Journal articles on the topic 'Skeletal muscle'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Skeletal muscle.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhang, Tan, Xin Feng, Bo Feng, et al. "CARDIAC TROPONIN T MEDIATED AUTOIMMUNE RESPONSE AND ITS ROLE IN SKELETAL MUSCLE AGING." Innovation in Aging 3, Supplement_1 (2019): S882. http://dx.doi.org/10.1093/geroni/igz038.3231.
Full textKholodnyi, R. D. "MODELING THE SKELETAL MUSCLE INJURY IN RATS." International Journal of Veterinary Medicine, no. 3 (October 18, 2022): 253–57. http://dx.doi.org/10.52419/issn2072-2419.2022.3.253.
Full textHeo, Jun-Won, Su-Zi Yoo, Mi-Hyun No, et al. "Exercise Training Attenuates Obesity-Induced Skeletal Muscle Remodeling and Mitochondria-Mediated Apoptosis in the Skeletal Muscle." International Journal of Environmental Research and Public Health 15, no. 10 (2018): 2301. http://dx.doi.org/10.3390/ijerph15102301.
Full textSandage, Mary J., and Audrey G. Smith. "Muscle Bioenergetic Considerations for Intrinsic Laryngeal Skeletal Muscle Physiology." Journal of Speech, Language, and Hearing Research 60, no. 5 (2017): 1254–63. http://dx.doi.org/10.1044/2016_jslhr-s-16-0192.
Full textAzab, Azab. "Skeletal Muscles: Insight into Embryonic Development, Satellite Cells, Histology, Ultrastructure, Innervation, Contraction and Relaxation, Causes, Pathophysiology, and Treatment of Volumetric Muscle I." Biotechnology and Bioprocessing 2, no. 4 (2021): 01–17. http://dx.doi.org/10.31579/2766-2314/038.
Full textChen, Wan-Jing, I.-Hsuan Lin, Chien-Wei Lee, and Yi-Fan Chen. "Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury." International Journal of Molecular Sciences 22, no. 4 (2021): 2123. http://dx.doi.org/10.3390/ijms22042123.
Full textRamamani, A., M. M. Aruldhas, and P. Govindarajulu. "Differential response of rat skeletal muscle glycogen metabolism to testosterone and estradiol." Canadian Journal of Physiology and Pharmacology 77, no. 4 (1999): 300–304. http://dx.doi.org/10.1139/y99-016.
Full textShiina, Takahiko, Takeshi Shima, Kazuaki Masuda, et al. "Contractile Properties of Esophageal Striated Muscle: Comparison with Cardiac and Skeletal Muscles in Rats." Journal of Biomedicine and Biotechnology 2010 (2010): 1–7. http://dx.doi.org/10.1155/2010/459789.
Full textBrooks, Susan V. "CURRENT TOPICS FOR TEACHING SKELETAL MUSCLE PHYSIOLOGY." Advances in Physiology Education 27, no. 4 (2003): 171–82. http://dx.doi.org/10.1152/advan.2003.27.4.171.
Full textWu, G. Y., and J. R. Thompson. "Is methionine transaminated in skeletal muscle?" Biochemical Journal 257, no. 1 (1989): 281–84. http://dx.doi.org/10.1042/bj2570281.
Full textBilston, Lynne E., Bart Bolsterlee, Antoine Nordez, and Shantanu Sinha. "Contemporary image-based methods for measuring passive mechanical properties of skeletal muscles in vivo." Journal of Applied Physiology 126, no. 5 (2019): 1454–64. http://dx.doi.org/10.1152/japplphysiol.00672.2018.
Full textHøeg, Louise D., Kim A. Sjøberg, Anne-Marie Lundsgaard, et al. "Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women." Journal of Applied Physiology 114, no. 5 (2013): 592–601. http://dx.doi.org/10.1152/japplphysiol.01046.2012.
Full textShirakawa, Tomohiko, Aki Miyawaki, Tatsuo Kawamoto, and Shoichiro Kokabu. "Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy." International Journal of Molecular Sciences 22, no. 15 (2021): 8310. http://dx.doi.org/10.3390/ijms22158310.
Full textHinkle, Richard T., Elizabeth Donnelly, David B. Cody, Russell J. Sheldon, and Robert J. Isfort. "Activation of the vasoactive intestinal peptide 2 receptor modulates normal and atrophying skeletal muscle mass and force." Journal of Applied Physiology 98, no. 2 (2005): 655–62. http://dx.doi.org/10.1152/japplphysiol.00736.2004.
Full textArdhianto, Peter, Jen-Yung Tsai, Chih-Yang Lin, et al. "A Review of the Challenges in Deep Learning for Skeletal and Smooth Muscle Ultrasound Images." Applied Sciences 11, no. 9 (2021): 4021. http://dx.doi.org/10.3390/app11094021.
Full textNorheim, Frode, Truls Raastad, Bernd Thiede, Arild C. Rustan, Christian A. Drevon, and Fred Haugen. "Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training." American Journal of Physiology-Endocrinology and Metabolism 301, no. 5 (2011): E1013—E1021. http://dx.doi.org/10.1152/ajpendo.00326.2011.
Full textLieber, Richard L. "Skeletal Muscle." Medicine & Science in Sports & Exercise 38, Supplement (2006): 63. http://dx.doi.org/10.1249/00005768-200605001-00585.
Full textKoroteyev, Alexis, Alberto Pochettino, Hiroshi Niinami, and Larry W. Stephenson. "Skeletal Muscle." AORN Journal 53, no. 4 (1991): 1005–20. http://dx.doi.org/10.1016/s0001-2092(07)69569-6.
Full textPotthoff, Matthew J., Michael A. Arnold, John McAnally, James A. Richardson, Rhonda Bassel-Duby, and Eric N. Olson. "Regulation of Skeletal Muscle Sarcomere Integrity and Postnatal Muscle Function by Mef2c." Molecular and Cellular Biology 27, no. 23 (2007): 8143–51. http://dx.doi.org/10.1128/mcb.01187-07.
Full textHerring, B. P., M. H. Nunnally, P. J. Gallagher, and J. T. Stull. "Molecular characterization of rat skeletal muscle myosin light chain kinase." American Journal of Physiology-Cell Physiology 256, no. 2 (1989): C399—C404. http://dx.doi.org/10.1152/ajpcell.1989.256.2.c399.
Full textDU, Jian-tong, Wei LI, Jin-yan YANG, Chao-shu TANG, Qi LI, and Hong-fang JIN. "Hydrogen sulfide is endogenously generated in rat skeletal muscle and exerts a protective effect against oxidative stress." Chinese Medical Journal 126, no. 5 (2013): 930–36. http://dx.doi.org/10.3760/cma.j.issn.0366-6999.20122485.
Full textGao, Jinghui, Elijah Sterling, Rachel Hankin, Aria Sikal, and Yao Yao. "Therapeutics Targeting Skeletal Muscle in Amyotrophic Lateral Sclerosis." Biomolecules 14, no. 7 (2024): 878. http://dx.doi.org/10.3390/biom14070878.
Full textPistilli, Emidio E., Parco M. Siu, and Stephen E. Alway. "Interleukin-15 responses to aging and unloading-induced skeletal muscle atrophy." American Journal of Physiology-Cell Physiology 292, no. 4 (2007): C1298—C1304. http://dx.doi.org/10.1152/ajpcell.00496.2006.
Full textHitachi, Keisuke, Masashi Nakatani, and Kunihiro Tsuchida. "Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle." Non-Coding RNA 5, no. 2 (2019): 33. http://dx.doi.org/10.3390/ncrna5020033.
Full textChen, Ting, Timothy M. Moore, Mark T. W. Ebbert, et al. "Liver kinase B1 inhibits the expression of inflammation-related genes postcontraction in skeletal muscle." Journal of Applied Physiology 120, no. 8 (2016): 876–88. http://dx.doi.org/10.1152/japplphysiol.00727.2015.
Full textAochuan, Xue, Zeng Zhaohong, Wang Huihui, Leng Hongshuai, Zha Xianjun, and Memg Longmin. "Correlation between female body mass and functional movements and skeletal muscle mass." World Journal of Advanced Research and Reviews 14, no. 3 (2022): 179–84. https://doi.org/10.5281/zenodo.7729375.
Full textIto, Daisuke, Yuji Tokoro, Eiichi Tanaka, and Sota Yamamoto. "A Constitutive Model for Skeletal Muscle Taking Account of Anisotropic Damage and Viscoelasticity(2C1 Musculo-Skeletal Biomechanics IV)." Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2007.3 (2007): S152. http://dx.doi.org/10.1299/jsmeapbio.2007.3.s152.
Full textBarry, DT. "Acoustic Signals from Skeletal Muscle." Physiology 5, no. 1 (1990): 17–21. http://dx.doi.org/10.1152/physiologyonline.1990.5.1.17.
Full textDao, Tien Tuan, and Marie-Christine Ho Ba Tho. "A Systematic Review of Continuum Modeling of Skeletal Muscles: Current Trends, Limitations, and Recommendations." Applied Bionics and Biomechanics 2018 (December 6, 2018): 1–17. http://dx.doi.org/10.1155/2018/7631818.
Full textHeidlauf, Thomas, and Oliver Röhrle. "Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS." Computational and Mathematical Methods in Medicine 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/517287.
Full textZhou, Daixing, Jeanine A. Ursitti, and Robert J. Bloch. "Developmental Expression of Spectrins in Rat Skeletal Muscle." Molecular Biology of the Cell 9, no. 1 (1998): 47–61. http://dx.doi.org/10.1091/mbc.9.1.47.
Full textFujii, Nobuharu, Marni D. Boppart, Scott D. Dufresne, et al. "Overexpression or ablation of JNK in skeletal muscle has no effect on glycogen synthase activity." American Journal of Physiology-Cell Physiology 287, no. 1 (2004): C200—C208. http://dx.doi.org/10.1152/ajpcell.00415.2003.
Full textBogomolova, Agnessa P., and Ivan A. Katrukha. "Troponins and Skeletal Muscle Pathologies." Biochemistry (Moscow) 89, no. 12-13 (2024): 2083–106. https://doi.org/10.1134/s0006297924120010.
Full textHussain, Sabah N. A., and Marco Sandri. "Role of autophagy in COPD skeletal muscle dysfunction." Journal of Applied Physiology 114, no. 9 (2013): 1273–81. http://dx.doi.org/10.1152/japplphysiol.00893.2012.
Full textCollins, Asiamah Amponsah, Kun Zou, Zhang Li, and Su Ying. "Mechanism and Functions of Identified miRNAs in Poultry Skeletal Muscle Development – A Review." Annals of Animal Science 19, no. 4 (2019): 887–904. http://dx.doi.org/10.2478/aoas-2019-0049.
Full textMaas, Huub, and Thomas G. Sandercock. "Force Transmission between Synergistic Skeletal Muscles through Connective Tissue Linkages." Journal of Biomedicine and Biotechnology 2010 (2010): 1–9. http://dx.doi.org/10.1155/2010/575672.
Full textGomez-Cabrera, M. C., G. L. Close, A. Kayani, A. McArdle, J. Viña, and M. J. Jackson. "Effect of xanthine oxidase-generated extracellular superoxide on skeletal muscle force generation." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 298, no. 1 (2010): R2—R8. http://dx.doi.org/10.1152/ajpregu.00142.2009.
Full textKohno, Shohei, Yui Yamashita, Tomoki Abe, et al. "Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages." Journal of Applied Physiology 112, no. 10 (2012): 1773–82. http://dx.doi.org/10.1152/japplphysiol.00103.2012.
Full textMacdonald, W. A., N. Ørtenblad, and O. B. Nielsen. "Energy conservation attenuates the loss of skeletal muscle excitability during intense contractions." American Journal of Physiology-Endocrinology and Metabolism 292, no. 3 (2007): E771—E778. http://dx.doi.org/10.1152/ajpendo.00378.2006.
Full textPark, Song-Young, Jayson R. Gifford, Robert H. I. Andtbacka, et al. "Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?" American Journal of Physiology-Heart and Circulatory Physiology 307, no. 3 (2014): H346—H352. http://dx.doi.org/10.1152/ajpheart.00227.2014.
Full textDonoviel, D. B., M. A. Shield, J. N. Buskin, H. S. Haugen, C. H. Clegg, and S. D. Hauschka. "Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice." Molecular and Cellular Biology 16, no. 4 (1996): 1649–58. http://dx.doi.org/10.1128/mcb.16.4.1649.
Full textRasmussen, Tara, and Haley Tucker. "Loss of SMYD1 Results in Perinatal Lethality via Selective Defects within Myotonic Muscle Descendants." Diseases 7, no. 1 (2018): 1. http://dx.doi.org/10.3390/diseases7010001.
Full textCONTI, Antonio, L. GORZA, and Vincenzo SORRENTINO. "Differential distribution of ryanodine receptor type 3 (RyR3) gene product in mammalian skeletal muscles." Biochemical Journal 316, no. 1 (1996): 19–23. http://dx.doi.org/10.1042/bj3160019.
Full textLai, Kuo-Chu. "Abstract 286: Metabolic alterations in skeletal muscle and serum of tumor-bearing cachectic mice." Cancer Research 85, no. 8_Supplement_1 (2025): 286. https://doi.org/10.1158/1538-7445.am2025-286.
Full textTesta, Marco, Bianca Rocca, Lucia Spath, et al. "Expression and activity of cyclooxygenase isoforms in skeletal muscles and myocardium of humans and rodents." Journal of Applied Physiology 103, no. 4 (2007): 1412–18. http://dx.doi.org/10.1152/japplphysiol.00288.2007.
Full textChekmareva, I. A., S. N. Bardakov, I. S. Limaev, A. M. Emelin, and R. V. Deev. "Ultrastructural changes of skeletal muscle tissue of patients with dysferlinopathy." Russian Journal of Archive of Pathology 87, no. 1 (2025): 28. https://doi.org/10.17116/patol20258701128.
Full textManye, Sunday Joseph, Nathan Isaac Dibal, and Martha Orendu Oche Attah. "Histological and morphometric analysis of skeletal muscle in some vertebrates." Bio-Research 21, no. 3 (2023): 2113–20. http://dx.doi.org/10.4314/br.v21i3.5.
Full textCabezas Perez, Ricardo Julián, Marco Fidel Ávila Rodríguez, and Doris Haydee Rosero Salazar. "Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery." Biomedicines 10, no. 10 (2022): 2557. http://dx.doi.org/10.3390/biomedicines10102557.
Full textPedersen, Bente K. "Muscle as a Secretory Organ." Comprehensive Physiology 3, no. 3 (2013): 1337–62. https://doi.org/10.1002/j.2040-4603.2013.tb00522.x.
Full textPedersen, Thomas H., Frank de Paoli, and Ole B. Nielsen. "Increased Excitability of Acidified Skeletal Muscle." Journal of General Physiology 125, no. 2 (2005): 237–46. http://dx.doi.org/10.1085/jgp.200409173.
Full text