Dissertations / Theses on the topic 'Skeletal muscle of cattle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Skeletal muscle of cattle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Castro, Fernanda Campos de Paiva. "Skeletal muscle protein degradation in beef cattle /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.
Full textTerry, Emily Nicole. "Regulation of selected selenoproteins in porcine and bovine skeletal muscle." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Spring2008/e_terry_041108.pdf.
Full textRanasinghesagara, Janaka C. Yao Gang. "Optical reflectance in fibrous tissues and skeletal muscles." Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/6629.
Full textZhang, Yafei. "Role of the Sh3 and Cysteine-Rich Domain 3 (STAC3) Gene in Proliferation and Differentiation of Bovine Satellite Cells." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76864.
Full textMaster of Science
Baxa, Timothy John. "Effect of Zilpaterol hydrochloride and steroid implantation on yearling steer feedlot performance, carcass characteristics, and skeletal muscle gene expression." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/936.
Full textFoxton, Ruth. "Dysferlin in skeletal muscle and skeletal muscle disease." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268429.
Full textPeoples, Gregory Edward. "Skeletal muscle fatigue can omega-3 fatty acids optimise skeletal muscle function? /." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041217.123607.
Full textTypescript. This thesis is subject to a 12 month embargo (06/09/05 - 14/09/05) and may only be viewed and copied with the permission of the author. For further information please contact the Archivist. Includes bibliographical references: leaf 195-216.
Salman, Mahmoud M. "Preconditioning in skeletal muscle." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1446109/.
Full textBlackwell, Danielle. "The role of Talpid3 in skeletal muscle satellite cells and skeletal muscle regeneration." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/66948/.
Full textZhang, Yan. "Cytokines and skeletal muscle wasting." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ47124.pdf.
Full textOude, Vrielink Hubertus Hermanus Egbert. "Vasomotion and skeletal muscle perfusion." Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1988. http://arno.unimaas.nl/show.cgi?fid=5409.
Full textWalsh, Garrett Lyndon. "Skeletal muscle powered cardiac assist." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63879.
Full textKochamba, Gary. "Skeletal muscle powered cardiac assist." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61746.
Full textMofarrahi, Mahroo. "Angiopoietins and skeletal muscle function." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106387.
Full textLes Angiopoétines sont des ligands pour les cellules endothéliales spécifiques aux récepteurs Tie-2. L'angiopoétine-1 (Ang-1) active les récepteurs Tie-2 dans la vasculature et favorise la survie, la prolifération, la migration et la différentiation. L'Angiopoétine-2 (Ang-2) est synthétisé principalement par les cellules endothéliales et antagonise l'activation des récepteurs Tie-2 induits par Ang-1. Dans des circonstances spéciales, Ang-2 active les récepteurs Tie-2 et favorise l'angiogénèse. Dans cette thèse, j'adresse la régulation et la signification fonctionnelle des Angiopoétines et des récepteurs Tie-2 dans des muscles squelettiques normaux et en régénération. Je décris en premier que les cellules souches musculaires squelettiques produisent Ang-1 et Ang-2 et expriment les récepteurs Tie-2. La production d'Ang-1 et Ang-2 du muscle squelettique augmente de façon significative pendant la différenciation des cellules souches en myotubes. Les conditions d'inflammation systémique telle que la septicémie sévère entraîne une baisse significative des niveaux d'Ang-1 et Tie-2 dans le muscle squelettique et induit simultanément une production d'Ang-2 à travers la voie de signalisation NFκB dépendante. La production d'Ang-2 des muscles squelettiques est aussi sur-régulée par le stress oxydatif. Les expériences in-vitro qui utilisent les ascendants isolés de muscles squelettiques révèlent que ensemble Ang-1 et Ang-2 favorisent la survie, la différentiation de ces cellules mais que seulement Ang-1 induit la prolifération et la migration des muscles ascendants. Ces effets sont négociés partiellement à travers la phosphorylation des récepteurs Tie-2 dérivés de muscles et l'activation des voies de signalisation PI-3 Kinase/AKT et ERK1/2. Dans le modèle cardiotoxique nécrotique induit de muscle blessé chez la souris, l'administration d'adénovirus exprimant Ang-1 quatre jours après l'initiation du muscle blessé montre une amélioration significative de la capacité régénérative du muscle, augmentant l'angiogenèse et la récupération complète de la contractilité du muscle. Ces résultats dévoilent un nouveau et important rôle d'Ang-1 dans la promotion de la régénération du muscle squelettique à travers l'augmentation de l'angiogenèse et de la myogenèse.
Sanderson, Alison Louise. "Regulation of skeletal muscle metabolism." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318615.
Full textWang, Zai, and 王在. "Kinesin-1 in skeletal muscle." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41757877.
Full textSlee, Adrian. "Regulation of skeletal muscle proteolysis." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/13105/.
Full textSpencer, C. I. "Chemomechanical coupling in skeletal muscle." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383710.
Full textJones, Garrett Collier. "Skeletal Muscle Recovery and Vibration." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8285.
Full textShue, Guay-Haur. "System models of skeletal muscle." Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1058448071.
Full textWang, Zai. "Kinesin-1 in skeletal muscle." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41757877.
Full textStone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/4532.
Full textStone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etsu-works/4544.
Full textStone, Michael H. "Development of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/4579.
Full textPillitteri, Paul J. "Regeneration of Rat Skeletal Muscle Following a Muscle Biopsy." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1118087917.
Full textDunaway, Dwayne Lee. "Nano-mechanics of skeletal muscle structures /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/8022.
Full textMaenhout, Mascha. "Strain fields within contracting skeletal muscle." Eindhoven : Maastricht : Technische Universiteit Eindhoven ; University Library, Maastricht University [Host], 2002. http://arno.unimaas.nl/show.cgi?fid=7018.
Full textGeukes, Foppen Remco Jan. "Electrical bistability of skeletal muscle membrane." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2005. http://dare.uva.nl/document/78574.
Full textRaue, Ulrika. "Skeletal muscle gene expression with age." Virtual Press, 2007. http://liblink.bsu.edu/uhtbin/catkey/1370882.
Full textSchool of Physical Education, Sport, and Exercise Science
Tallon, Mark J. "Carnosine metabolism in human skeletal muscle." Thesis, University of Chichester, 2005. http://eprints.chi.ac.uk/843/.
Full textKwende, Martin M. N. "The biomechanics of skeletal muscle ventricles." Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283451.
Full textLevy, Louis Bernard. "Nutrition, infection and skeletal muscle function." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316459.
Full textCampbell, Robert N. "Glucose-regulated transcription in skeletal muscle." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427295.
Full textAlam, Nasreen. "Malonyl-coa metabolism in skeletal muscle." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300485.
Full textSmith, N. "Thiol signalling in skeletal muscle ageing." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3026986/.
Full textStickland, Neil Charles. "Development and growth of skeletal muscle." Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/30012.
Full textNikoi, Naa-Dei. "Cellulose nanowhiskers for skeletal muscle engineering." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/cellulose-nanowhiskers-for-skeletal-muscle-engineering(30db0446-d55b-40aa-b759-c8e2c71a4cf6).html.
Full textWilson, Emma. "Force response of locust skeletal muscle." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/190857/.
Full textMetzger, Sabrina Kinzie. "Modeling of excitation in skeletal muscle." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620983611677044.
Full textEngland, Eric M. "Postmortem metabolism in porcine skeletal muscle." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/54580.
Full textPh. D.
Myhal, Mark. "Skeletal muscle, age, overload, and oxandrolone/." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488190109868676.
Full textJohnston, Nicholas Ian Falkinder. "Arginine vasopressin in foetal skeletal muscle." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/22358.
Full textFry, William Mark. "K+ channels in Xenopus skeletal muscle /." St. John's NF : [s.n.], 2001.
Find full textScionti, Isabella. "Epigenetic Regulation of Skeletal Muscle Differentiation." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN084/document.
Full textLSD1 and PHF2 are lysine de-methylases that can de-methylate both histone proteins, influencing gene expression and non-histone proteins, affecting their activity or stability. Functional approaches using Lsd1 or Phf2 inactivation in mouse have demonstrated the involvement of these enzymes in the engagement of progenitor cells into differentiation. One of the best-characterized examples of how progenitor cells multiply and differentiate to form functional organ is myogenesis. It is initiated by the specific timing expression of the specific regulatory genes; among these factors, MYOD is a key regulator of the engagement into differentiation of muscle progenitor cells. Although the action of MYOD during muscle differentiation has been extensively studied, still little is known about the chromatin remodeling events associated with the activation of MyoD expression. Among the regulatory regions of MyoD expression, the Core Enhancer region (CE), which transcribes for a non-coding enhancer RNA (CEeRNA), has been demonstrated to control the initiation of MyoD expression during myoblast commitment. We identified LSD1 and PHF2 as key activators of the MyoD CE. In vitro and in vivo ablation of LSD1 or inhibition of LSD1 enzymatic activity impaired the recruitment of RNA PolII on the CE, resulting in a failed expression of the CEeRNA. According to our results, forced expression of the CEeRNA efficiently rescue MyoD expression and myoblast fusion in the absence of LSD1. Moreover PHF2 interacts with LSD1 regulating its protein stability. Indeed in vitro ablation of PHF2 results in a massive LSD1 degradation and thus absence of CEeRNA expression. However, all the histone modifications occurring on the CE region upon activation cannot be directly attributed to LSD1 or PHF2 enzymatic activity. These results raise the question of the identity of LSD1 and PHF2 partners, which co-participate to CEeRNA expression and thus to the engagement of myoblast cells into differentiation
Ebert, Scott Matthew. "Molecular mechanisms of skeletal muscle atrophy." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/4967.
Full textSimmers, Jessica L. "nNos localization, muscle function and atrophy in skeletal muscle disorders." Thesis, The Johns Hopkins University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3573097.
Full textIn skeletal muscle, loss of neuronal nitric oxide synthase (nNOS) from the sarcolemma has been observed in a few muscular dystrophies and myopathies. However, the extent of this phenomenon, its mechanism, and its physiological impact are not well understood. Using immunofluorescent staining for nNOS, a survey of 161 patient biopsies found absent or reduced sarcolemmal nNOS in 43% of patients. Patient mobility and muscle functional status correlated with nNOS mislocalization from the sarcolemma. Mouse models of inherited and acquired myopathies showed similar loss of sarcolemmal nNOS and impaired mobility and muscle function. A proteomic approach, using mass spectrometry and differentially labeled control and steroid-induced myopathy (SIM) mouse samples, found novel nNOS binding proteins including alpha-actinin-3 (ACTN3), which exhibited decreased interaction with nNOS after steroid treatment. It revealed a potential explanation for impaired muscle function in SIM as nNOS interactions were lost at the sarcomere and gained at the sarcoplasmic reticulum impairing contractility. Treating nNOS-deficient mice with steroids demonstrated that loss of sarcolemmal nNOS reduces muscle contractility and strength in SIM through increased nitric oxide (NO) signaling. In SIM mice treated with a nitric oxide donor and steroids, nitric oxide partially protects the muscle from atrophy and improves muscle fatigability and recovery suggesting nNOS mislocalization also decreases NO availability. These findings show that loss of sarcolemmal nNOS is a common phenomenon that negatively impacts muscle function. Therapeutic strategies targeting nNOS or NO signaling need to allow for the complexity of local nitric oxide content and cellular context.
Tarabees, Reda Zakaria Ibrahim. "Endotoxin induced muscle wasting in avian and murine skeletal muscle." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13001/.
Full textCharge, Sophie Barbara Pauline. "Skeletal muscle hypertrophy : its regulation and effect on muscle regeneration." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340500.
Full textO'Leary, Mary Frances. "The role of adipose and skeletal muscle derived cytokines in primary human myogenesis : implications for ageing skeletal muscle." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8089/.
Full textVlahovich, Nicole. "The role of cytoskeletal tropomyosins in skeletal muscle and muscle disease." View thesis, 2007. http://handle.uws.edu.au:8081/1959.7/32176.
Full textA thesis presented to the University of Western Sydney, College of Health and Science, School of Natural Sciences, in fulfilment of the requirements for the degree of Doctor of Philosophy. Includes bibliographies.