Academic literature on the topic 'Skew laplace'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Skew laplace.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Skew laplace"
Shams Harandi, S., and M. H. Alamatsaz. "Alpha–Skew–Laplace distribution." Statistics & Probability Letters 83, no. 3 (March 2013): 774–82. http://dx.doi.org/10.1016/j.spl.2012.11.024.
Full textJulià, Olga, Jaume Vidal-Mas, Nicolai S. Panikov, and Josep Vives-Rego. "Skew-Laplace and Cell-Size Distribution in Microbial Axenic Cultures: Statistical Assessment and Biological Interpretation." International Journal of Microbiology 2010 (2010): 1–10. http://dx.doi.org/10.1155/2010/191585.
Full textAryal, Gokarna, and Saralees Nadarajah. "On the skew Laplace distribution." Journal of Information and Optimization Sciences 26, no. 1 (January 2005): 205–17. http://dx.doi.org/10.1080/02522667.2005.10699644.
Full textYilmaz, Abdullah. "The flexible skew Laplace distribution." Communications in Statistics - Theory and Methods 45, no. 23 (October 14, 2014): 7053–59. http://dx.doi.org/10.1080/03610926.2014.974821.
Full textKozubowski, Tomasz J., and Seidu Inusah. "A Skew Laplace Distribution on Integers." Annals of the Institute of Statistical Mathematics 58, no. 3 (June 17, 2006): 555–71. http://dx.doi.org/10.1007/s10463-005-0029-1.
Full textBarbiero, Alessandro. "An alternative discrete skew Laplace distribution." Statistical Methodology 16 (January 2014): 47–67. http://dx.doi.org/10.1016/j.stamet.2013.07.002.
Full textNing, Jiannan, and Wende Yi. "Tail dependence for skew Laplace distribution and skew Cauchy distribution." Communications in Statistics - Theory and Methods 45, no. 17 (July 5, 2016): 5224–33. http://dx.doi.org/10.1080/03610926.2014.941494.
Full textJulià, Olga, and Josep Vives-Rego. "Skew-Laplace distribution in Gram-negative bacterial axenic cultures: new insights into intrinsic cellular heterogeneity." Microbiology 151, no. 3 (March 1, 2005): 749–55. http://dx.doi.org/10.1099/mic.0.27460-0.
Full textKozubowski, Tomasz J., and Anna K. Panorska. "Testing symmetry under a skew Laplace model." Journal of Statistical Planning and Inference 120, no. 1-2 (February 2004): 41–63. http://dx.doi.org/10.1016/s0378-3758(02)00503-7.
Full textAryal, Gokarna, and A. N. V. Rao. "Reliability model using truncated skew-Laplace distribution." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (November 2005): e639-e646. http://dx.doi.org/10.1016/j.na.2005.03.055.
Full textDissertations / Theses on the topic "Skew laplace"
Macerau, Walkiria Maria de Oliveira. "Comparação das distribuições α-estável, normal, t de student e Laplace assimétricas." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/4555.
Full textFinanciadora de Estudos e Projetos
Abstract The asymmetric distributions has experienced great development in recent times. They are used in modeling financial data, medical, genetics and other applications. Among these distributions, the Skew normal (Azzalini, 1985) has received more attention from researchers (Genton et al., (2001), Gupta et al., (2004) and Arellano-Valle et al., (2005)). We present a comparative study of _-stable distributions, Skew normal, Skew t de Student and Skew Laplace. The _-stable distribution is studied by Nolan (2009) and proposed by Gonzalez et al., (2009) in the context of genetic data. For some real datasets, in areas such as financial, genetics and commodities, we test which distribution best fits the data. We compare these distributions using the model selection criteria AIC and BIC.
As distribuições assimétricas tem experimentado grande desenvolvimento nos tempos recentes. Elas são utilizadas na modelagem de dados financeiros, médicos e genéticos entre outras aplicações. Dentre essas distribuições, a normal assimétrica (Azzalini, 1985) tem recebido mais atenção dos pesquisadores (Genton et al., (2001), Gupta et al., (2004) e Arellano-Valle et al., (2005)). Nesta dissertação, apresentamos um estudo comparativo das distribuições _-estável, normal , t de Student e Laplace assimétricas. A distribuição _-estável estudada por Nolan (2009) é proposta por Gonzalez et al., (2009) no contexto de dados genéticos. Neste trabalho, também apresentamos como verificar a assimetria de uma distribuição, descrevemos algumas características das distribuições assimétricas em estudo, e comparamos essas distribuições utilizando os critérios de seleção de modelos AIC e BIC..
Gasparini, Daniela Caetano de Souza. "Verificação da performance de modelos APARCH assimétricos aplicados a dados financeiros." Universidade Federal de São Carlos, 2013. https://repositorio.ufscar.br/handle/ufscar/4567.
Full textFinanciadora de Estudos e Projetos
The volatility of financial assets changes over time, indicating the specification of regime change in volatility models. Furthermore, the presence of asymmetry in the returns of the financial market has been recognized in the financial literature of recent decades. In this paper, we present some heteroscedastic models with regime change, considering that the error component of these models follows Skew Laplace distribution, as well as the process of estimating its parameters via maximum likelihood and Bayesian methods.
A volatilidade dos ativos financeiros se altera ao longo do tempo, sinalizando a especificação de mudança de regime para modelos de volatilidade. Além disso, a presença de assimetria nos retornos do mercado financeiro tem sido reconhecida na literatura financeira das últimas décadas. Neste trabalho, apresentamos alguns modelos heterocedásticos com mudança de regime, considerando que a componente do erro desses modelos segue distribuição Laplace assimétrica, bem como o processo de estimação de seus parâmetros via máxima verossimilhança e métodos bayesianos.
Chang, Shu-Ching. "Antedependence Models for Skewed Continuous Longitudinal Data." Diss., University of Iowa, 2013. https://ir.uiowa.edu/etd/4827.
Full textBooks on the topic "Skew laplace"
Mann, Peter. The (Not So?) Basics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0030.
Full textConference papers on the topic "Skew laplace"
Vila-Valls, Jordi, Francois Vincent, and Pau Closas. "Decentralized Information Filtering Under Skew-Laplace Noise." In 2019 53rd Asilomar Conference on Signals, Systems, and Computers. IEEE, 2019. http://dx.doi.org/10.1109/ieeeconf44664.2019.9049032.
Full textKolybasova, V. V., P. A. Krutitskii, Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Numerical Treatment of a Skew-Derivative Problem for the Laplace Equation in the Exterior of Open Arcs: One-Point Scheme." In ICNAAM 2010: International Conference of Numerical Analysis and Applied Mathematics 2010. AIP, 2010. http://dx.doi.org/10.1063/1.3498640.
Full textYu, Ke, and David A. Peters. "Net Mass Flow Components in a Three-Dimensional Unsteady Rotor Inflow Model." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-42459.
Full text