Academic literature on the topic 'Skeletal Muscle Fibers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Skeletal Muscle Fibers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Skeletal Muscle Fibers"
Larson, Lauren, Jessica Lioy, Jordan Johnson, and Scott Medler. "Transitional Hybrid Skeletal Muscle Fibers in Rat Soleus Development." Journal of Histochemistry & Cytochemistry 67, no. 12 (September 11, 2019): 891–900. http://dx.doi.org/10.1369/0022155419876421.
Full textMattson, John P., Todd A. Miller, David C. Poole, and Michael D. Delp. "Fiber Composition and Oxidative Capacity of Hamster Skeletal Muscle." Journal of Histochemistry & Cytochemistry 50, no. 12 (December 2002): 1685–92. http://dx.doi.org/10.1177/002215540205001214.
Full textDonovan, C. M., and J. A. Faulkner. "Plasticity of skeletal muscle: regenerating fibers adapt more rapidly than surviving fibers." Journal of Applied Physiology 62, no. 6 (June 1, 1987): 2507–11. http://dx.doi.org/10.1152/jappl.1987.62.6.2507.
Full textEmerson, Geoffrey G., and Steven S. Segal. "Alignment of microvascular units along skeletal muscle fibers of hamster retractor." Journal of Applied Physiology 82, no. 1 (January 1, 1997): 42–48. http://dx.doi.org/10.1152/jappl.1997.82.1.42.
Full textBrunner, Florian, Annina Schmid, Ali Sheikhzadeh, Margareta Nordin, Jangwhon Yoon, and Victor Frankel. "Effects of Aging on Type II Muscle Fibers: A Systematic Review of the Literature." Journal of Aging and Physical Activity 15, no. 3 (July 2007): 336–48. http://dx.doi.org/10.1123/japa.15.3.336.
Full textCaiozzo, Vincent J., Michael J. Baker, Karen Huang, Harvey Chou, Ya Zhen Wu, and Kenneth M. Baldwin. "Single-fiber myosin heavy chain polymorphism: how many patterns and what proportions?" American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 285, no. 3 (September 2003): R570—R580. http://dx.doi.org/10.1152/ajpregu.00646.2002.
Full textWei, Wei, Chengwan Zha, Aiwen Jiang, Zhe Chao, Liming Hou, Honglin Liu, Ruihua Huang, and Wangjun Wu. "A Combined Differential Proteome and Transcriptome Profiling of Fast- and Slow-Twitch Skeletal Muscle in Pigs." Foods 11, no. 18 (September 14, 2022): 2842. http://dx.doi.org/10.3390/foods11182842.
Full textPaul, Angelika C., and Nadia Rosenthal. "Different modes of hypertrophy in skeletal muscle fibers." Journal of Cell Biology 156, no. 4 (February 11, 2002): 751–60. http://dx.doi.org/10.1083/jcb.200105147.
Full textBraund, Kyle G., Karen A. Amling, Jagjivan R. Mehta, Janet E. Steiss, and Carole Scholz. "Histochemical and morphometric study of fiber types in ten skeletal muscles of healthy young adult cats." American Journal of Veterinary Research 56, no. 3 (March 1, 1995): 349–57. http://dx.doi.org/10.2460/ajvr.1995.56.03.349.
Full textThabet, M., T. Miki, S. Seino, and J. M. Renaud. "Treadmill running causes significant fiber damage in skeletal muscle of KATP channel-deficient mice." Physiological Genomics 22, no. 2 (July 14, 2005): 204–12. http://dx.doi.org/10.1152/physiolgenomics.00064.2005.
Full textDissertations / Theses on the topic "Skeletal Muscle Fibers"
Bishop, Derron L. "Alterations in Z-line thickness following fast motoneuron transplantation onto slow twitch skeletal muscle fibers." Virtual Press, 1995. http://liblink.bsu.edu/uhtbin/catkey/935926.
Full textDepartment of Physiology and Health Science
Nishimura, Daigo. "Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration." Kyoto University, 2015. http://hdl.handle.net/2433/199212.
Full textHubatsch, Douglas A. "Passive mechanical stimulation regulates expression of acetylcholinesterase in skeletal muscle fibers." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/mq20923.pdf.
Full textTing, Lok Yin. "Calcium dependence of titin-regulated passive force in skeletal muscle fibers." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110598.
Full textRésuméPréambule: Il existe des preuves que les forces passives produites par titine des muscles squelettique sont liées avec la concentration de Ca2+. Plusieurs études montrent qu'il existe un lien positif entre la longueur des sarcomères et la force passive générée lorsque les tests sont faits dans des hautes concentrations de Ca2+ et lorsque les interactions actine-myosine sont abolies. Objectifs: Tester l'hypothèse qu'il y a un lien positif entre la concentration de Ca2+ et l'augmentation de la force passive lorsque les pontages croisés sont abolis. Hypothèse: La force passive augmente parallèlement avec l'augmentation de la concentration de calcium.Méthodologie: Les fibres musculaires psoas des lapins sont d'abord isolées et transférées dans une chambre expérimentale fixées entre un transducteur de force et un bras moteur du système. Ces fibres sont activées dans une solution de calcium entre pCa2+4.5 et pCa2+9.0 avant et après l'administration de l'inhibiteur de myosine, blebbistatin. Les fibres sont étirées consécutivement débutant à une longueur de sarcomère 2.5m. (À une amplitude d'étirement de 5% de LS initiale, une durée de 300ms et 30s de pause entre chacun des étirements. Résultats: La force passive est semblable pour chacun des concentrations de calcium, donc il n'y a aucuns effets de calcium sur la production de la force passive.Conclusions: Les résultats nous suggèrent que la force passive n'est pas liée à la concentration de calcium.
Mligiliche, Nurru Lameck. "Nerve regeneration through basal lamina tubes of detergent treated skeletal muscle fibers." Kyoto University, 2002. http://hdl.handle.net/2433/149700.
Full textBenigno, Maria Ivone Mendes 1960. "Análise morfométrica e ultraestrutural dos músculos masseter e pterigóideo medial pós exodontia unilateral de molares inferiores : estudo experimental." [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/312598.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas
Made available in DSpace on 2018-08-26T00:17:07Z (GMT). No. of bitstreams: 1 Benigno_MariaIvoneMendes_D.pdf: 2199405 bytes, checksum: 7460327535443e71e135d559be319402 (MD5) Previous issue date: 2014
Resumo: Introdução: A atividade mastigatória é uma sincronia entre os músculos da mastigação e articulação temporomandibular (ATM). A perda de dentes é um importante fator que contribui para as disfunções do Sistema Estomatognático e consequentes danos aos músculos mastigadores. Considerando os poucos trabalhos sobre o assunto, a necessidade de maior compreensão e detalhamento quanto às alterações das fibras desta musculatura, especialmente na disfunção pela perda dentária, este estudo teve como objetivos: investigar as alterações morfológicas e ultraestruturais do músculo Pterigoideo Medial (PTM) e Masseter, pós exodontia em modelo experimental. Material e Métodos: Foram utilizados 24 ratos wistar para microscopia de luz (ML) e 12 para microscopia eletrônica de transmissão (MET), divididos em três grupos experimentais: GI -15, GII-30 e GIII-60 dias, pós exodontia de molares inferiores esquerdos. Contendo 5 animais experimentais e três controles por grupo para ML e 3 ratos para MET, com 1 controle por grupo. Sob microscopia de luz foram realizados estudos morfométricos e sob luz polarizada, dos músculos PTM e Masseter. A análise morfométrica baseou-se na medida da área das fibras, em cortes transversais, corados pelo H&E (40x.objetiva), com programa digital (software AXION¿vision). Realizadas 240 medidas por animal/ total de 1200 por grupo experimental e 200 medidas por animal/ total de 600 por grupo controle. Análise qualitativa das fibras colágenas foi obtida sob luz polarizada. Também foram observadas, qualitativamente, alterações ultraestruturais destes músculos, ipsilateral às exodontias. Teste ANOVA foi aplicado para a análise dos dados. Resultados: A morfometria da área das fibras do músculo PTM, mostrou redução significante, nos animais submetidos à exodontia, tanto ipsi quanto contralateral. Não foram detectadas diferenças quanto aos quesitos interação entre lados direito e esquerdo e grupos (GI, II e III), nem quando se comparou os lados entre si. Diferenças foram notadas quando se comparou o grupo experimental, nos distintos períodos evolutivos, detectando-se aumento progressivo das áreas das fibras musculares, sendo a média maior no Grupo GIII. Apesar do crescimento progressivo da área das fibras, elas não se tornam hipertróficas nesse estágio avaliatório, uma vez que, a média dos valores obtidos é semelhante à do grupo controle. As fibras do músculo PTM parecem adaptar-se às mudanças. Nenhuma diferença foi detectada quanto à análise morfométrica do músculo Masseter. Ultraestruturalmente, observou-se assimetria e desorganização da linha Z e banda I, apenas no grupo experimental GII, do músculo PTM. A análise das fibras colágenas mostrou que os fascículos musculares são revestidos por uma delicada rede de fibras colágenas do tipo I e do tipo III, com predomínio deste último (fibras reticulares), nos Masseteres, nos diferentes períodos evolutivos. Conclusão: A disfunção temporomandibular, promovida pela exodontia unilateral de molares inferiores em ratos, pode levar a alterações morfométricas ipsi e contralaterais, com redução de áreas de fibras, particularmente no PTM. Entretanto as fibras musculares parecem se adaptar às novas condições, ao longo do experimento. A linha Z e banda I são as mais sensíveis a essa disfunção, no músculo PTM, contudo efêmera, uma vez que foi observada apenas no grupo GII. O músculo PTM mostrou-se mais vulnerável, provavelmente pelas suas características funcionais próprias e maior participação na dinâmica dos movimentos mastigatórios, comparadas às do Masseter. As fibras colágenas do tipo I e do tipo III são os constituintes principais das estruturas fibro conjuntivas desses músculos, com predomínio do tipo III no Masseter e parecem não ser afetadas nesse procedimento
Abstract: The loss of dental elements is an important factor in stomatognathic system dysfunctions and consequential damage to the masticatory muscles. The aim of this study was to analyze the morphometric and ultrastructural changes of the pterygoid medial(PTM) and masseter muscle, under occlusal defects, induced by unilateral left molar extraction, of Wistar rats. Thirty-six male rats were used: 24 for light microscopy (LM) and 12 for transmission electron microscopy analysis (TEM), divided into three experimental groups (GI-15; GII-30 and GIII-60 days), containing 5 animals each for LM with 3 control and 3 for TEM with one animal control for each period. Morphometric studies were made measuring the area of PTM and Masseter muscle fibers ipsi and contralateral to dental extraction, using a digital program. A qualitative analysis was performed to evaluate the ultrastructural findings and of the PTM and Masseter muscle. The results were compared using ANOVA test. There was a reduction of area of PTM of animals undergoing tooth extraction, both ipsi as contralateral. Both sides were similar when compared with each other, as assessed in the various evolutive periods. Differences were observed in the fiber area, especially in the first group and these showed progressive increase, reaching their highest average in GIII. No difference was detected regarding the morphometric analysis of the masseter muscle. For ultrastructure observed asymmetry and disorganization of Z line and I band, only the experimental group GII, muscle PTM. The analysis of the collagen fibers showed that the muscle fascicles are lined by a delicate network of collagen type I and type III, with a predominance of the latter (reticular fibers), in the masseter, in different evolutionary periods. Temporomandibular joint dysfunction, promoted by unilateral molar extraction in wistar rats, can lead to morphometric changes ipsi and contralateral with reduction of areas, particularly in the PTM. However seem to adapt to new conditions throughout the experiment. The band Z and the ith row of the muscle cytoskeleton are the most sensitive to this, dysfunction in muscle PTM, however ephemeral, since it was observed only in the Group (GII) with 30 days of the experiment. The muscle PTM proved to be more vulnerable in this experimental model, probably for its own functional features and greater participation in the dynamics of the masticatory movements, compared to the Masseter. The collagen fibers of type I and type III are the major constituents of the connective fibrous tissue structures of these muscles, with a predominance of type III in the Masseter and doesn't seem to be affected, to this procedure
Doutorado
Ciencias Biomedicas
Doutora em Ciências Médicas
Mofarrahi, Mahroo. "Regulation of skeletal muscle satellite cell proliferation by NADPH oxidase." Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=111521.
Full textBrault, Jeffrey J. "Creatine uptake and creatine transporter expression among rat skeletal muscle fiber types." free to MU Campus, others may purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3091902.
Full textBreitenbach, Simon [Verfasser]. "Reasons for the repolarizing effects of eplerenone on edematous skeletal muscle fibers / Simon Breitenbach." Ulm : Universität Ulm, 2018. http://d-nb.info/1174251891/34.
Full textQuarta, Marco. "Calcium signals in myogenics cells and muscle fibers: an integrated study." Doctoral thesis, Università degli studi di Padova, 2008. http://hdl.handle.net/11577/3425176.
Full textBooks on the topic "Skeletal Muscle Fibers"
Dunn, Shannon Elizabeth. Regulation of myosin heavy chain isoform expression in adult rat skeletal muscle fibers. Sudbury, Ont: Laurentian University Press, 1996.
Find full textCampbell, Robert J. Regulation of succinate dehydrogenase within synaptic and extrasynaptic compartments of mammalian skeletal muscle fibers. Sudbury, Ont: Laurentian University Press, 1995.
Find full textViau, François M. The role of Ca+2 and calcineurin in regulating the myofibrillar and metabolic properties of individual skeletal muscle fibers. Sudbury, Ont: Laurentian University, Chemistry and Biochemistry Department, 2001.
Find full textPunkt, Karla. Fibre Types in Skeletal Muscles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-59399-4.
Full textPerry, S. V. Molecular mechanisms in striated muscle. Cambridge: Cambridge University Press, 1996.
Find full textSimard, Alain. Disruption of sciatic nerve axon transport inhibits skeletal muscle fiber growth. Sudbury, Ont: Laurentian University, 2000.
Find full textValberg, Stephanie. Skeletal muscle metabolic responses to exercise in the horse: Effects of muscle fibre properties, recruitment and fibre composition. Uppsala: Sveriges Lantbruksuniversitet, 1986.
Find full textSipilä, Sarianna. Physical training and skeletal muscle in elderly women: A study of muscle mass, composition, fiber characteristics and isometric strength. Jyväskylä [Finland]: University of Jyväskylä, 1996.
Find full textEibl, Joseph K. Deciphering the calcineurin/nfat signaling pathway in the hypertrophy and fiber type conversions of skeletal muscle. Sudbury, Ont: Laurentian University, School of Graduate Studies, 2006.
Find full textBook chapters on the topic "Skeletal Muscle Fibers"
Noble, E. G., C. L. Rice, R. E. Thayer, and A. W. Taylor. "Evolving Concepts of Skeletal Muscle Fibers." In Principles of Exercise Biochemistry, 36–61. Basel: KARGER, 2003. http://dx.doi.org/10.1159/000074364.
Full textVandenburgh, H., S. Hatfaludy, P. Karlisch, and J. Shansky. "Mechanically-Induced Alterations in Cultured Skeletal Myotube Growth." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 151–64. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-015.
Full textCarpenter, Stirling. "Regeneration of Skeletal Muscle Fibers after Necrosis." In Myoblast Transfer Therapy, 13–15. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5865-7_3.
Full textSimoneau, J. A. "Species-Specific Ranges of Metabolic Adaptations in Skeletal Muscle." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 587–600. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-046.
Full textUmeda, P. K., R. L. Carter, R. S. Hall, J. M. Welborn, and L. B. Bugaisky. "Regulation of the Myosin Heavy Chain & Promoter in Skeletal and Cardiac Myocytes." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 61–74. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-008.
Full textLeberer, Ekkehard, and Dirk Pette. "Influence of Neuromuscular Activity on the Expression of Parvalbumin in Mammalian Skeletal Muscle." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 497–508. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-040.
Full textKraus, William E., and R. Sanders Williams. "Intracellular Signals Mediating Contraction-Induced Changes in the Oxidative Capacity of Skeletal Muscle." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 601–16. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-047.
Full textStrohman, R. C., J. DiMario, N. Buffinger, and S. Yamada. "The Control of Satellite Cell Growth in Skeletal Muscle during Hypertrophy and Regeneration." In The Dynamic State of Muscle Fibers, edited by Dirk Pette, 707–18. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110884784-055.
Full textPette, Dirk, and Robert S. Staron. "Cellular and molecular diversities of mammalian skeletal muscle fibers." In Reviews of Physiology, Biochemistry and Pharmacology, 1–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3540528806_3.
Full textChan, Roxanne Y. Y., Céline Boudreau-Larivière, Fawzi A. Mankal, Lindsay Angus, Andrea M. Krupa, and Bernard J. Jasmin. "Expression of the Acetylcholinesterase Gene in Skeletal Muscle Fibers." In Structure and Function of Cholinesterases and Related Proteins, 119–20. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-1540-5_21.
Full textConference papers on the topic "Skeletal Muscle Fibers"
Gao, Yingxin, Alan S. Wineman, and Anthony M. Waas. "Time-Dependent Lateral Transmission of Force in Skeletal Muscle." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-204820.
Full textZhang, Chi, and Yingxin Gao. "Finite Element Analysis of Force Transmission in Skeletal Muscle Fiber." In ASME 2012 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/sbc2012-80670.
Full textGonzalez, Roger V., and Christopher Y. Lee. "Quantitative force comparison of polyacrylonitrile fibers with skeletal muscle." In 5th Annual International Symposium on Smart Structures and Materials, edited by Manfred R. Wuttig. SPIE, 1998. http://dx.doi.org/10.1117/12.316865.
Full textKobayashi, Takakazu, Masaaki Iwai, and Kien Nguyen Phan. "Measurement of Muscle Fiber Stiffness during Stretch with Two Continuous Different Velocities in Skeletal Muscle Fibers." In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. http://dx.doi.org/10.1109/iembs.2007.4353668.
Full textVergara, Julio L., Marino DiFranco, and David Novo. "Dimensions of calcium release domains in frog skeletal muscle fibers." In BiOS 2001 The International Symposium on Biomedical Optics, edited by Gregory H. Bearman, Darryl J. Bornhop, and Richard M. Levenson. SPIE, 2001. http://dx.doi.org/10.1117/12.432488.
Full textMason, Andrew K., Ryan A. Koppes, Douglas M. Swank, and David T. Corr. "Mechanical and Electrical Stimulation Induces Calcium-Sensitive Mechanical Properties of Myoblast Derived Engineered Fibers." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14646.
Full textCassino, Theresa R., Masaho Okada, Lauren Drowley, Johnny Huard, and Philip R. LeDuc. "Mechanical Stimulation Improves Muscle-Derived Stem Cell Transplantation for Cardiac Repair." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192941.
Full textDuan, Emily, and Matthew Bryant. "Effects of Pennate Angle on FAM Bundle Hydraulic Efficiency for Robot Arm Motion." In ASME 2022 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/smasis2022-92022.
Full textBožičkovic, Ivana, Vesna Davidovic, Radomir Savic, Vladimir Živkovic, Stefan Stepic, and Vladan Đermanovic. "UTICAJ FIZIČKE AKTIVNOSTI NA HISTOLOŠKE KARAKTERISTIKE MIŠIĆA DOMAĆIH ŽIVOTINJA." In SAVETOVANJE o biotehnologiji sa međunarodnim učešćem. University of Kragujevac, Faculty of Agronomy, 2021. http://dx.doi.org/10.46793/sbt26.189b.
Full textMeller, Michael, and Ephrahim Garcia. "Power Savings of a Variable Recruitment Hydraulic Artificial Muscle Actuation Scheme." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7718.
Full textReports on the topic "Skeletal Muscle Fibers"
Lee, Christopher, Philip C. Woods, Amanda E. Paluch, and Mark S. Miller. Effects of age on human skeletal muscle: A systematic review and meta-analysis of myosin heavy chain isoform protein expression, fiber size and distribution. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2024. http://dx.doi.org/10.37766/inplasy2024.6.0109.
Full textYahav, Shlomo, John Brake, and Orna Halevy. Pre-natal Epigenetic Adaptation to Improve Thermotolerance Acquisition and Performance of Fast-growing Meat-type Chickens. United States Department of Agriculture, September 2009. http://dx.doi.org/10.32747/2009.7592120.bard.
Full text