063179.
Full textHardee, Justin P., Ryan N. Montalvo, and James A. Carson. "Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism." Oxidative Medicine and Cellular Longevity 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/8018197.
Full textFurrer, Regula, and Christoph Handschin. "Muscle Wasting Diseases: Novel Targets and Treatments." Annual Review of Pharmacology and Toxicology 59, no. 1 (January 6, 2019): 315–39. http://dx.doi.org/10.1146/annurev-pharmtox-010818-021041.
Full textSilva, Kleiton Augusto Santos, Thaysa Ghiarone, Kathy Schreiber, DeAna Grant, Tommi White, Madlyn I. Frisard, Sergiy Sukhanov, Bysani Chandrasekar, Patrice Delafontaine, and Tadashi Yoshida. "Angiotensin II suppresses autophagy and disrupts ultrastructural morphology and function of mitochondria in mouse skeletal muscle." Journal of Applied Physiology 126, no. 6 (June 1, 2019): 1550–62. http://dx.doi.org/10.1152/japplphysiol.00898.2018.
Full textLeduc-Gaudet, Jean-Philippe, Dominique Mayaki, Olivier Reynaud, Felipe E. Broering, Tomer J. Chaffer, Sabah N. A. Hussain, and Gilles Gouspillou. "Parkin Overexpression Attenuates Sepsis-Induced Muscle Wasting." Cells 9, no. 6 (June 11, 2020): 1454. http://dx.doi.org/10.3390/cells9061454.
Full textDemos-Davies, Kimberly M., Bradley S. Ferguson, Maria A. Cavasin, Jennifer H. Mahaffey, Sarah M. Williams, Jessica I. Spiltoir, Katherine B. Schuetze, et al. "HDAC6 contributes to pathological responses of heart and skeletal muscle to chronic angiotensin-II signaling." American Journal of Physiology-Heart and Circulatory Physiology 307, no. 2 (July 15, 2014): H252—H258. http://dx.doi.org/10.1152/ajpheart.00149.2014.
Full textBlackwell, Thomas A., Igor Cervenka, Bhuwan Khatri, Jacob L. Brown, Megan E. Rosa-Caldwell, David E. Lee, Richard A. Perry, et al. "Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice." Physiological Genomics 50, no. 12 (December 1, 2018): 1071–82. http://dx.doi.org/10.1152/physiolgenomics.00061.2018.
Full textAdams, Volker, Victoria Gußen, Sergey Zozulya, André Cruz, Anselmo Moriscot, Axel Linke, and Siegfried Labeit. "Small-Molecule Chemical Knockdown of MuRF1 in Melanoma Bearing Mice Attenuates Tumor Cachexia Associated Myopathy." Cells 9, no. 10 (October 11, 2020): 2272. http://dx.doi.org/10.3390/cells9102272.
Full textMaestraggi, Quentin, Benjamin Lebas, Raphaël Clere-Jehl, Pierre-Olivier Ludes, Thiên-Nga Chamaraux-Tran, Francis Schneider, Pierre Diemunsch, Bernard Geny, and Julien Pottecher. "Skeletal Muscle and Lymphocyte Mitochondrial Dysfunctions in Septic Shock Trigger ICU-Acquired Weakness and Sepsis-Induced Immunoparalysis." BioMed Research International 2017 (2017): 1–12. http://dx.doi.org/10.1155/2017/7897325.
Full textPuthucheary, Zudin, Stephen Harridge, and Nicholas Hart. "Skeletal muscle dysfunction in critical care: Wasting, weakness, and rehabilitation strategies." Critical Care Medicine 38 (October 2010): S676—S682. http://dx.doi.org/10.1097/ccm.0b013e3181f2458d.
Full textDaou, Hélène N. "Exercise as an anti-inflammatory therapy for cancer cachexia: a focus on interleukin-6 regulation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 318, no. 2 (February 1, 2020): R296—R310. http://dx.doi.org/10.1152/ajpregu.00147.2019.
Full textBeltrà, Marc, Fabrizio Pin, Riccardo Ballarò, Paola Costelli, and Fabio Penna. "Mitochondrial Dysfunction in Cancer Cachexia: Impact on Muscle Health and Regeneration." Cells 10, no. 11 (November 12, 2021): 3150. http://dx.doi.org/10.3390/cells10113150.
Full textAquila, Giorgio, Andrea David Re Cecconi, Jeffrey J. Brault, Oscar Corli, and Rosanna Piccirillo. "Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia." Cells 9, no. 12 (November 24, 2020): 2536. http://dx.doi.org/10.3390/cells9122536.
Full textKaneki, Masao, Masayuki Kobayashi, Shingo Kasamatsu, Shingo Yasuhara, and Shohei Shinozaki. "840 Myostatin Deficiency Inhibits Muscle Wasting and Improves Bacterial Clearance and Survival in Septic Mice." Journal of Burn Care & Research 41, Supplement_1 (March 2020): S259—S260. http://dx.doi.org/10.1093/jbcr/iraa024.413.
Full textShemesh, Adi, Yichen Wang, Yingjuan Yang, Gong-She Yang, Danielle E. Johnson, Jonathan M. Backer, Jeffrey E. Pessin, and Haihong Zong. "Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 307, no. 10 (November 15, 2014): R1251—R1259. http://dx.doi.org/10.1152/ajpregu.00212.2014.
Full textSpaulding, HR, C. Ballmann, JC Quindry, MB Hudson, and JT Selsby. "Autophagy in the heart is enhanced and independent of disease progression in mus musculus dystrophinopathy models." JRSM Cardiovascular Disease 8 (January 2019): 204800401987958. http://dx.doi.org/10.1177/2048004019879581.
Full textBasic, Vladimir T., Elsa Tadele, Ali Ateia Elmabsout, Hongwei Yao, Irfan Rahman, Allan Sirsjö, and Samy M. Abdel-Halim. "Exposure to cigarette smoke induces overexpression of von Hippel-Lindau tumor suppressor in mouse skeletal muscle." American Journal of Physiology-Lung Cellular and Molecular Physiology 303, no. 6 (September 15, 2012): L519—L527. http://dx.doi.org/10.1152/ajplung.00007.2012.
Full textFeige, Jerome. "Nutritional Strategies to Counteract Mitochondrial Dysfunction and NAD+ Deficiency in Human Sarcopenia." Innovation in Aging 4, Supplement_1 (December 1, 2020): 764–65. http://dx.doi.org/10.1093/geroni/igaa057.2760.
Full textBrzeszczyńska, Joanna, Filip Brzeszczyński, David F. Hamilton, Robin McGregor, and A. Hamish R. W. Simpson. "Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis." Bone & Joint Research 9, no. 11 (November 1, 2020): 798–807. http://dx.doi.org/10.1302/2046-3758.911.bjr-2020-0178.r1.
Full textPereira, Marcelo G., Vanessa A. Voltarelli, Gabriel C. Tobias, Lara de Souza, Gabriela S. Borges, Ailma O. Paixão, Ney R. de Almeida, et al. "Aerobic Exercise Training and In Vivo Akt Activation Counteract Cancer Cachexia by Inducing a Hypertrophic Profile through eIF-2α Modulation." Cancers 14, no. 1 (December 22, 2021): 28. http://dx.doi.org/10.3390/cancers14010028.
Full textRoy, Anirban, and Ashok Kumar. "ER Stress and Unfolded Protein Response in Cancer Cachexia." Cancers 11, no. 12 (December 3, 2019): 1929. http://dx.doi.org/10.3390/cancers11121929.
Full textLena, Alessia, Markus S. Anker, and Jochen Springer. "Muscle Wasting and Sarcopenia in Heart Failure—The Current State of Science." International Journal of Molecular Sciences 21, no. 18 (September 8, 2020): 6549. http://dx.doi.org/10.3390/ijms21186549.
Full textWiggs, Michael P., Anna G. Beaudry, and Michelle L. Law. "Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors." Cells 11, no. 12 (June 15, 2022): 1931. http://dx.doi.org/10.3390/cells11121931.
Full textMirzoev, Timur M., Kristina A. Sharlo, and Boris S. Shenkman. "The Role of GSK-3β in the Regulation of Protein Turnover, Myosin Phenotype, and Oxidative Capacity in Skeletal Muscle under Disuse Conditions." International Journal of Molecular Sciences 22, no. 10 (May 11, 2021): 5081. http://dx.doi.org/10.3390/ijms22105081.
Full textFonseca, Guilherme Wesley Peixoto da, Jerneja Farkas, Eva Dora, Stephan von Haehling, and Mitja Lainscak. "Cancer Cachexia and Related Metabolic Dysfunction." International Journal of Molecular Sciences 21, no. 7 (March 27, 2020): 2321. http://dx.doi.org/10.3390/ijms21072321.
Full textRusso, Cristina, Maria Stella Valle, Antonino Casabona, Lucia Spicuzza, Gianluca Sambataro, and Lucia Malaguarnera. "Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health." Biomedicines 10, no. 4 (April 14, 2022): 898. http://dx.doi.org/10.3390/biomedicines10040898.
Full textRomagnoli, Cecilia, Teresa Iantomasi, and Maria Luisa Brandi. "Available In Vitro Models for Human Satellite Cells from Skeletal Muscle." International Journal of Molecular Sciences 22, no. 24 (December 8, 2021): 13221. http://dx.doi.org/10.3390/ijms222413221.
Full textNakazawa, Harumasa, Lai Ping Wong, Laura Shelton, Ruslan Sadreyev, and Masao Kaneki. "Farnesysltransferase Inhibitor Prevents Burn Injury-Induced Metabolome Changes in Muscle." Metabolites 12, no. 9 (August 27, 2022): 800. http://dx.doi.org/10.3390/metabo12090800.
Full textQuadrilatero, Joe, Stephen E. Alway, and Esther E. Dupont-Versteegden. "Skeletal muscle apoptotic response to physical activity: potential mechanisms for protection." Applied Physiology, Nutrition, and Metabolism 36, no. 5 (October 2011): 608–17. http://dx.doi.org/10.1139/h11-064.
Full textNakajima, Shibasaki, Sawaguchi, Haruyama, Kaneda, Nakajima, Hasegawa, et al. "Growth Differentiation Factor-15 (GDF-15) is a Biomarker of Muscle Wasting and Renal Dysfunction in Preoperative Cardiovascular Surgery Patients." Journal of Clinical Medicine 8, no. 10 (October 1, 2019): 1576. http://dx.doi.org/10.3390/jcm8101576.
Full textMinderis, Petras, Indrė Libnickienė, and Aivaras Ratkevičius. "MUSCLE WASTING AFTER 48 HOURS OF FOOD DEPRIVATION DIFFERS BETWEEN MOUSE STRAINS AND IS PROMOTED BY MYOSTATIN DYSFUNCTION." Baltic Journal of Sport and Health Sciences 2, no. 101 (2016): 53–60. http://dx.doi.org/10.33607/bjshs.v2i101.56.
Full textBallarò, Riccardo, Patrizia Lopalco, Valentina Audrito, Marc Beltrà, Fabrizio Pin, Roberto Angelini, Paola Costelli, et al. "Targeting Mitochondria by SS-31 Ameliorates the Whole Body Energy Status in Cancer- and Chemotherapy-Induced Cachexia." Cancers 13, no. 4 (February 18, 2021): 850. http://dx.doi.org/10.3390/cancers13040850.
Full textRezuş, Elena, Alexandra Burlui, Anca Cardoneanu, Ciprian Rezuş, Cătălin Codreanu, Mirela Pârvu, Gabriela Rusu Zota, and Bogdan Ionel Tamba. "Inactivity and Skeletal Muscle Metabolism: A Vicious Cycle in Old Age." International Journal of Molecular Sciences 21, no. 2 (January 16, 2020): 592. http://dx.doi.org/10.3390/ijms21020592.
Full textHeo, Ji-Won, and Sung-Eun Kim. "Comparative Transcriptomic Profiling of Organs Associated With Metabolic Dysfunction in Cancer-Induced Cachexia." Current Developments in Nutrition 5, Supplement_2 (June 2021): 501. http://dx.doi.org/10.1093/cdn/nzab041_016.
Full textMofarrahi, Mahroo, Ioanna Sigala, Theodoros Vassilokopoulos, Sharon Harel, Yeting Guo, Richard Debigare, Francois Maltais, and Sabah N. A. Hussain. "Angiogenesis-related factors in skeletal muscles of COPD patients: roles of angiopoietin-2." Journal of Applied Physiology 114, no. 9 (May 1, 2013): 1309–18. http://dx.doi.org/10.1152/japplphysiol.00954.2012.
Full textKlaude, Maria, Katarina Fredriksson, Inga Tjäder, Folke Hammarqvist, Bo Ahlman, Olav Rooyackers, and Jan Wernerman. "Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis." Clinical Science 112, no. 9 (April 2, 2007): 499–506. http://dx.doi.org/10.1042/cs20060265.
Full textSu, Zhen, Janet D. Klein, Jie Du, Harold A. Franch, Liping Zhang, Faten Hassounah, Matthew B. Hudson, and Xiaonan H. Wang. "Chronic kidney disease induces autophagy leading to dysfunction of mitochondria in skeletal muscle." American Journal of Physiology-Renal Physiology 312, no. 6 (June 1, 2017): F1128—F1140. http://dx.doi.org/10.1152/ajprenal.00600.2016.
Full textNeto Silva, Ivo, José Alberto Duarte, Aurélie Perret, Nicolas Dousse, Hannah Wozniak, Bernardo Bollen Pinto, Raphaël Giraud, and Karim Bendjelid. "Diaphragm dysfunction and peripheral muscle wasting in septic shock patients: Exploring their relationship over time using ultrasound technology (the MUSiShock protocol)." PLOS ONE 17, no. 3 (March 28, 2022): e0266174. http://dx.doi.org/10.1371/journal.pone.0266174.
Full textTintignac, Lionel A., Hans-Rudolf Brenner, and Markus A. Rüegg. "Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting." Physiological Reviews 95, no. 3 (July 2015): 809–52. http://dx.doi.org/10.1152/physrev.00033.2014.
Full textCampelj, Dean G., Cara A. Timpani, Aaron C. Petersen, Alan Hayes, Craig A. Goodman, and Emma Rybalka. "The Paradoxical Effect of PARP Inhibitor BGP-15 on Irinotecan-Induced Cachexia and Skeletal Muscle Dysfunction." Cancers 12, no. 12 (December 17, 2020): 3810. http://dx.doi.org/10.3390/cancers12123810.
Full textBarreiro, Esther, Ester Puig-Vilanova, Anna Salazar-Degracia, Sergi Pascual-Guardia, Carme Casadevall, and Joaquim Gea. "The phosphodiesterase-4 inhibitor roflumilast reverts proteolysis in skeletal muscle cells of patients with COPD cachexia." Journal of Applied Physiology 125, no. 2 (August 1, 2018): 287–303. http://dx.doi.org/10.1152/japplphysiol.00798.2017.
Full textSupinski, G. S., J. Vanags, and L. A. Callahan. "Effect of proteasome inhibitors on endotoxin-induced diaphragm dysfunction." American Journal of Physiology-Lung Cellular and Molecular Physiology 296, no. 6 (June 2009): L994—L1001. http://dx.doi.org/10.1152/ajplung.90404.2008.
Full textLiu, Yuqing, Xiao Bi, Yumei Zhang, Yingdeng Wang, and Wei Ding. "Mitochondrial dysfunction/NLRP3 inflammasome axis contributes to angiotensin II-induced skeletal muscle wasting via PPAR-γ." Laboratory Investigation 100, no. 5 (December 19, 2019): 712–26. http://dx.doi.org/10.1038/s41374-019-0355-1.
Full textClark, Yvonne Y., Loren E. Wold, Laura A. Szalacha, and Donna O. McCarthy. "Ubiquinol Reduces Muscle Wasting but Not Fatigue in Tumor-Bearing Mice." Biological Research For Nursing 17, no. 3 (September 16, 2014): 321–29. http://dx.doi.org/10.1177/1099800414543822.
Full textPark, Sang Hee, Dong Seon Kim, Jieun Oh, Jeong-Ho Geum, Jung-Eun Kim, Su-Young Choi, Ji Hye Kim, and Jae Youl Cho. "Matricaria chamomilla (Chamomile) Ameliorates Muscle Atrophy in Mice by Targeting Protein Catalytic Pathways, Myogenesis, and Mitochondrial Dysfunction." American Journal of Chinese Medicine 49, no. 06 (January 2021): 1493–514. http://dx.doi.org/10.1142/s0192415x21500701.
Full text