Journal articles on the topic 'Skyrmion dynamics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Skyrmion dynamics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yu, X. Z., D. Morikawa, K. Nakajima, et al. "Motion tracking of 80-nm-size skyrmions upon directional current injections." Science Advances 6, no. 25 (2020): eaaz9744. http://dx.doi.org/10.1126/sciadv.aaz9744.
Full textShimojima, Takahiro, Asuka Nakamura, Xiuzhen Yu, et al. "Nano-to-micro spatiotemporal imaging of magnetic skyrmion’s life cycle." Science Advances 7, no. 25 (2021): eabg1322. http://dx.doi.org/10.1126/sciadv.abg1322.
Full textShu, Yun, Qianrui Li, Jing Xia, et al. "Realization of the skyrmionic logic gates and diodes in the same racetrack with enhanced and modified edges." Applied Physics Letters 121, no. 4 (2022): 042402. http://dx.doi.org/10.1063/5.0097152.
Full textZhao, Xuebing, Chiming Jin, Chao Wang, et al. "Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks." Proceedings of the National Academy of Sciences 113, no. 18 (2016): 4918–23. http://dx.doi.org/10.1073/pnas.1600197113.
Full textChudnovsky, Eugene M. "Dynamics of skyrmion contraction and expansion in a magnetic film." Low Temperature Physics 49, no. 12 (2023): 1413–18. http://dx.doi.org/10.1063/10.0022367.
Full textLin, Jia-Qiang, Ji-Pei Chen, Zhen-Yu Tan, et al. "Manipulation of Skyrmion Motion Dynamics for Logical Device Application Mediated by Inhomogeneous Magnetic Anisotropy." Nanomaterials 12, no. 2 (2022): 278. http://dx.doi.org/10.3390/nano12020278.
Full textBao, Bei, Mingming Yang, and Ming Yan. "Asymmetric Motion of Magnetic Skyrmions in Ferromagnetic Nanotubes Induced by a Magnetic Field." Symmetry 14, no. 6 (2022): 1195. http://dx.doi.org/10.3390/sym14061195.
Full textCoelho, Rodrigo C. V., Mykola Tasinkevych, and Margarida M. Telo da Gama. "Dynamics of flowing 2D skyrmions." Journal of Physics: Condensed Matter 34, no. 3 (2021): 034001. http://dx.doi.org/10.1088/1361-648x/ac2ca9.
Full textCoelho, Rodrigo C. V., Mykola Tasinkevych, and Margarida M. Telo da Gama. "Dynamics of flowing 2D skyrmions." Journal of Physics: Condensed Matter 34, no. 3 (2021): 034001. http://dx.doi.org/10.1088/1361-648x/ac2ca9.
Full textLi, Yang, and Hua Pang. "The skyrmion annihilations induced by local reversal of background field in a skyrmion lattice." Journal of Physics D: Applied Physics 55, no. 20 (2022): 205303. http://dx.doi.org/10.1088/1361-6463/ac4a39.
Full textBrearton, Richard, Maciej W. Olszewski, Shilei Zhang, et al. "Skyrmions in anisotropic magnetic fields: strain and defect driven dynamics." MRS Advances 4, no. 11-12 (2019): 643–50. http://dx.doi.org/10.1557/adv.2019.43.
Full textShigenaga, Takayuki, and Andrey O. Leonov. "Harnessing Skyrmion Hall Effect by Thickness Gradients in Wedge-Shaped Samples of Cubic Helimagnets." Nanomaterials 13, no. 14 (2023): 2073. http://dx.doi.org/10.3390/nano13142073.
Full textLiu, Jiahao, Zidong Wang, Teng Xu, et al. "The 20-nm Skyrmion Generated at Room Temperature by Spin-Orbit Torques." Chinese Physics Letters 39, no. 1 (2022): 017501. http://dx.doi.org/10.1088/0256-307x/39/1/017501.
Full textZhong, Anruo, Xiaoming Lan, Yangfan Hu, and Biao Wang. "Dynamics and stability of skyrmions in a bent nano-beam." New Journal of Physics 24, no. 3 (2022): 033019. http://dx.doi.org/10.1088/1367-2630/ac3a82.
Full textWu, Kai, Sheng Yang, Yuelei Zhao, Xue Liang, Xiangjun Xing, and Yan Zhou. "Tunable skyrmion–edge interaction in magnetic multilayers by interlayer exchange coupling." AIP Advances 12, no. 5 (2022): 055210. http://dx.doi.org/10.1063/5.0084546.
Full textPham, Van Tuong, Naveen Sisodia, Ilaria Di Manici, et al. "Fast current-induced skyrmion motion in synthetic antiferromagnets." Science 384, no. 6693 (2024): 307–12. http://dx.doi.org/10.1126/science.add5751.
Full textAhrens, Valentin, Luca Gnoli, Domenico Giuliano, et al. "Skyrmion velocities in FIB irradiated W/CoFeB/MgO thin films." AIP Advances 12, no. 3 (2022): 035325. http://dx.doi.org/10.1063/9.0000287.
Full textCai, Na, Xin Zhang, Yong Hu, and Yan Liu. "Nontraditional Movement Behavior of Skyrmion in a Circular-Ring Nanotrack." Nanomaterials 13, no. 22 (2023): 2977. http://dx.doi.org/10.3390/nano13222977.
Full textXu, Min, Zhiyu Zhang, Jinyu Zhang, et al. "Current-driven magnetic skyrmion diodes controlled by voltage gates in synthetic antiferromagnets." Applied Physics Letters 122, no. 15 (2023): 152404. http://dx.doi.org/10.1063/5.0142460.
Full textCastillo-Sepúlveda, Sebastián, Javier A. Vélez, Rosa M. Corona, Vagson L. Carvalho-Santos, David Laroze, and Dora Altbir. "Skyrmion Dynamics in a Double-Disk Geometry under an Electric Current: Part Two." Nanomaterials 12, no. 21 (2022): 3793. http://dx.doi.org/10.3390/nano12213793.
Full textDai, Y. Y., H. Wang, T. Yang, and Z. D. Zhang. "Resonant excitation of coupled skyrmions by spin-transfer torque." International Journal of Modern Physics B 30, no. 02 (2016): 1550254. http://dx.doi.org/10.1142/s0217979215502549.
Full textOurdani, Djoudi, Mohamed Belmeguenai, Mihai Gabor, Andrey Stashkevich, and Yves Roussigné. "Theoretical Investigation of Skyrmion Dynamics in Pt/Co/MgO Nanodots." Materials 15, no. 21 (2022): 7474. http://dx.doi.org/10.3390/ma15217474.
Full textWang, Kang, Yiou Zhang, Vineetha Bheemarasetty, Shiyu Zhou, See-Chen Ying, and Gang Xiao. "Single skyrmion true random number generator using local dynamics and interaction between skyrmions." Nature Communications 13, no. 1 (2022). http://dx.doi.org/10.1038/s41467-022-28334-4.
Full textWeißenhofer, Markus, and Ulrich Nowak. "Topology dependence of skyrmion Seebeck and skyrmion Nernst effect." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-10550-z.
Full textWeißenhofer, Markus, and Ulrich Nowak. "Topology dependence of skyrmion Seebeck and skyrmion Nernst effect." Scientific Reports 12, no. 1 (2022). http://dx.doi.org/10.1038/s41598-022-10550-z.
Full textZhou, Wenjie, and Lan Zhang. "Topological control of optical skyrmions for logic operations via vortex beam." Japanese Journal of Applied Physics, June 23, 2025. https://doi.org/10.35848/1347-4065/ade755.
Full textBrearton, R., L. A. Turnbull, J. A. T. Verezhak, et al. "Deriving the skyrmion Hall angle from skyrmion lattice dynamics." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-22857-y.
Full textLuo, Jia, Jia Hao Guo, Yun He Hou, et al. "Manipulating Skyrmion Motion on a Nanotrack with Varied Material Parameters and Tilted Spin Currents." Chinese Physics Letters, August 28, 2023. http://dx.doi.org/10.1088/0256-307x/40/9/097501.
Full textZhu, Zhaozhao, Tiankuo Xu, Yang Gao, et al. "Control of half-skyrmion movement for possible applications in memory, logic, and neuromorphic computing prototype devices." Applied Physics Reviews 11, no. 2 (2024). http://dx.doi.org/10.1063/5.0197833.
Full textMishra, Kishan K., Aijaz H. Lone, Srikant Srinivasan, Hossein Fariborzi, and Gianluca Setti. "Magnetic skyrmion: from fundamental physics to pioneering applications." Applied Physics Reviews 12, no. 1 (2025). https://doi.org/10.1063/5.0223004.
Full textBo, Lan, Xichao Zhang, Masahito Mochizuki, and Xuefeng Zhang. "Suppression of the skyrmion Hall effect in synthetic ferrimagnets with gradient magnetization." Physical Review Research 6, no. 2 (2024). http://dx.doi.org/10.1103/physrevresearch.6.023199.
Full textKAVIRAJ, BHASKAR, and Jaivardhan Sinha. "Review—Magnetic Skyrmions in Chiral Ferromagnets: Electrical Transport Properties and Device Applications." ECS Journal of Solid State Science and Technology, October 31, 2022. http://dx.doi.org/10.1149/2162-8777/ac9eda.
Full textGruber, Raphael, Maarten A. Brems, Jan Rothörl, et al. "300 Times Increased Diffusive Skyrmion Dynamics and Effective Pinning Reduction by Periodic Field Excitation." February 4, 2023. https://doi.org/10.1002/adma.202208922.
Full textShi, Shengbin, Yunhong Zhao, Jiajun Sun, Xu Hou, Hao-Miao Zhou, and Jie Wang. "Dynamic Behavior of Skyrmion Collision: Spiral and Breath." New Journal of Physics, August 14, 2023. http://dx.doi.org/10.1088/1367-2630/aceff5.
Full textWinkler, Thomas Brian, Jan Rothörl, Maarten A. Brems, Grischa Beneke, Hans Fangohr, and Mathias Kläui. "Coarse-graining collective skyrmion dynamics in confined geometries." Applied Physics Letters 124, no. 2 (2024). http://dx.doi.org/10.1063/5.0187446.
Full textAl Saidi, W., Rachid Sbiaa, S. Bhatti, SN Piramanayagam, and Suleiman Al Risi. "Dynamics of interacting skyrmions in magnetic nano-track." Journal of Physics D: Applied Physics, May 22, 2023. http://dx.doi.org/10.1088/1361-6463/acd78d.
Full textRan, Kejing, Wancong Tan, Xinyu Sun, et al. "Bending skyrmion strings under two-dimensional thermal gradients." Nature Communications 15, no. 1 (2024). http://dx.doi.org/10.1038/s41467-024-49288-9.
Full textShen, Laichuan, and Ka Shen. "Anomalous skyrmion drag in magnetic multilayers." npj Spintronics 3, no. 1 (2025). https://doi.org/10.1038/s44306-025-00088-x.
Full textChhabra, Hitesh, Jayaseelan Dhakshinamoorthy, and Ajaya Kumar Nayak. "Manipulation of hybrid skyrmion dynamics by step DMI approach." Journal of Physics D: Applied Physics, June 3, 2024. http://dx.doi.org/10.1088/1361-6463/ad5356.
Full textXu, Min, Xiaoyu Zhao, Jianyu Ning, et al. "Dynamics of converting skyrmion bags with different topological degrees into skyrmions in synthetic antiferromagnetic nanotracks." Journal of Applied Physics 136, no. 15 (2024). http://dx.doi.org/10.1063/5.0231631.
Full textBo, Lan, Rongzhi Zhao, Xichao Zhang, Masahito Mochizuki, and Xuefeng Zhang. "Global rotation of skyrmion bags under vertical microwave fields." Journal of Applied Physics 135, no. 6 (2024). http://dx.doi.org/10.1063/5.0187825.
Full textIroulart, Esteban Andrés, and Hector Diego Rosales. "Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip." Journal of Physics: Condensed Matter, November 24, 2022. http://dx.doi.org/10.1088/1361-648x/aca5dc.
Full textTan, Anthony K. C., Pin Ho, James Lourembam, et al. "Visualizing the strongly reshaped skyrmion Hall effect in multilayer wire devices." Nature Communications 12, no. 1 (2021). http://dx.doi.org/10.1038/s41467-021-24114-8.
Full textYang, Xiaoxue, Xiaolin Ai, Xin Liu, et al. "Skyrmion motion monitoring based on a ferromagnetic nanodot chain." Applied Physics Letters 125, no. 17 (2024). http://dx.doi.org/10.1063/5.0233449.
Full textYang, Yang, Yahui Ji, Chenye Zhang, and Tianxiang Nan. "Magnetic Skyrmion Dynamics Induced by Surface Acoustic Waves." Journal of Physics D: Applied Physics, January 30, 2023. http://dx.doi.org/10.1088/1361-6463/acb71f.
Full textda Silva, Ricardo Lopes, Rodrigo Costa Silva, and Afranio Rodrigues Pereira. "Affecting the structure of skyrmions by using ferromagnetic nanodisks with inhomogeneous properties: switching the skyrmion helicity and polarity." Journal of Physics D: Applied Physics, October 19, 2022. http://dx.doi.org/10.1088/1361-6463/ac9b6d.
Full textXu, Min, Wenlong Chen, Yuliang Chen, et al. "A magnetic skyrmion diode based on potential well inducting effect." Journal of Physics: Condensed Matter, July 12, 2023. http://dx.doi.org/10.1088/1361-648x/ace6ea.
Full textXing, Xiangjun, and Yan Zhou. "Skyrmion motion and partitioning of domain wall velocity driven by repulsive interactions." Communications Physics 5, no. 1 (2022). http://dx.doi.org/10.1038/s42005-022-01020-z.
Full textAl Saidi, Warda Zayid, S. Bhatti, S. N. Piramanayagam, and Rachid Sbiaa. "Annihilation mechanisms for interacting skyrmions in magnetic nanowire." Journal of Physics D: Applied Physics, February 16, 2024. http://dx.doi.org/10.1088/1361-6463/ad2a10.
Full textP J, Krishnanjana, Bibekananda Paikaray, Chandrasekhar Murapaka, and Arabinda Haldar. "Giant tunability of microwave responses for current-driven skyrmions in a tapered nanostructure with notches." Journal of Physics D: Applied Physics, April 19, 2023. http://dx.doi.org/10.1088/1361-6463/acce48.
Full text