Journal articles on the topic 'Slag – Analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Slag – Analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Liao, Jie Long, Zhao Hui Zhang, Jian Tao Ju, and Fu Cai Zhao. "Comparative Analysis of Steel Slag Characteristics and Treatment Process." Advanced Materials Research 834-836 (October 2013): 378–84. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.378.
Full textChen, Xiao Ling, Kui Yu Gao, and Cheng Li. "Cleaning Waste Sulfuric Acid from PVC Gas Analysis Scheme Design and Composition Analysis." Applied Mechanics and Materials 675-677 (October 2014): 280–83. http://dx.doi.org/10.4028/www.scientific.net/amm.675-677.280.
Full textBrown, K. "Slag Analysis." Proceedings of the Prehistoric Society 51, S2 (1985): 32–34. http://dx.doi.org/10.1017/s0079497x00078245.
Full textBagova, Z., K. Zhantasov, G. Turebekova, B. Sapargaliyeva, and Javier Rodrigo-Ilarri. "ANALYSIS AND PROSPECTIVE UTILIZATION OF TECHNOGENIC SLAG WASTE FROM A LEAD PLANT." SERIES CHEMISTRY AND TECHNOLOGY 2, no. 446 (2021): 22–28. http://dx.doi.org/10.32014/2021.2518-1491.22.
Full textWang, Shuo Ming, Yan Wang, and Ruo Si Wang. "Analysis of Micro Inclusions in Q195 Steel." Applied Mechanics and Materials 540 (April 2014): 68–71. http://dx.doi.org/10.4028/www.scientific.net/amm.540.68.
Full textGao, Bo, Chao Yang, Yingxue Zou, et al. "Compaction Procedures and Associated Environmental Impacts Analysis for Application of Steel Slag in Road Base Layer." Sustainability 13, no. 8 (2021): 4396. http://dx.doi.org/10.3390/su13084396.
Full textKozin, R., L. Kuznetsova, N. Hulyanytska, and I. Mossokovska. "Determination of Nitrogen Content in the Slags of CaO — Al2O3 System by Kjeldahl Method." Metrology and instruments, no. 3 (July 3, 2019): 55–60. http://dx.doi.org/10.33955/2307-2180(3)2019.55-60.
Full textBAZAN, V., E. BRANDALEZE, and P. SARQUIS. "EVALUATION OF THE USE OF SLAG FROM THE MINING OF Au AND Ag AS A REPLACEMENT OF THE SAND IN CEMENT MORTARS." Latin American Applied Research - An international journal 47, no. 2 (2017): 77–81. http://dx.doi.org/10.52292/j.laar.2017.305.
Full textSouza Santos, Inamara Amanda, Vanessa Rodrigues de Medeiros Santos, Willian dos Reis Lima, Aline Lima da Silva, Breno Totti Maia, and José Roberto de Oliveira. "Slag Splashing: simulation and analysis of the slags conditions." Journal of Materials Research and Technology 8, no. 6 (2019): 6173–76. http://dx.doi.org/10.1016/j.jmrt.2019.10.011.
Full textGao, Ju, and Cheng Liang Du. "Study of Large Inclusions in Casting Slab of 45# Steel." Advanced Materials Research 634-638 (January 2013): 1859–63. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.1859.
Full textLiu, Yu, Zhao Zhang, Guangqiang Li, Yang Wu, Xijie Wang, and Baokuan Li. "Effect of SiO2 containing slag for electroslag remelting on inclusion modification of 42CrMo steel." Metallurgical Research & Technology 116, no. 6 (2019): 627. http://dx.doi.org/10.1051/metal/2019063.
Full textTogobitskaya, D. N., A. I. Belkova, D. A. Stepanenko, N. A. Tsyupa, and Yu M. Likhachev. "Prediction of the properties of blast furnace slag in modern conditions of blast furnaces of Ukraine." Fundamental and applied problems of ferrous metallurgy, no. 32 (2018): 118–36. http://dx.doi.org/10.52150/2522-9117-2018-32-118-135.
Full textLi, H. J., Hideaki Suito, and Masanori Tokuda. "Thermodynamic Analysis of Slag Recycling Using a Slag Regenerator." ISIJ International 35, no. 9 (1995): 1079–88. http://dx.doi.org/10.2355/isijinternational.35.1079.
Full textLu, Xian Jun, Shu Gang Hu, and Zi Qiao Jin. "Chemical Activation of Cementing Properties of Granulated Blast Furnace Slags." Advanced Materials Research 454 (January 2012): 11–16. http://dx.doi.org/10.4028/www.scientific.net/amr.454.11.
Full textCheremisina, Elizaveta, Xu Gao, Shigeru Ueda, Shin-ya Kitamura, Ryo Yamashina, and Johannes Schenk. "Experimental Determination of the MnO Activity Coefficient in High-Manganese Slags Using the Chemical Equilibrium Method." Metals 11, no. 8 (2021): 1190. http://dx.doi.org/10.3390/met11081190.
Full textTzevelekou, Theofani, Paraskevi Lampropoulou, Panagiota P. Giannakopoulou, et al. "Valorization of Slags Produced by Smelting of Metallurgical Dusts and Lateritic Ore Fines in Manufacturing of Slag Cements." Applied Sciences 10, no. 13 (2020): 4670. http://dx.doi.org/10.3390/app10134670.
Full textYuan, H. B., B. Cai, X. C. Song, D. Z. Tang, and B. Yang. "Insight on the reduction of copper content in slags produced from the Ausmelt Converting Process." Journal of Mining and Metallurgy, Section B: Metallurgy 57, no. 2 (2021): 155–62. http://dx.doi.org/10.2298/jmmb201016013y.
Full textGao, Xiaoyong, Lin Zhang, Lifeng Zhang, Qiang Ren, and Xuanhui Qu. "Transfer of rare earth to alloy and inclusion during slag-metal reaction." Metallurgical Research & Technology 118, no. 4 (2021): 414. http://dx.doi.org/10.1051/metal/2021057.
Full textMiller, Duncan, and David Killick. "SLAG IDENTIFICATION AT SOUTHERN AFRICAN ARCHAEOLOGICAL SITES." Journal of African Archaeology 2, no. 1 (2004): 23–47. http://dx.doi.org/10.3213/1612-1651-10017.
Full textWang, Hui, Wei Zhang, Chao Liu, Hongwei Xing, Chen Guo, and Yuzhu Zhang. "Preparation and performance analysis of gas-quenched steel slag beads." Metallurgical Research & Technology 117, no. 1 (2020): 105. http://dx.doi.org/10.1051/metal/2019073.
Full textReddy, K. Chiranjeevi, and Kolluru V. L. Subramaniam. "Quantitative phase analysis of slag hydrating in an alkaline environment." Journal of Applied Crystallography 53, no. 2 (2020): 424–34. http://dx.doi.org/10.1107/s1600576720001399.
Full textHuang, Liu Qing, Hui Xian Lai, Cheng Hao Lu, et al. "Distribution of Representative Impurities in Metallurgical-Grade Silicon Using CaO-SiO2-CaF2 and CaO-SiO2-CaCl2 Slags." Advanced Materials Research 813 (September 2013): 11–15. http://dx.doi.org/10.4028/www.scientific.net/amr.813.11.
Full textHou, Xinkai, Dan Wang, Yiming Shi, Haitao Guo, and Yingying He. "Hydraulic Activity and Microstructure Analysis of High-Titanium Slag." Materials 13, no. 5 (2020): 1239. http://dx.doi.org/10.3390/ma13051239.
Full textWalker, D. C., W. F. Caley, S. Ferenczy, and G. J. Kipouros. "Modification of Steelmaking Slag by Additions of Salts from Aluminum Production." High Temperature Materials and Processes 31, no. 4-5 (2012): 389–94. http://dx.doi.org/10.1515/htmp-2012-0071.
Full textBabenko, A. A., M. V. Ushakov, A. V. Murzin, and L. Yu Mikhailova. "Elaboration and mastering of technology of semiproduct smelting in EAF under magnesia slags." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 75, no. 8 (2019): 936–43. http://dx.doi.org/10.32339/0135-5910-2019-8-936-943.
Full textNiu, Shengli, Mengqi Liu, Chunmei Lu, Hui Li, and Mengjia Huo. "Thermogravimetric analysis of carbide slag." Journal of Thermal Analysis and Calorimetry 115, no. 1 (2013): 73–79. http://dx.doi.org/10.1007/s10973-013-3268-z.
Full textMigas, P. "Analysis of the Rheological Behaviour of Selected Semi-Solid Slag Systems in Blast Furnace Flow Conditions." Archives of Metallurgy and Materials 60, no. 1 (2015): 85–93. http://dx.doi.org/10.1515/amm-2015-0014.
Full textWang, Guohua, Yaru Cui, Ze Yang, et al. "Volatilization characteristics of high-lead slag and its influence on measurement of physicochemical properties at high temperature." Journal of Mining and Metallurgy, Section B: Metallurgy 56, no. 1 (2020): 59–68. http://dx.doi.org/10.2298/jmmb190219003w.
Full textKirschen, Marcus. "Visualization of Slag Data for Efficient Monitoring and Improvement of Steelmaking Slag Operation in Electric Arc Furnaces, with a Focus on MgO Saturation." Metals 11, no. 1 (2020): 17. http://dx.doi.org/10.3390/met11010017.
Full textBabenko, A. A., A. N. Smetannikov, V. I. Zhuchkov, and A. G. Upolovnikova. "INFLUENCE OF B2O3 AND CaO–SiO2 –B2O3 –Al2O3 SLAG SYSTEM BASICITY ON CONCENTRATION OF MAGNESIUM OXIDE SATURATION." Izvestiya. Ferrous Metallurgy 62, no. 2 (2019): 123–27. http://dx.doi.org/10.17073/0368-0797-2019-2-123-127.
Full textZhang, Shu Qing, Xiu Ling Lv, Li Hong Zhang, and Na Hui Zhang. "Application in the Experimental Data Analysis of the Slag Viscosity with Minitab Software." Advanced Materials Research 753-755 (August 2013): 1857–61. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.1857.
Full textMatyas, Josef, S. K. Sundaram, B. J. Hicks, Autumn B. Edmondson, and Benjamin M. Arrigoni. "Slag-Refractory Interaction in Slagging Coal Gasifiers." Materials Science Forum 595-598 (September 2008): 397–405. http://dx.doi.org/10.4028/www.scientific.net/msf.595-598.397.
Full textKawecka-Cebula, E., M. Karbowniczek, and I. Suliga. "The Effect of Slag on the Effectiveness of Phosphorus Removal from Ferrous Alloys Containing Carbon, Chromium and Nickel." Archives of Metallurgy and Materials 61, no. 1 (2016): 301–6. http://dx.doi.org/10.1515/amm-2016-0057.
Full textXie, Hongen, Wenzhou Yu, Zhixiong You, Xuewei Lv, and Chenguang Bai. "The Effect of Titanium Carbonitride on the Viscosity of High-Titanium-Type Blast Furnace Slag." Metals 9, no. 4 (2019): 395. http://dx.doi.org/10.3390/met9040395.
Full textZhao, Li Hua, Pu Liu, Xian Bin Ai, et al. "Analysis of Microstructure of Steel-Slag Ceramic Tiles." Advanced Materials Research 168-170 (December 2010): 1690–94. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.1690.
Full textMao, Kun Li. "Modal Analysis and Dynamic Test of Steel Slag Vehicle." Applied Mechanics and Materials 397-400 (September 2013): 564–67. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.564.
Full textKolesnik, V., Y. Buchavyi, and K. Liasov. "Systematization and selection of ecologically significant characteristics and indicators of metallurgical slags to the knowledge base of specialized GIS." Collection of Research Papers of the National Mining University 64 (2021): 122–37. http://dx.doi.org/10.33271/crpnmu/64.122.
Full textPark, Ki-Bong, Yi-Sheng Wang, and Xiao-Yong Wang. "Property Analysis of Slag Composite Concrete Using a Kinetic–Thermodynamic Hydration Model." Applied Sciences 11, no. 16 (2021): 7191. http://dx.doi.org/10.3390/app11167191.
Full textBai, Hao, Pu Liu, Xian Bin Ai, Li Hua Zhao, Qi Tang, and Shu Long Zheng. "Analysis on the Microstructure Characteristics of Steel-Slag Based Ceramics." Advanced Materials Research 150-151 (October 2010): 133–38. http://dx.doi.org/10.4028/www.scientific.net/amr.150-151.133.
Full textZhao, Fu Cai, Jian Tao Ju, Jie Long Liao, Wei Ming Kong, and Yao Jun Dang. "Analysis of Basic Properties and Comprehensive Utilization of the Hot Braised Slag." Advanced Materials Research 753-755 (August 2013): 623–27. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.623.
Full textQi, Gui Hai, and Xiao Qin Peng. "Analysis on the Pozzolanic Effects of Phosphorus Slag Powder in Concrete." Key Engineering Materials 477 (April 2011): 112–17. http://dx.doi.org/10.4028/www.scientific.net/kem.477.112.
Full textHan, Feng Lan, and Lan Er Wu. "Effect of Boric Acid on the Properties of Magnesium Slag Powder." Key Engineering Materials 633 (November 2014): 218–24. http://dx.doi.org/10.4028/www.scientific.net/kem.633.218.
Full textde Medeiros, R. C., and S. Liu. "A Predictive Electrochemical Model for Weld Metal Hydrogen Pickup in Underwater Wet Welds." Journal of Offshore Mechanics and Arctic Engineering 120, no. 4 (1998): 243–48. http://dx.doi.org/10.1115/1.2829547.
Full textWang, Shuo Ming, Yan Wang, and Ruo Si Wang. "Analysis of Large Inclusions in Q195 Steel." Advanced Materials Research 997 (August 2014): 522–25. http://dx.doi.org/10.4028/www.scientific.net/amr.997.522.
Full textGoncharov, I. A., L. I. Fajnberg, A. A. Rybakov, and A. V. Netyaga. "Analysis of applicability of slag crust in production of agglomerated fluxes." Paton Welding Journal 2016, no. 2 (2016): 40–44. http://dx.doi.org/10.15407/tpwj2016.02.07.
Full textOuYang, K., Z. H. Dou, T. A. Zhang, and Y. Liu. "Effect of ZnO/PbO and FeOX/SiO2 ratio on the viscosity of lead smelting slags." Journal of Mining and Metallurgy, Section B: Metallurgy 56, no. 1 (2020): 27–33. http://dx.doi.org/10.2298/jmmb190622052o.
Full textDemir, Orhan, and Rauf Hurman Eric. "Rate and Mechanism of Reduction-Dissolution of Chromite in Liquid Slags." High Temperature Materials and Processes 32, no. 3 (2013): 255–63. http://dx.doi.org/10.1515/htmp-2012-0133.
Full textKaralis, K., N. Karkalos, G. S. E. Antipas, and A. Xenidis. "Pragmatic analysis of the electric submerged arc furnace continuum." Royal Society Open Science 4, no. 9 (2017): 170313. http://dx.doi.org/10.1098/rsos.170313.
Full textBazhirov, Т. S., V. S. Protsenko, N. S. Bazhirov, M. S. Dauletiyarov, B. Ye Serikbayev, and К. N. Bazhirova. "PROSPECTS FOR THE INTEGRATED USE OF SLAG WASTES FROM FERROCHROME PRODUCTION FOR HEAT-RESISTANT MATERIALS." SERIES CHEMISTRY AND TECHNOLOGY 6, no. 444 (2020): 111–18. http://dx.doi.org/10.32014/2020.2518-1491.105.
Full textBydałek, A. W. "Thermal analysis of carbide slag solutions." Journal of Thermal Analysis 45, no. 5 (1995): 919–22. http://dx.doi.org/10.1007/bf02547458.
Full text