Journal articles on the topic 'Skeletal muscle myocytes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Skeletal muscle myocytes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Raeker, Maide Ö., and Mark W. Russell. "Obscurin Depletion Impairs Organization of Skeletal Muscle in Developing Zebrafish Embryos." Journal of Biomedicine and Biotechnology 2011 (2011): 1–15. http://dx.doi.org/10.1155/2011/479135.
Full textPowers, Scott K. "Exercise: Teaching myocytes new tricks." Journal of Applied Physiology 123, no. 2 (August 1, 2017): 460–72. http://dx.doi.org/10.1152/japplphysiol.00418.2017.
Full textHimeda, Charis L., Jeffrey A. Ranish, and Stephen D. Hauschka. "Quantitative Proteomic Identification of MAZ as a Transcriptional Regulator of Muscle-Specific Genes in Skeletal and Cardiac Myocytes." Molecular and Cellular Biology 28, no. 20 (August 18, 2008): 6521–35. http://dx.doi.org/10.1128/mcb.00306-08.
Full textAmin, Rajesh H., Suresh T. Mathews, Heidi S. Camp, Liyun Ding, and Todd Leff. "Selective activation of PPARγ in skeletal muscle induces endogenous production of adiponectin and protects mice from diet-induced insulin resistance." American Journal of Physiology-Endocrinology and Metabolism 298, no. 1 (January 2010): E28—E37. http://dx.doi.org/10.1152/ajpendo.00446.2009.
Full textBers, D. M., and V. M. Stiffel. "Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling." American Journal of Physiology-Cell Physiology 264, no. 6 (June 1, 1993): C1587—C1593. http://dx.doi.org/10.1152/ajpcell.1993.264.6.c1587.
Full textDubé, John J., Mitch T. Sitnick, Gabriele Schoiswohl, Rachel C. Wills, Mahesh K. Basantani, Lingzhi Cai, Thomas Pulinilkunnil, and Erin E. Kershaw. "Adipose triglyceride lipase deletion from adipocytes, but not skeletal myocytes, impairs acute exercise performance in mice." American Journal of Physiology-Endocrinology and Metabolism 308, no. 10 (May 15, 2015): E879—E890. http://dx.doi.org/10.1152/ajpendo.00530.2014.
Full textHara, Mie, Shinsuke Yuasa, Kenichiro Shimoji, Takeshi Onizuka, Nozomi Hayashiji, Yohei Ohno, Takahide Arai, et al. "G-CSF influences mouse skeletal muscle development and regeneration by stimulating myoblast proliferation." Journal of Experimental Medicine 208, no. 4 (March 21, 2011): 715–27. http://dx.doi.org/10.1084/jem.20101059.
Full textAsakura, Atsushi, Patrick Seale, Adele Girgis-Gabardo, and Michael A. Rudnicki. "Myogenic specification of side population cells in skeletal muscle." Journal of Cell Biology 159, no. 1 (October 14, 2002): 123–34. http://dx.doi.org/10.1083/jcb.200202092.
Full textMurray, Jennifer, and Janice M. Huss. "Estrogen-related receptor α regulates skeletal myocyte differentiation via modulation of the ERK MAP kinase pathway." American Journal of Physiology-Cell Physiology 301, no. 3 (September 2011): C630—C645. http://dx.doi.org/10.1152/ajpcell.00033.2011.
Full textClegg, C. H., and S. D. Hauschka. "Heterokaryon analysis of muscle differentiation: regulation of the postmitotic state." Journal of Cell Biology 105, no. 2 (August 1, 1987): 937–47. http://dx.doi.org/10.1083/jcb.105.2.937.
Full textHerring, B. Paul, Shelley Dixon, and Patricia J. Gallagher. "Smooth muscle myosin light chain kinase expression in cardiac and skeletal muscle." American Journal of Physiology-Cell Physiology 279, no. 5 (November 1, 2000): C1656—C1664. http://dx.doi.org/10.1152/ajpcell.2000.279.5.c1656.
Full textAmacher, S. L., J. N. Buskin, and S. D. Hauschka. "Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle." Molecular and Cellular Biology 13, no. 5 (May 1993): 2753–64. http://dx.doi.org/10.1128/mcb.13.5.2753-2764.1993.
Full textAmacher, S. L., J. N. Buskin, and S. D. Hauschka. "Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle." Molecular and Cellular Biology 13, no. 5 (May 1993): 2753–64. http://dx.doi.org/10.1128/mcb.13.5.2753.
Full textOjuka, Edward O., Terry E. Jones, Lorraine A. Nolte, May Chen, Brian R. Wamhoff, Michael Sturek, and John O. Holloszy. "Regulation of GLUT4 biogenesis in muscle: evidence for involvement of AMPK and Ca2+." American Journal of Physiology-Endocrinology and Metabolism 282, no. 5 (May 1, 2002): E1008—E1013. http://dx.doi.org/10.1152/ajpendo.00512.2001.
Full textNishizawa, Hitoshi, Morihiro Matsuda, Yukio Yamada, Kenichiro Kawai, Emi Suzuki, Makoto Makishima, Toshio Kitamura, and Iichiro Shimomura. "Musclin, a Novel Skeletal Muscle-derived Secretory Factor." Journal of Biological Chemistry 279, no. 19 (March 24, 2004): 19391–95. http://dx.doi.org/10.1074/jbc.c400066200.
Full textVITADELLO, Maurizio, Pierangelo COLPO, and Luisa GORZA. "Rabbit cardiac and skeletal myocytes differ in constitutive and inducible expression of the glucose-regulated protein GRP94." Biochemical Journal 332, no. 2 (June 1, 1998): 351–59. http://dx.doi.org/10.1042/bj3320351.
Full textTesta, Marco, Bianca Rocca, Lucia Spath, Franco O. Ranelletti, Giovanna Petrucci, Giovanni Ciabattoni, Fabio Naro, Stefano Schiaffino, Massimo Volpe, and Carlo Reggiani. "Expression and activity of cyclooxygenase isoforms in skeletal muscles and myocardium of humans and rodents." Journal of Applied Physiology 103, no. 4 (October 2007): 1412–18. http://dx.doi.org/10.1152/japplphysiol.00288.2007.
Full textNakada, Satoshi, Yuri Yamashita, Seiya Akiba, Takeru Shima, and Eri Arikawa-Hirasawa. "Myocyte Culture with Decellularized Skeletal Muscle Sheet with Observable Interaction with the Extracellular Matrix." Bioengineering 9, no. 7 (July 12, 2022): 309. http://dx.doi.org/10.3390/bioengineering9070309.
Full textYin, Ming Zhe, Hae Jin Kim, Eun Yeong Suh, Yin Hua Zhang, Hae Young Yoo, and Sung Joon Kim. "Endurance exercise training restores atrophy-induced decreases of myogenic response and ionic currents in rat skeletal muscle artery." Journal of Applied Physiology 126, no. 6 (June 1, 2019): 1713–24. http://dx.doi.org/10.1152/japplphysiol.00962.2018.
Full textCarson, James A., and Frank W. Booth. "Effect of serum and mechanical stretch on skeletal α-actin gene regulation in cultured primary muscle cells." American Journal of Physiology-Cell Physiology 275, no. 6 (December 1, 1998): C1438—C1448. http://dx.doi.org/10.1152/ajpcell.1998.275.6.c1438.
Full textOphoff, Jill, Karen Van Proeyen, Filip Callewaert, Karel De Gendt, Katrien De Bock, An Vanden Bosch, Guido Verhoeven, Peter Hespel, and Dirk Vanderschueren. "Androgen Signaling in Myocytes Contributes to the Maintenance of Muscle Mass and Fiber Type Regulation But Not to Muscle Strength or Fatigue." Endocrinology 150, no. 8 (August 1, 2009): 3558–66. http://dx.doi.org/10.1210/en.2008-1509.
Full textMasuzawa, Ryuichi, Kazuya Takahashi, Kazunori Takano, Ichizo Nishino, Toshiyuki Sakai, and Takeshi Endo. "DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras–ERK pathway." Journal of Biochemistry 171, no. 1 (October 22, 2021): 109–22. http://dx.doi.org/10.1093/jb/mvab116.
Full textWerneck-de-Castro, Joao P., Tatiana L. Fonseca, Daniele L. Ignacio, Gustavo W. Fernandes, Cristina M. Andrade-Feraud, Lattoya J. Lartey, Marcelo B. Ribeiro, Miriam O. Ribeiro, Balazs Gereben, and Antonio C. Bianco. "Thyroid Hormone Signaling in Male Mouse Skeletal Muscle Is Largely Independent of D2 in Myocytes." Endocrinology 156, no. 10 (July 27, 2015): 3842–52. http://dx.doi.org/10.1210/en.2015-1246.
Full textMarkworth, James F., and David Cameron-Smith. "Arachidonic acid supplementation enhances in vitro skeletal muscle cell growth via a COX-2-dependent pathway." American Journal of Physiology-Cell Physiology 304, no. 1 (January 1, 2013): C56—C67. http://dx.doi.org/10.1152/ajpcell.00038.2012.
Full textTao, Yazhong, Ronald L. Neppl, Zhan-Peng Huang, Jianfu Chen, Ru-Hang Tang, Ru Cao, Yi Zhang, Suk-Won Jin, and Da-Zhi Wang. "The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly." Journal of Cell Biology 194, no. 4 (August 22, 2011): 551–65. http://dx.doi.org/10.1083/jcb.201010090.
Full textSuh, Dae Keun, Won-Young Lee, Woo Jin Yeo, Bong Soo Kyung, Koo Whang Jung, Hye Kyung Seo, Yong-Soo Lee, and Dong Won Suh. "A Novel Muscle Atrophy Mechanism: Myocyte Degeneration Due to Intracellular Iron Deprivation." Cells 11, no. 18 (September 13, 2022): 2853. http://dx.doi.org/10.3390/cells11182853.
Full textMcGrath, Meagan J., Christina A. Mitchell, Imogen D. Coghill, Paul A. Robinson, and Susan Brown. "Skeletal muscle LIM protein 1 (SLIM1/FHL1) induces α5β1-integrin-dependent myocyte elongation." American Journal of Physiology-Cell Physiology 285, no. 6 (December 2003): C1513—C1526. http://dx.doi.org/10.1152/ajpcell.00207.2003.
Full textKobak, Kamil A. "The influence of iron availability on the structural changes of skeletal muscle cells and cardiac muscle cells." Postępy Polskiej Medycyny i Farmacji 8 (June 9, 2021): 11–16. http://dx.doi.org/10.5604/01.3001.0014.9184.
Full textTishevskaya, N. V., E. S. Golovneva, R. V. Gallyamutdinov, A. A. Pozina, and N. M. Gevorkyan. "Xenogeneic lymphocytic RNA stimulates skeletal muscle regeneration." Russian Journal of Transplantology and Artificial Organs 23, no. 3 (September 16, 2021): 134–41. http://dx.doi.org/10.15825/1995-1191-2021-3-134-141.
Full textJiwlawat, Nunnapas, Eileen Lynch, Jeremy Jeffrey, Jonathan M. Van Dyke, and Masatoshi Suzuki. "Current Progress and Challenges for Skeletal Muscle Differentiation from Human Pluripotent Stem Cells Using Transgene-Free Approaches." Stem Cells International 2018 (2018): 1–18. http://dx.doi.org/10.1155/2018/6241681.
Full textIida, H., T. Hatae, and Y. Shibata. "Immunocytochemical localization of 67 KD Ca2+ binding protein (p67) in ventricular, skeletal, and smooth muscle cells." Journal of Histochemistry & Cytochemistry 40, no. 12 (December 1992): 1899–907. http://dx.doi.org/10.1177/40.12.1453007.
Full textCho, Eun-Jeong, Youngju Choi, Jiyeon Kim, Jun Hyun Bae, Jinkyung Cho, Dong-Ho Park, Ju-Hee Kang, et al. "Exercise Training Attenuates Ovariectomy-Induced Alterations in Skeletal Muscle Remodeling, Apoptotic Signaling, and Atrophy Signaling in Rat Skeletal Muscle." International Neurourology Journal 25, Suppl 2 (November 30, 2021): S47–54. http://dx.doi.org/10.5213/inj.2142334.167.
Full textSuryadevara, Vidyani, and Monte S. Willis. "Walk the Line: The Role of Ubiquitin in Regulating Transcription in Myocytes." Physiology 34, no. 5 (September 1, 2019): 327–40. http://dx.doi.org/10.1152/physiol.00055.2018.
Full textNedachi, Taku, Hiroyasu Hatakeyama, Tatsuyoshi Kono, Masaaki Sato, and Makoto Kanzaki. "Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes." American Journal of Physiology-Endocrinology and Metabolism 297, no. 4 (October 2009): E866—E878. http://dx.doi.org/10.1152/ajpendo.00104.2009.
Full textKindig, Casey A., Brandon Walsh, Richard A. Howlett, Creed M. Stary, and Michael C. Hogan. "Relationship between intracellular Po2 recovery kinetics and fatigability in isolated single frog myocytes." Journal of Applied Physiology 98, no. 6 (June 2005): 2316–19. http://dx.doi.org/10.1152/japplphysiol.00355.2004.
Full textNovitch, B. G., G. J. Mulligan, T. Jacks, and A. B. Lassar. "Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle." Journal of Cell Biology 135, no. 2 (October 15, 1996): 441–56. http://dx.doi.org/10.1083/jcb.135.2.441.
Full textMetzger, J. M. "pH dependence of myosin binding-induced activation of the thin filament in cardiac myocytes and skeletal fibers." American Journal of Physiology-Heart and Circulatory Physiology 270, no. 3 (March 1, 1996): H1008—H1014. http://dx.doi.org/10.1152/ajpheart.1996.270.3.h1008.
Full textReyes-Juárez, José Luis, Raúl Juárez-Rubí, Gabriela Rodríguez, and Angel Zarain-Herzberg. "Transcriptional Analysis of the Human Cardiac Calsequestrin Gene in Cardiac and Skeletal Myocytes." Journal of Biological Chemistry 282, no. 49 (October 15, 2007): 35554–63. http://dx.doi.org/10.1074/jbc.m707788200.
Full textParmacek, M. S., A. J. Vora, T. Shen, E. Barr, F. Jung, and J. M. Leiden. "Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene." Molecular and Cellular Biology 12, no. 5 (May 1992): 1967–76. http://dx.doi.org/10.1128/mcb.12.5.1967-1976.1992.
Full textParmacek, M. S., A. J. Vora, T. Shen, E. Barr, F. Jung, and J. M. Leiden. "Identification and characterization of a cardiac-specific transcriptional regulatory element in the slow/cardiac troponin C gene." Molecular and Cellular Biology 12, no. 5 (May 1992): 1967–76. http://dx.doi.org/10.1128/mcb.12.5.1967.
Full textHutchinson, Amber, Danyelle Liddle, Rufaida Ansari, and Lindsay Robinson. "Dietary n-3 vs n-6 PUFA Differentially Modulate Macrophage-Myocyte Inflammatory Cross-Talk." Current Developments in Nutrition 4, Supplement_2 (May 29, 2020): 1644. http://dx.doi.org/10.1093/cdn/nzaa063_042.
Full textHuang, T. E. "EFFECTS OF AZT ON CULTURED HUMAN SKELETAL MUSCLE MYOCYTES." Journal of Neuropathology and Experimental Neurology 52, no. 3 (May 1993): 299. http://dx.doi.org/10.1097/00005072-199305000-00155.
Full textDonoviel, D. B., M. A. Shield, J. N. Buskin, H. S. Haugen, C. H. Clegg, and S. D. Hauschka. "Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice." Molecular and Cellular Biology 16, no. 4 (April 1996): 1649–58. http://dx.doi.org/10.1128/mcb.16.4.1649.
Full textKronebusch, P. J., and S. J. Singer. "The microtubule-organizing complex and the Golgi apparatus are co-localized around the entire nuclear envelope of interphase cardiac myocytes." Journal of Cell Science 88, no. 1 (August 1, 1987): 25–34. http://dx.doi.org/10.1242/jcs.88.1.25.
Full textMichele, Daniel E., Pierre Coutu, and Joseph M. Metzger. "Divergent abnormal muscle relaxation by hypertrophic cardiomyopathy and nemaline myopathy mutant tropomyosins." Physiological Genomics 9, no. 2 (May 10, 2002): 103–11. http://dx.doi.org/10.1152/physiolgenomics.00099.2001.
Full textVasyukova, O. V., Yu V. Kasyanova, P. L. Okorokov, and O. B. Bezlepkina. "Myokines and adipomyokines: inflammatory mediators or unique molecules of targeted therapy for obesity?" Problems of Endocrinology 67, no. 4 (September 16, 2021): 36–45. http://dx.doi.org/10.14341/probl12779.
Full textJortay, Julie, Maximin Senou, Aurélie Delaigle, Laurence Noel, Tohru Funahashi, Norikazu Maeda, Marie C. Many, and Sonia M. Brichard. "Local Induction of Adiponectin Reduces Lipopolysaccharide-Triggered Skeletal Muscle Damage." Endocrinology 151, no. 10 (August 11, 2010): 4840–51. http://dx.doi.org/10.1210/en.2009-1462.
Full textGallyamutdinov, R. V., E. S. Golovneva, Zh A. Revel-Muroz, and I. V. Elovsky. "Infrared laser exposure in combination with branchedchain amino acid stimulates physiological adaptation of skeletal muscles." Laser Medicine 25, no. 3 (January 22, 2022): 40–46. http://dx.doi.org/10.37895/2071-8004-2021-25-3-40-46.
Full textHandayaningsih, Anastasia-Evi, Genzo Iguchi, Hidenori Fukuoka, Hitoshi Nishizawa, Michiko Takahashi, Masaaki Yamamoto, Elizabeth-Henny Herningtyas, et al. "Reactive Oxygen Species Play an Essential Role in IGF-I Signaling and IGF-I-Induced Myocyte Hypertrophy in C2C12 Myocytes." Endocrinology 152, no. 3 (March 1, 2011): 912–21. http://dx.doi.org/10.1210/en.2010-0981.
Full textPowers, Scott K., Erica Goldstein, Matthew Schrager, and Li Li Ji. "Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update." Antioxidants 12, no. 1 (December 25, 2022): 39. http://dx.doi.org/10.3390/antiox12010039.
Full text