To see the other types of publications on this topic, follow the link: Skeletal muscle of cattle.

Dissertations / Theses on the topic 'Skeletal muscle of cattle'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Skeletal muscle of cattle.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Castro, Fernanda Campos de Paiva. "Skeletal muscle protein degradation in beef cattle /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Terry, Emily Nicole. "Regulation of selected selenoproteins in porcine and bovine skeletal muscle." Online access for everyone, 2008. http://www.dissertations.wsu.edu/Thesis/Spring2008/e_terry_041108.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ranasinghesagara, Janaka C. Yao Gang. "Optical reflectance in fibrous tissues and skeletal muscles." Diss., Columbia, Mo. : University of Missouri--Columbia, 2008. http://hdl.handle.net/10355/6629.

Full text
Abstract:
Title from PDF of title page (University of Missouri--Columbia, viewed on March 8, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Gang Yao. Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

Zhang, Yafei. "Role of the Sh3 and Cysteine-Rich Domain 3 (STAC3) Gene in Proliferation and Differentiation of Bovine Satellite Cells." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/76864.

Full text
Abstract:
The STAC3 gene is a functionally undefined gene predicted to encode a protein containing two SH3 domains and one cysteine-rich domain. In this study, we determined the potential role of the STAC3 gene in proliferation and differentiation of bovine satellite cells. We isolated satellite cells from skeletal muscle of adult cattle and transfected them with STAC3 small interfering RNA (siRNA) or scrambled siRNA. Cell proliferation assays revealed that STAC3 knockdown had no effect on the proliferation rate of bovine satellite cells. We assessed the differentiation status of bovine satellite cells by quantifying the expression levels of myogenin and myosin heavy chain genes, and by quantifying fusion index. STAC3 knockdown stimulated mRNA and protein expression of myogenin, and myosin heavy chain 3 and 7, and increased fusion index of bovine satellite cells. These data together suggest that STAC3 inhibits differentiation of bovine satellite cells into myotubes. To determine the underlying mechanism, we identified and validated AP1?1 as a STAC3-interacting protein by yeast two-hybrid screening and co-immunoprecipitation. In C2C12 cells, STAC3 knockdown decreased the expression level of AP1?1 protein. In bovine satellite cells, STAC3 knockdown increased the membrane localization of glucose transporter 4 (GLUT4) and glucose uptake. These data together suggest the following mechanism by which STAC3 inhibits differentiation of bovine satellite cells: STAC3 increases AP1?1 stability in cells; a high level of AP1?1 keeps GLUT4 from translocating to the plasma membrane; reduced membrane localization of GLUT4 impedes glucose uptake; and restricted glucose uptake inhibits differentiation of satellite cells into myotubes.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Baxa, Timothy John. "Effect of Zilpaterol hydrochloride and steroid implantation on yearling steer feedlot performance, carcass characteristics, and skeletal muscle gene expression." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Foxton, Ruth. "Dysferlin in skeletal muscle and skeletal muscle disease." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Peoples, Gregory Edward. "Skeletal muscle fatigue can omega-3 fatty acids optimise skeletal muscle function? /." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041217.123607.

Full text
Abstract:
Thesis (Ph.D.)--University of Wollongong, 2004.
Typescript. This thesis is subject to a 12 month embargo (06/09/05 - 14/09/05) and may only be viewed and copied with the permission of the author. For further information please contact the Archivist. Includes bibliographical references: leaf 195-216.
APA, Harvard, Vancouver, ISO, and other styles
8

Salman, Mahmoud M. "Preconditioning in skeletal muscle." Thesis, University College London (University of London), 2008. http://discovery.ucl.ac.uk/1446109/.

Full text
Abstract:
Ischaemia reperfusion injury of skeletal muscle is a major cause of morbidity and mortality in various surgical specialities. Developing a protective method or pharmacological agent that will limit this damage will be of considerable benefit to both patients and doctors. I have used potassium channel openers and calcium as preconditioning agents. The results show that potassium channel openers are a viable option whereas the use of calcium can exacerbate muscle damage. I looked at various protocols of ischaemic and pharmacological preconditioning. The results from both ischaemic and pharmacological preconditioning have shown a comparable decrease with some pharmacological agents in the extent of skeletal muscle infarction both in the early and late period of reperfusion. This decrease in the extent of muscle infarction is associated with changes in the levels of nitric oxide in the circulation. There was preservation of skeletal muscle oxygenation in preconditioned muscle. I have shown that preconditioning of skeletal muscle is a viable option in trying to reduce the amount of damage caused by ischaemia reperfusion injury.
APA, Harvard, Vancouver, ISO, and other styles
9

Blackwell, Danielle. "The role of Talpid3 in skeletal muscle satellite cells and skeletal muscle regeneration." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/66948/.

Full text
Abstract:
The primary cilium has recently been recognised as an essential regulator of the Sonic hedgehog (Shh) signalling pathway. Mutations that disrupt cilia function in humans can cause conditions known as ciliopathies. A wide range of phenotypes is observed in chick and mouse ciliopathy models,including polydactyly, craniofacial defects and polycystic kidneys. The Shh pathway and therefore primary cilia are vital for many developmental processes, including embryonic muscle development, with recent evidence suggesting they may also play a role in adult muscle regeneration. Our studies focus on the Talpid3 gene, which encodes a centrosomal protein required for primary cilia formation and Shh signalling. The Talpid3 loss-of-function mutant has perturbed ciliogenesis and displays many of the phenotypes that are typically associated with developmental Shh mutants and with ciliopathies. Talpid3 mutants have defects in Shh signalling, and processing of Gli transcription factors is affected in structures such as the developing limb buds and the neural tube. However, the role of Talpid3 in muscle development and regeneration remains unknown. The role of Talpid3 in adult muscle regeneration was investigated using a tamoxifen inducible, satellite cell specific knock-out of Talpid3 in mice. This mouse model was generated by crossing Talpid3 floxed mice to a mouse carrying an inducible Pax7-CreERT2 allele. To determine whether loss of Talpid3 affects muscle regeneration a cardiotoxin injury model was used. This showed that loss of Talpid3 in satellite cells results in a regeneration defect as fibres were smaller after 5, 10, 15 and 25 days of regeneration compared to control mice. This defect may be due to a reduced ability of Talpid3 mutant satellite cells to differentiate. We also show that Talpid3 plays a role in satellite cell self-renewal as we observe a complete loss of regeneration in some areas of the muscle following repeat injuries. We provide the first evidence that Talpid3 is critical for the regeneration of skeletal muscle following injury.
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Yan. "Cytokines and skeletal muscle wasting." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ47124.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Oude, Vrielink Hubertus Hermanus Egbert. "Vasomotion and skeletal muscle perfusion." Maastricht : Maastricht : Rijksuniversiteit Limburg ; University Library, Maastricht University [Host], 1988. http://arno.unimaas.nl/show.cgi?fid=5409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Walsh, Garrett Lyndon. "Skeletal muscle powered cardiac assist." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63879.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kochamba, Gary. "Skeletal muscle powered cardiac assist." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61746.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Mofarrahi, Mahroo. "Angiopoietins and skeletal muscle function." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=106387.

Full text
Abstract:
Angiopoietins are ligands for the endothelial cell-specific Tie-2 receptors. Angiopoietin-1 (Ang-1) activates Tie-2 receptors in the vasculature and promotes endothelial cell survival, proliferation, migration and differentiation. Angipoietin-2 (Ang-2) is synthesized mainly by endothelial cells and antagonizes Ang-1-induced Tie-2 receptor activation. In special circumstances, Ang-2 activates Tie-2 receptors and promotes angiogenesis. In this thesis, I address the regulation and functional significance of angiopoietins and Tie-2 receptors in normal and regenerating skeletal muscles. I describe first that skeletal muscle progenitor cells produce Ang-1 and Ang-2 and express Tie-2 receptors. Skeletal muscle Ang-1 and Ang-2 production increases significantly during progenitor cell differentiation to myotubes. Systemic inflammatory conditions such as severe sepsis trigger significant decline in skeletal muscle Ang-1 and Tie-2 levels while simultaneously inducing Ang-2 production through NFκB-dependent pathways. Skeletal muscle Ang-2 production is also upregulated by oxidative stress. In-vitro experiments using isolated skeletal muscle progenitors reveal that both Ang-1 and Ang-2 promote survival and differentiation of these cells but only Ang-1 induces proliferation and migration of muscle progenitors. These effects are mediated in part through phosphorylation of muscle-derived Tie-2 receptors and activation of the PI-3 kinase/AKT and ERK1/2 signaling pathways. In cardiotoxin-induced necrotic muscle injury model in mice, administration of adenoviruses expressing Ang-1 four days after the initiation of muscle injury elicits significant improvement of muscle regenerative capacity, increased angiogenesis and complete recovery of muscle contractility. These results uncover a novel and important role for Ang-1 in the promotion of skeletal muscle regeneration through enhancement of both, angiogenesis and myogenesis.
Les Angiopoétines sont des ligands pour les cellules endothéliales spécifiques aux récepteurs Tie-2. L'angiopoétine-1 (Ang-1) active les récepteurs Tie-2 dans la vasculature et favorise la survie, la prolifération, la migration et la différentiation. L'Angiopoétine-2 (Ang-2) est synthétisé principalement par les cellules endothéliales et antagonise l'activation des récepteurs Tie-2 induits par Ang-1. Dans des circonstances spéciales, Ang-2 active les récepteurs Tie-2 et favorise l'angiogénèse. Dans cette thèse, j'adresse la régulation et la signification fonctionnelle des Angiopoétines et des récepteurs Tie-2 dans des muscles squelettiques normaux et en régénération. Je décris en premier que les cellules souches musculaires squelettiques produisent Ang-1 et Ang-2 et expriment les récepteurs Tie-2. La production d'Ang-1 et Ang-2 du muscle squelettique augmente de façon significative pendant la différenciation des cellules souches en myotubes. Les conditions d'inflammation systémique telle que la septicémie sévère entraîne une baisse significative des niveaux d'Ang-1 et Tie-2 dans le muscle squelettique et induit simultanément une production d'Ang-2 à travers la voie de signalisation NFκB dépendante. La production d'Ang-2 des muscles squelettiques est aussi sur-régulée par le stress oxydatif. Les expériences in-vitro qui utilisent les ascendants isolés de muscles squelettiques révèlent que ensemble Ang-1 et Ang-2 favorisent la survie, la différentiation de ces cellules mais que seulement Ang-1 induit la prolifération et la migration des muscles ascendants. Ces effets sont négociés partiellement à travers la phosphorylation des récepteurs Tie-2 dérivés de muscles et l'activation des voies de signalisation PI-3 Kinase/AKT et ERK1/2. Dans le modèle cardiotoxique nécrotique induit de muscle blessé chez la souris, l'administration d'adénovirus exprimant Ang-1 quatre jours après l'initiation du muscle blessé montre une amélioration significative de la capacité régénérative du muscle, augmentant l'angiogenèse et la récupération complète de la contractilité du muscle. Ces résultats dévoilent un nouveau et important rôle d'Ang-1 dans la promotion de la régénération du muscle squelettique à travers l'augmentation de l'angiogenèse et de la myogenèse.
APA, Harvard, Vancouver, ISO, and other styles
15

Sanderson, Alison Louise. "Regulation of skeletal muscle metabolism." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Wang, Zai, and 王在. "Kinesin-1 in skeletal muscle." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41757877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Slee, Adrian. "Regulation of skeletal muscle proteolysis." Thesis, University of Nottingham, 2005. http://eprints.nottingham.ac.uk/13105/.

Full text
Abstract:
Proteolysis is a component of protein turnover, controlled by multiple proteolytic systems. Alterations in system components within skeletal muscle has been associated with hypertrophy, remodelling, atrophy, apoptosis and metabolic dysregulation. Key components may have novel regulatory roles, e. g. calpain-3 and cathepsin-L. Experiments described within this thesis investigated the hypothesis that the gene expression of specific proteolytic system components within skeletal muscle may be co-ordinately regulated and altered during nutritional and pharmacological states known to modify protein turnover and induce muscle growth. Gene expression for multiple components of the calpain system was analysed in calf LD (Longissmus dorsi) by Quantitative Real-Time PCR in a plane of nutrition trial. There were three groups: low (LOW), high (HIGH) plane of nutrition and LOW to HIGH (REFED). Half of each group were slaughtered 48 hrs after refeeding, whilst the remainder were slaughtered 13 days later. Total RNA yield/g LD increased (P < 0.05) across all groups between slaughter dates. Calpain-3 expression increased in LOW and REFED and calpastatin in all groups between slaughter dates, with a trend towards significance (P = 0.073, P=0.085, respectively). In the 1St slaughter, calpain-3 expression had a trend to be lower in the LOW group and values for REFED were similar to HIGH value level. cDNA probes for unique and novel proteolytic system components were generated by RT-PCR and used to investigate the effects of acute and chronic Q-adrenergic stimulation, on the gene expression of those specific components in pig LD, by northern blotting. The ß2-adrenergic agonist clenbuterol (5 ppm) decreased glycogen levels (mg/g LD) (P < 0.001), increased cathepsin-L expression (P < 0.001) and increased E2G 1 values numerically within 24 hrs of treatment. Cathepsin-L was unchanged by adrenaline administration. Calpain-3 was unchanged with either clenbuterol or adrenaline treatment. The significance and implications of the data are discussed.
APA, Harvard, Vancouver, ISO, and other styles
18

Spencer, C. I. "Chemomechanical coupling in skeletal muscle." Thesis, Open University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383710.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Jones, Garrett Collier. "Skeletal Muscle Recovery and Vibration." BYU ScholarsArchive, 2019. https://scholarsarchive.byu.edu/etd/8285.

Full text
Abstract:
In the past decade there has been a significant increase in focus on the effect upper body vibration (UBV) has on the recovery of skeletal muscle after exercise-induced muscle damage. Recovery can be defined and investigated using a wide variety of methods. This study used three different measurements to track muscle recovery over 7 days following an exercise muscle damage protocol and applied vibration to a mathematical model. A visual analog scale (VAS) was used to measure muscle pain, a strain gauge was used to obtain maximum voluntary isometric contraction (MVIC) strength measurements, and shear wave elastography (SWE) represented muscle stiffness over the 7-day experiment. Thirty-three participants were divided into three groups. The first was a control group (C) that experienced no exercise and no therapy. The no vibration group (NV) performed the damage an exercise protocol but received no therapy. The vibration group (V) performed the same exercise protocol but also received vibration therapy. The exercise protocol consisted of 100 dumbbell curls at starting at 50% of their MVIC with one minute of rest after each set of ten. The data provided convincing evidence (27.2%, p < 0.0001) that group NV was not back to its normal stiffness after 7 days unlike group V, which was shown not to be any different from its baseline at the end of the week (9.15%, p = 0.137). Three vibration factors (����1, ����2, ����3) were added to a skeletal muscle regeneration model (SK) to simulate how vibration affects muscle regeneration. The three factors were determined by analyzing previous research to understand how vibration affects cells in the regeneration process. Adding these into SK decreased the time to recovery from about 13 days to about 7 days. Recovery was defined by reaching 10% of the original number of myofibers within the damaged muscle.
APA, Harvard, Vancouver, ISO, and other styles
20

Shue, Guay-Haur. "System models of skeletal muscle." Case Western Reserve University School of Graduate Studies / OhioLINK, 1995. http://rave.ohiolink.edu/etdc/view?acc_num=case1058448071.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Zai. "Kinesin-1 in skeletal muscle." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41757877.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Stone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/4532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Stone, Michael H. "Mechanisms of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2011. https://dc.etsu.edu/etsu-works/4544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Stone, Michael H. "Development of Skeletal Muscle Hypertrophy." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etsu-works/4579.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Pillitteri, Paul J. "Regeneration of Rat Skeletal Muscle Following a Muscle Biopsy." Ohio University / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1118087917.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Dunaway, Dwayne Lee. "Nano-mechanics of skeletal muscle structures /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/8022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Maenhout, Mascha. "Strain fields within contracting skeletal muscle." Eindhoven : Maastricht : Technische Universiteit Eindhoven ; University Library, Maastricht University [Host], 2002. http://arno.unimaas.nl/show.cgi?fid=7018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Geukes, Foppen Remco Jan. "Electrical bistability of skeletal muscle membrane." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2005. http://dare.uva.nl/document/78574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Raue, Ulrika. "Skeletal muscle gene expression with age." Virtual Press, 2007. http://liblink.bsu.edu/uhtbin/catkey/1370882.

Full text
Abstract:
The aim of this research was to investigate myogenic (i.e. growth) and proteolytic (i.e. breakdown) gene expression (GE) in skeletal muscle of young and old women. Myogenic (MyoD, MRF4, Myf5, myogenin, myostatin) and proteolytic (Atrogin-1, MuRF-1, FOXO3A) genes were examined in the basal state and after resistance exercise (RE). Six old women (OW: 85 ± 1 y) and eight young women (YW: 23 ± 1) performed 3 x 10 knee extensions at 70% of 1-repetition-maximum. Muscle biopsies were obtained from the vastus lateralis (i.e. thigh) before and 4 hours after RE.In the basal state, OW expressed higher levels (p<0.05) of MyoD, MRF4, myf5, myogenin, myostatin, FOXO3A and MuRF-1 compared to YW. Fiber type specific GE analysis in the OW showed that slow-twitch muscle fibers (MHC I) expressed higher levels (p<0.05) of myogenin and Atrogin-1, compared to fast-twitch (MHC Ila) fibers. In response to RE both YW and OW increased (p<0.05) mRNA levels of MyoD and MRF4, while a decrease (p<0.05) was observed for myostatin. MuRF-1 mRNA increased (p<0.05) in both age groups, while there was an age-specific induction (p<0.05) of Atrogin-1 after RE. Fiber type specific GE after RE in the old women showed that MHC Ila fibers did not induce myogenic GE. Robust increases (p<0.05) in MyoD, MRF4, and myogenin were only observed in the MHC I fibers. Both fiber types decreased (p<0.05) myostatin, and increased Atrogin-1 with RE. MuRF-1 mRNA levels increased specifically in MHC Ila fibers. In summary, skeletal muscle of OW expresses higher levels of mRNA for most selected genes at rest. With RE, aging skeletal muscle retains the ability to induce myogenic GE, although exclusive to MHC I fibers. After RE, proteolytic GE induction is greater in OW and most pronounced in MHC Ila fibers. Collectively, these data suggest that an imbalance exists in the regulation of the myogenic and proteolytic program in aging skeletal muscle. This research also provides the first evidence of intrinsic molecular differences between MHC I and MHC Ila fibers in OW, and may, in part, explain the MHC Ila atrophy apparent in sarcopenic muscle.
School of Physical Education, Sport, and Exercise Science
APA, Harvard, Vancouver, ISO, and other styles
30

Tallon, Mark J. "Carnosine metabolism in human skeletal muscle." Thesis, University of Chichester, 2005. http://eprints.chi.ac.uk/843/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kwende, Martin M. N. "The biomechanics of skeletal muscle ventricles." Thesis, University of Liverpool, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.283451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Levy, Louis Bernard. "Nutrition, infection and skeletal muscle function." Thesis, University of Southampton, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316459.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Campbell, Robert N. "Glucose-regulated transcription in skeletal muscle." Thesis, University of Newcastle Upon Tyne, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Alam, Nasreen. "Malonyl-coa metabolism in skeletal muscle." Thesis, University College London (University of London), 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300485.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Smith, N. "Thiol signalling in skeletal muscle ageing." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3026986/.

Full text
Abstract:
An age-related loss of muscle mass is associated with increased frailty in the elderly. The effect is felt at both a national scale, with an increased budgetary demand for health services directed towards the ageing population, and by the individual where reduced mobility significantly reduces their quality of life. It is unclear whether all skeletal muscle types are affected in the same manner. This thesis considered how thiol signalling, facilitated through reactive thiol groups on cysteine amino acids, may affect skeletal muscle ageing as it is crucial for normal intracellular function. Several studies have identified reactive oxygen species (ROS) as crucial signalling molecules in healthy muscle and various proteins can detect and respond to changes in their concentration. The cysteines are evolutionarily conserved in functionally important locations and have a direct impact on protein function, affecting either its active site or conformation. In healthy muscle, proteins can quickly and efficiently respond to changes in ROS concentrations via this mechanism whereas in aged muscle these responses appear to be impaired. The quadriceps and soleus muscles were selected because of their differing primary metabolic pathways and physiology, reflecting fast and slow twitch muscle respectively. This enabled determination of age related changes to the redox proteome between two different skeletal muscles. They are hypothesised to age differently and to determine this, adult (12 months) and old (24 months) tissue were subjected to a deep proteomics investigation, elucidating changes to the global proteome of ageing mouse muscle as well as using differential labelling of reduced and reversibly oxidised cysteine residues to identify redox-susceptible locations on individual proteins. Prior to this a proteomics study had not analysed changes to the redox proteome between two skeletal muscle tissues before. Analysis of the quadriceps label free results identified changes to redox protein abundance such as a significant increase in Protein Disulphide Isomerase, crucial to disulphide bond formation and breakage. HSC70, important for protein folding, was significantly decreased with age. Differential labelling of specific cysteine residues demonstrated Cys46 increased in its reduced form with age in PARK7. Furthermore, many changes observed in the label free analysis highlighted cytoskeletal proteins as those primarily affected. The soleus label free results demonstrated significant decreases in abundance of a number of mitochondrial proteins involved in the electron transport chain such as NAD(P)H dehydrogenase and ATP Synthase. One example of differential labelling highlighted ATP Synthase Cys101 as becoming increasingly reduced with age. This increase in a reduced redox state of cysteines was observed across a range of other mitochondrial proteins, possibly indicating a negative impact on energy metabolism in the soleus with age. A successful preliminary study considered the effect of stretching C2C12 mouse skeletal muscle cells in vitro. A protocol for testing the effect of mechanical stretching on C2C12 cells was optimised with a future goal of producing replicable in vitro proteomics data and thereby reducing the requirement for animal tissue. The studies in this thesis identified various redox proteome changes in quadriceps and soleus muscle with age. This data will provide a basis for a targeted analysis of musculoskeletal proteins with a view to a better understanding of musculoskeletal ageing and its impact via the proteome.
APA, Harvard, Vancouver, ISO, and other styles
36

Stickland, Neil Charles. "Development and growth of skeletal muscle." Thesis, University of Edinburgh, 1998. http://hdl.handle.net/1842/30012.

Full text
Abstract:
The main body of this work contributes to an understanding of the development and growth of skeletal muscle in a range of Vertebrates from fish to pigs. Particular emphasis is paid to the contribution of numbers and types of muscle fibres to overall muscle growth and ultimate mass, and also to the mechanisms whereby factors such as nutrition in mammals and temperature in fish may affect these parameters. The work is divided into three main sections. The first section covers aspects of prenatal mammalian development including myogenesis and placentation. Muscle develops as two populations of muscle fibres. Primary myofibres form first and this is followed by the formation of a larger populations of secondary fibres. Restricting maternal nutrition may compromise the formation of secondary fibres but not primaries. Studies on the placenta and on levels of specific factors, e.g. insulin-like growth factors, has given some insight into the mechanism of nutritional effects on muscle fibre development. Nutritional experiments have highlighted energy levels in the earlier stages of gestation as most critical in the development of muscle fibre number. This finding has been developed in pig experiments which have shown that extra feed in early gestation can produce piglets with more secondary fibres at birth and which grow faster and more efficiently to slaughter. The second section incorporates work on postnatal mammalian muscle. Studies, on pigs in particular, have shown that primary fibre number relates more to genotype that does secondary fibre number. Total muscle fibre number correlates with some parameters of carcass leanness and with postnatal growth rate and feed conversion efficiency. The influence of factors such as nutrition, dwarfism, obesity and sex on aspects of muscle growth and muscle fibre types has been studied as well as the functional adaptation of muscle metabolism in different species. The third section includes work on fish muscle development and growth in a range of species.
APA, Harvard, Vancouver, ISO, and other styles
37

Nikoi, Naa-Dei. "Cellulose nanowhiskers for skeletal muscle engineering." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/cellulose-nanowhiskers-for-skeletal-muscle-engineering(30db0446-d55b-40aa-b759-c8e2c71a4cf6).html.

Full text
Abstract:
Prior work has shown that spin-coating tunicin cellulose nanowhiskers onto a glass surface creates a highly oriented surface that supports the adhesion, spreading and proliferation of myotubes. Building on this work, this project aimed to develop culture surfaces with biologically active topography and tuneable stiffness with the aim of better mimicking native muscle tissue. The ultimate aim is to develop biomaterials that can direct the differentiation of mesenchymal stem cells. Cellulose nanocrystals (CNWs) from Ascidiella spp were isolated and characterised. Polyelectrolyte multilayers (PEMs) are nanocomposite films formed from the sequential deposition of oppositely charged polymers and offer a flexible method of building films with a variety of chemical compositions and physical properties. CNWs were used in combination with chitosan to create PEMs using a combination of two well-established, low-cost and facile production methods, dip-coating and spin-coating. The resulting PEM was shown to be a nanoporous substrate that was stable under cell culture conditions. It robustly allowed the attachment, alignment and myogenic differentiation of the immortalised C2C12 myoblast cell line. Proteomic analysis of the ECM produced by C2C12 cells in response to the substrate showed that cells cultured on CNW-chitosan PEMs secreted increased fibronectin, tenascin-c, elastins and collagen I, an expression pattern that is consistent with a more developmental, rather than mature, muscle ECM. The thickness and mechanical stiffness of the PEM films could be tuned by replacing replacing increasing volume fractions of CNWs with poly(4-sodium styrene sulfonate) (PSS). The thickness of the dry films increased with increasing CNW content, increasing from 20 nm for films containing 12 bilayers of PSS and chitosan to 100 nm for films containing 12 bilayers of CNW and chitosan. The compressive stiffness of hydrated films decreased with increasing CNW content, from 1.67 ± 0.73 MPa, to 1.06 ± 0.24 MPa. Unfortunately, PSS-modified PEMs proved to be cytotoxic to cells. The response of bone marrow stem cells to the substrates showed that mesenchymal stem cells were contact guided by the CNWs, but did so by avoiding the material, thus being better guided by substrates where CNWs were present at a low surface density than substrates where it was present at a high density. When cultured directly on PEMs, MSCs expressed myogenin, a key marker of terminal muscle differentiation, which was suggestive, but not definitive, of a potential of the biomaterial to direct the myogenic differentiation of MSCs.
APA, Harvard, Vancouver, ISO, and other styles
38

Wilson, Emma. "Force response of locust skeletal muscle." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/190857/.

Full text
Abstract:
The force response of the locust hind leg extensor muscle to input excitation pulses is modelled. Despite the processes behind muscle contraction being well established, no broadly valid method of modelling skeletal muscle exists. Studies that compare the merits of existing models are extremely scarce and researchers make various assumptions in order to simplify the complex, nonlinear behaviour of the muscle. Locusts provide an opportunity to develop a muscle model in a simpler system, that will still show similar properties to that of mammalian muscles. In developing a model previous work is considered, and complexity is introduced in the experimental conditions in stages. This meant a model could be built up in parts. This approach reduces the need for questionably valid assumptions. The main focus of this work is modelling activated isometric muscle. Experimental data was collected by stimulating the extensor muscle and measuring the force generated at the tibia. In the first instance the response to individual stimulus pulses is modelled. This is extended to develop a predictive model capable of estimating the isometric force response to general pulse train inputs. In developing the model, data was fit to existing models, and from this an improved isometric model developed. The effect of changing the isometric muscle length is considered. Commonly changing the muscle length is assumed to just scale the force response. This assumption is poor. The dynamics of the force response were found to be modifed by the change in muscle length, and the isometric model adapted to include this dependency. Results related to the non-isometric behaviour are also presented. Passive muscle is usually just modelled over the lengthening period, however, the whole stretch-shorten cycle is considered here. A model, adapted from the standard linear model, is developed to describe the passive force response.
APA, Harvard, Vancouver, ISO, and other styles
39

Metzger, Sabrina Kinzie. "Modeling of excitation in skeletal muscle." Wright State University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=wright1620983611677044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

England, Eric M. "Postmortem metabolism in porcine skeletal muscle." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/54580.

Full text
Abstract:
Once an animal is harvested for meat, skeletal muscle attempts to maintain ATP at or near antemortem levels. To maintain ATP levels postmortem, stored glycogen is catabolized to produce ATP through glycolysis and possibly oxidative metabolism. Hydrolysis of the produced ATP acidifies muscle until an ultimate pH is reached. The ultimate pH of meat directly impacts the quality characteristics of color, texture, and water holding capacity. Therefore, our research intends to describe the contributions glycolysis and oxidative metabolism play in determining ultimate pH and fresh meat quality. Traditionally, glycogen content at death was thought to be responsible for dictating ultimate pH. This was especially true in oxidative muscle with limited glycogen stores. Yet, our research indicated that in the presence of excess glycogen, oxidative muscle maintains a high ultimate pH. Rather, pH inactivation of phosphofructokinase is responsible for terminating postmortem glycolysis and brackets ultimate pH between 5.9 – 5.5. Meat with a pH below this range is uncommon. However, AMPK γ3R200Q mutant pigs produce meat with an ultimate pH near 5.3. Due to lower AMP deaminase abundance in their muscle, AMP levels are elevated late postmortem. Because AMP is a potent activator of phosphofructokinase, the aberrant meat quality from AMPK γ3R200Q mutant pigs is caused by extended postmortem glycolysis. Combined, these data further our understanding of the factors that contribute to the formation of fresh meat quality. We also characterized AMPK γ3R200Q muscle by investigating antemortem skeletal muscle lactate transport. Lactate is transported in or out of tissues by proton-linked iii monocarboxylate transporters (MCTs). Previous reports indicated that acute activation of AMPK increased monocarboxylate transporter expression in skeletal muscle of other species. Yet, it was unknown the impact chronic activation of AMPK will have on MCT1, MCT2, and MCT4 expression in pigs. Compared to wild-type pigs, the longissimus lumborum of AMPK γ3R200Q pigs increased both MCT2 and MCT4 protein expression. Our data suggest glycolytic skeletal muscle from the AMPK γ3R200Q pigs has increased capacity for antemortem lactate export from muscle and possibly increased pyruvate transport into the mitochondria.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
41

Myhal, Mark. "Skeletal muscle, age, overload, and oxandrolone/." The Ohio State University, 1999. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488190109868676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Johnston, Nicholas Ian Falkinder. "Arginine vasopressin in foetal skeletal muscle." Thesis, University of Edinburgh, 2000. http://hdl.handle.net/1842/22358.

Full text
Abstract:
Arginine vasopressin (AVP) is also known as anti-diuretic hormone (ADH). The two major effects of this peptide, that of increasing blood pressure by vasoconstriction and reducing water loss by promoting water re-absorption in the kidney, are described as its primary functions. But other effects of AVP have been demonstrated. For example, in the adult mammal AVP has a role in platelet aggregation, hepatic glycogenloysis, and memory consolidation, and the purpose of the course of study described in this thesis was to examination a putative alternative function for AVP. In certain rat myogenic cell lines introduction of vasopressin results in promotion of fusion and up-regulation of muscle specific gene expression. This effect has been described as being mediated by the V1a-vascular receptor. In addition, Data were published suggesting there was a significant amount of AVP immunoreactivity (ir-AVP) in human foetal skeletal muscle. ir-AVP was described at concentrations that could not be explained by plasma concentration, and described in relation to gestation age. Taken together these results suggest a significant role for vasopressin in skeletal muscle for development, and point to an additional alternative site for the synthesis of biologically active AVP. An extraction method was developed which employed solid phase extraction (SPE) followed by radioimmunoassay. The physical recovery of the SPE stage was reproducibly better than 70% when extracting AVP from homogenised muscle tissues. The radioimmunoassay had a cross reactivity of less than 0.01% with both oxytocin and arginine vasotocin. This extraction method was developed as a response to the demonstration that the direct assay of acidified extracts did not supply an accurate measure of the amount of vasopressin in extracted muscle. The reported ir-AVP was shown to probably be the result of acid inference in the assay. Levels of ir-AVP from foetal muscle samples extracted using SPE were not significant. This was in contrast to levels found in several positive control tissues - human foetal adrenal and pituitary glands, and rat adult adrenal glands - that were in close agreement with previously published data.
APA, Harvard, Vancouver, ISO, and other styles
43

Fry, William Mark. "K+ channels in Xenopus skeletal muscle /." St. John's NF : [s.n.], 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
44

Scionti, Isabella. "Epigenetic Regulation of Skeletal Muscle Differentiation." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN084/document.

Full text
Abstract:
LSD1 et PHF2 sont des déméthylases de lysines capables de déméthyler à la fois les protéines histones qui influencent l’expression génique et les protéines non histones en affectant leurs activités ou stabilités. Des approches fonctionnelles d’inactivation de Lsd1 ou Phf2 chez la souris ont démontré l’implication de ces enzymes dans l'engagement des cellules progénitrices au cours de la différenciation. La myogenèse est l'un des exemples les mieux caractérisés sur la façon dont les cellules progénitrices se multiplient et se différencient pour former un organe fonctionnel. Elle est initiée par une expression temporelle spécifique des gènes régulateurs cibles. Parmi ces facteurs, MYOD est un régulateur clé de l'engagement dans la différenciation des cellules progénitrices musculaires. Bien que l’action de MYOD au cours de la différenciation cellulaire ait été largement étudiée, peu de chose sont connus sur les événements de remodelage de la chromatine associés à l'activation de l'expression de MyoD. Parmi les régions régulatrices de l'expression de MyoD, la région Core Enhancer (CE) qui est transcrite en ARN activateur non codant (CEeRNA) a été démontrée pour contrôler l'initiation de l'expression de MyoD au cours de l'engagement de myoblastes dans la différenciation.Nous avons identifié LSD1 et PHF2 comme des activateurs clés du CE de MyoD. L'invalidation in vitro et in vivo de LSD1 ou l'inhibition de l'activité enzymatique de LSD1 empêche le recrutement de l'ARN PolII sur le CE, empêchant l’expression du CEeRNA. D’après nos résultats, l'expression forcée du CEeRNA restaure efficacement l'expression de MyoD et la fusion myoblastique en l'absence de LSD1. De plus, PHF2 interagit avec LSD1 en régulant sa stabilité protéique.En effet, l'ablation in vitro de PHF2 entraîne une dégradation massive de LSD1 et donc une absence d'expression du CEeRNA. Cependant, toutes les modifications d'histones qui ont lieu dans la région du CE lors de l'activation de la différenciation ne peuvent pas être directement attribuées à l'activité enzymatique de LSD1 ou PHF2. Ces résultats soulèvent la question de l'identité des partenaires de LSD1 et PHF2, qui co-participeraient à l'expression du CEeRNA et donc à l'engagement des myoblastes dans la différenciation cellulaire
LSD1 and PHF2 are lysine de-methylases that can de-methylate both histone proteins, influencing gene expression and non-histone proteins, affecting their activity or stability. Functional approaches using Lsd1 or Phf2 inactivation in mouse have demonstrated the involvement of these enzymes in the engagement of progenitor cells into differentiation. One of the best-characterized examples of how progenitor cells multiply and differentiate to form functional organ is myogenesis. It is initiated by the specific timing expression of the specific regulatory genes; among these factors, MYOD is a key regulator of the engagement into differentiation of muscle progenitor cells. Although the action of MYOD during muscle differentiation has been extensively studied, still little is known about the chromatin remodeling events associated with the activation of MyoD expression. Among the regulatory regions of MyoD expression, the Core Enhancer region (CE), which transcribes for a non-coding enhancer RNA (CEeRNA), has been demonstrated to control the initiation of MyoD expression during myoblast commitment. We identified LSD1 and PHF2 as key activators of the MyoD CE. In vitro and in vivo ablation of LSD1 or inhibition of LSD1 enzymatic activity impaired the recruitment of RNA PolII on the CE, resulting in a failed expression of the CEeRNA. According to our results, forced expression of the CEeRNA efficiently rescue MyoD expression and myoblast fusion in the absence of LSD1. Moreover PHF2 interacts with LSD1 regulating its protein stability. Indeed in vitro ablation of PHF2 results in a massive LSD1 degradation and thus absence of CEeRNA expression. However, all the histone modifications occurring on the CE region upon activation cannot be directly attributed to LSD1 or PHF2 enzymatic activity. These results raise the question of the identity of LSD1 and PHF2 partners, which co-participate to CEeRNA expression and thus to the engagement of myoblast cells into differentiation
APA, Harvard, Vancouver, ISO, and other styles
45

Ebert, Scott Matthew. "Molecular mechanisms of skeletal muscle atrophy." Diss., University of Iowa, 2012. https://ir.uiowa.edu/etd/4967.

Full text
Abstract:
Skeletal muscle atrophy is a common and often debilitating complication of diverse stresses including muscle disuse, fasting, aging, critical illness and many chronic illnesses. However, the pathogenesis of muscle atrophy is still poorly understood. The thesis herein describes my studies investigating the molecular mechanisms of skeletal muscle atrophy. Using mouse skeletal muscle and cultured skeletal myotubes as experimental systems, I discovered a novel stress-induced pathway in skeletal muscle that causes muscle atrophy. The pathway begins with stress-induced expression of ATF4, a basic leucine zipper (bZIP) transcription factor with an evolutionarily ancient role in cellular stress responses. I found that diverse stresses including fasting and muscle disuse increase expression of ATF4 in skeletal muscle. ATF4 then activates the growth arrest and DNA damage-inducible 45a (Gadd45a) gene, leading to increased expression of Gadd45a protein, an essential and inducible subunit of DNA demethylase complexes. Gadd45a localizes to skeletal myonuclei where it interacts with and stimulates demethylation of a specific region in the promoter of the cyclin dependent kinase inhibitor 1a (Cdkn1a) gene. By demethylating the Cdkn1a promoter, Gadd45a activates the Cdkn1a gene, leading to increased expression of Cdkn1a protein, also known as p21WAF1/CIP1. Cdkn1a stimulates protein breakdown (a critical pro-atrophy process) and inhibits anabolic signaling, protein synthesis and PGC-1α expression (processes that maintain healthy skeletal muscle and protect against atrophy). As a result, Cdkn1a causes skeletal muscle fibers to undergo atrophy. Importantly, interventions that reduce any one component of this pathway (ATF4, Gadd45a or Cdkn1a) reduce skeletal muscle atrophy during fasting, muscle disuse, and perhaps other skeletal muscle stresses such as illness and aging. Conversely, forced expression of any one component of this pathway is sufficient to cause skeletal muscle fiber atrophy in the absence of upstream stress. These data suggest the ATF4/Gadd45a/Cdkn1a pathway as a potential therapeutic target. Collectively, my studies demonstrate that the sequential, stress-induced expression of ATF4, Gadd45a and Cdkn1a is a critical process in the pathogenesis of skeletal muscle atrophy. This significantly advances our understanding of how muscle atrophy occurs and it opens up new avenues of investigation into the causes and treatment of muscle atrophy.
APA, Harvard, Vancouver, ISO, and other styles
46

Simmers, Jessica L. "nNos localization, muscle function and atrophy in skeletal muscle disorders." Thesis, The Johns Hopkins University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3573097.

Full text
Abstract:

In skeletal muscle, loss of neuronal nitric oxide synthase (nNOS) from the sarcolemma has been observed in a few muscular dystrophies and myopathies. However, the extent of this phenomenon, its mechanism, and its physiological impact are not well understood. Using immunofluorescent staining for nNOS, a survey of 161 patient biopsies found absent or reduced sarcolemmal nNOS in 43% of patients. Patient mobility and muscle functional status correlated with nNOS mislocalization from the sarcolemma. Mouse models of inherited and acquired myopathies showed similar loss of sarcolemmal nNOS and impaired mobility and muscle function. A proteomic approach, using mass spectrometry and differentially labeled control and steroid-induced myopathy (SIM) mouse samples, found novel nNOS binding proteins including alpha-actinin-3 (ACTN3), which exhibited decreased interaction with nNOS after steroid treatment. It revealed a potential explanation for impaired muscle function in SIM as nNOS interactions were lost at the sarcomere and gained at the sarcoplasmic reticulum impairing contractility. Treating nNOS-deficient mice with steroids demonstrated that loss of sarcolemmal nNOS reduces muscle contractility and strength in SIM through increased nitric oxide (NO) signaling. In SIM mice treated with a nitric oxide donor and steroids, nitric oxide partially protects the muscle from atrophy and improves muscle fatigability and recovery suggesting nNOS mislocalization also decreases NO availability. These findings show that loss of sarcolemmal nNOS is a common phenomenon that negatively impacts muscle function. Therapeutic strategies targeting nNOS or NO signaling need to allow for the complexity of local nitric oxide content and cellular context.

APA, Harvard, Vancouver, ISO, and other styles
47

Tarabees, Reda Zakaria Ibrahim. "Endotoxin induced muscle wasting in avian and murine skeletal muscle." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/13001/.

Full text
Abstract:
This project was aimed to elucidate the sub-cellular and molecular regulation of Lipopolysaccharide (LPS) induced muscle protein turnover (protein synthesis (PS) and protein degradation) in two in vitro models, C2C12 murine myotubes and avian primary skeletal muscle cell line. In addition, the effect of natural challenge of chicken with Salmonella serotypes gallinarium or Enteritidis on mRNA expression levels in skeletal muscle was assessed. LPS (1 μgml-1) transiently decreased PS rate by 50% compared with control cells. This effect was mediated via decreased phosphorylation of translation initiation mediators (p70S6K, 4E-BP1 and eIF-4E). This effect was preceded by decreased Akt and mTOR phosphorylation. Although, LPS significantly increased p38, Erk1/2 and their down stream target Mnk1, however, this effect was not sufficient to abolish LPS-induced decreased PS. The role of Akt and MAPKs (p38 or Erk1/2) was verified using specific pathway inhibitors. Inhibition of Akt by LY0294002 (PI3-K/Akt inhibitor) dramatically decreased PS by 80% compared with control cells. Incubation of C2C12 myotubes with SB203580 (p38 inhibitor) or with PD098059 (MEK/Erk inhibitor) alone significantly decreased the PS rate at the 3 h time point by -63 ± 12.48% and -64 ± 5.05% respectively compared with control cells (P < 0.01). In contrast, LPS (1 μgml-1) significantly increased the chymotrypsin-like enzyme at all the time points. This effect was preceded by a significant increase in the IkB-α phosphorylation and nuclear translocation of NF-kB, and significant increase in TNF-α, atrogin-1, MuRF1 and TLR4 mRNA expression. Of note, increased atrogin-1 mRNA is the prominent feature of our septic model. The data presented in chapter 4 and 5 showed that, there is no absolute correlation between the expression levels of atrogens (atrogin-1 and MuRF1) and the overall proteolytic activity in LPS-stimulated C2C12 myotubes. The beneficial roles of the curcumin were evaluated LPS-stimulated C2C12 myotubes for 3 h. Incubation of C2C12 myotubes with LPS (1 μgml-1) and curcumin (25 μM) significantly decreased the LPS-induced chymotrypsin-like enzyme activity. This effect was mediated via decreased p38 and IkB-α phosphorylation. Although, curcumin blocked LPS-induced decreased Akt and p70S6K phosphorylation and significantly increased Erk1/2 phosphorylation, however, curcumin still had no effect on LPS-induced decreased protein synthesis. The effect of the LPS on the muscle protein turnover in the avian primary skeletal muscle was summarised in chapter (7). Incubation of avian primary skeletal cells with LPS (1 μgml-1) for 3 h, significantly decreased the proteasomal activity and increased PS rate. The difference in response to LPS between C2C12 myotubes and avian primary skeletal muscle cells could be attributed to the different incubation parameters mainly the presence of insulin in case of avian primary cells. Finally, the effect of natural challenge of chicken with S. Gallinarum or S. Enteritidis on skeletal muscle mRNA expression was summarised in chapter 9. Natural challenge of chicken with S. Gallinarum or S. Enteritidis had no effect on the expression of many atrophic genes in chicken skeletal muscle (gastrocnemius and pectoral muscle). The data collected from this project showed that, LPS is a strong catabolic stimulus significantly decreased PS along with increased protein breakdown rates in skeletal muscle. This effect was mediated via two main pathways PI3-K/Akt and MAPKs (p38 or Erk1/2) and the cross talk between them is exists. The better understanding of these signalling cascades and their cross talk will be the starting point for developing the appropriate and safe therapeutic intervention in order to decrease the sepsis-induced muscle proteolysis.
APA, Harvard, Vancouver, ISO, and other styles
48

Charge, Sophie Barbara Pauline. "Skeletal muscle hypertrophy : its regulation and effect on muscle regeneration." Thesis, King's College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.340500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

O'Leary, Mary Frances. "The role of adipose and skeletal muscle derived cytokines in primary human myogenesis : implications for ageing skeletal muscle." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8089/.

Full text
Abstract:
Sarcopenia is the age-related loss of skeletal muscle mass and function; inflammation is thought to be one aetiological factor in its development. Adipose tissue accumulates with advancing age and adipose-derived cytokines (adipokines) contribute to inflammaging. Skeletal muscle myogenesis is one adaptaive mechanism by which skeletal muscle mass is sustained throughout the human lifespan. The effect of the adipose inflammatory milieu on such myogenesis is unknown, as is the relative importance of its constituent adipokines to myogenesis. This work demonstrates that conditioned medium generated from obese subcutaneuous adipose tissue has a detrimental effect on in vitro primary human myogenesis. Resistin is shown to be – in part – responsible for this phenomenon and is demonstrated to inhibit myogenesis by activating the classical NFκB pathway. Resistin is further shown to be a metabolic stressor of primary human myotubes, promoting increased oxygen consumption, fatty acid oxidation and lipid accumulation. It is important to identify more avenues for the development of pharmacological interventions in sarcopenia. To that end, this thesis also demonstrates for the first time that the myokine IL-15: 1) is pro-myogenic in primary human cultures; 2) can mitigate the detrimental effects of an inflammatory environment on myogenesis; and 3) supports myogenesis at autocrine concentrations.
APA, Harvard, Vancouver, ISO, and other styles
50

Vlahovich, Nicole. "The role of cytoskeletal tropomyosins in skeletal muscle and muscle disease." View thesis, 2007. http://handle.uws.edu.au:8081/1959.7/32176.

Full text
Abstract:
Thesis (Ph.D.)--University of Western Sydney, 2007.
A thesis presented to the University of Western Sydney, College of Health and Science, School of Natural Sciences, in fulfilment of the requirements for the degree of Doctor of Philosophy. Includes bibliographies.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography