Academic literature on the topic 'Slag-Fly ash'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Slag-Fly ash.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Slag-Fly ash"
Giergiczny, Zbigniew. "Fly ash and slag." Cement and Concrete Research 124 (October 2019): 105826. http://dx.doi.org/10.1016/j.cemconres.2019.105826.
Full textShaikh, Faiz U. A., and Anwar Hosan. "High Volume Slag and Slag-Fly Ash Blended Cement Pastes Containing Nano Silica." Materials Science Forum 967 (August 2019): 205–13. http://dx.doi.org/10.4028/www.scientific.net/msf.967.205.
Full textZhang, Dong Qing, Xue Ying Li, Xin Wei Ma, and Zheng Wang. "Effects of Mineral Admixtures on the Chloride Permeability of Hydraulic Concrete." Advanced Materials Research 168-170 (December 2010): 2082–85. http://dx.doi.org/10.4028/www.scientific.net/amr.168-170.2082.
Full textFerdian Adhitia and Dewi Pertiwi. "PENGARUH VARIASI FLY ASH SEBAGAI PENGGANTI SEBAGIAN SEMEN DENGAN COPPER SLAG PENGGANTI SEBAGIAN PASIR UNTUK BETON MUTU 42 MPA." PADURAKSA: Jurnal Teknik Sipil Universitas Warmadewa 9, no. 1 (June 4, 2020): 80–86. http://dx.doi.org/10.22225/pd.9.1.1676.80-86.
Full textDermawan, Denny, and Mochammad Luqman Ashari. "Studi Komparasi Kelayakan Teknis dan Lingkungan Pemanfaatan Limbah B3 Sandblasting terhadap Limbah B3 Sandblasting dan Fly Ash sebagai Campuran Beton." Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan 15, no. 1 (March 29, 2018): 25. http://dx.doi.org/10.14710/presipitasi.v15i1.25-30.
Full textZhou, Mingkai, Xu Cheng, and Xiao Chen. "Studies on the Volumetric Stability and Mechanical Properties of Cement-Fly-Ash-Stabilized Steel Slag." Materials 14, no. 3 (January 21, 2021): 495. http://dx.doi.org/10.3390/ma14030495.
Full textChi, Mao Chieh, and Yen Chun Liu. "Effects of Fly Ash/Slag Ratio and Liquid/Binder Ratio on Strength of Alkali-Activated Fly Ash/Slag Mortars." Applied Mechanics and Materials 377 (August 2013): 50–54. http://dx.doi.org/10.4028/www.scientific.net/amm.377.50.
Full textLi, Cai Yu, Lin Yang, Jian Xin Cao, and Qiu Mei Liu. "Effect of High-Calcium Fly Ash on Activity Index and Hydration Process of Phosphorous Slag Powders." Materials Science Forum 873 (September 2016): 105–9. http://dx.doi.org/10.4028/www.scientific.net/msf.873.105.
Full textSynowiec, Katarzyna. "Properties of non-standard fly ash – slag cements containing calcareous fly ash." Budownictwo i Architektura 12, no. 3 (September 11, 2013): 215–22. http://dx.doi.org/10.35784/bud-arch.2034.
Full textWang, Qiang, Pei Yu Yan, and Reng Guang Liu. "Effects of Blended Steel Slag-Superfine Fly Ash Mineral Admixture and Ordinary Fly Ash on the Properties of Concrete." Materials Science Forum 743-744 (January 2013): 323–28. http://dx.doi.org/10.4028/www.scientific.net/msf.743-744.323.
Full textDissertations / Theses on the topic "Slag-Fly ash"
Bool, Lawrence E. III. "The partitioning of iron during the combustion of pulverized coal." Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186374.
Full textKothari, Ankit. "Effects of Fly Ash on the properties of Alkali Activated Slag Concrete." Thesis, Luleå tekniska universitet, Geoteknologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63534.
Full textTalefirouz, Davood. "Use Of Granulated Blast Furnace Slag, Steel Slag And Fly Ash In Cement-bentonite Slurry Wall Construction." Master's thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615432/index.pdf.
Full text9 m/s. Some investigations have pointed toward improved performance using admixtures that would provide low permeability. In this study, Soma thermal power plant fly ash, granulated blast furnace slag, lime, and steel slag are used as admixture to improve the performance of slurry walls. Permeability, compressive strength, slump, compressibility properties of the mixtures were found and checked for the minimum requirements. According to the findings of this study, granulated blast furnace slag (GGBS), fly ash and steel slag can be used at certain percentages and curing periods as additive in cement-bentonite barrier wall construction. Permeability of specimens having fly ash decreases by increasing fly ash content. Mixtures having 50 % of GGBS type I with 5 % of lime and 9% bentonite content gave acceptable results in 28 days of curing time. Specimens including 50 % of GGBS type II with 5 % of lime and 9% bentonite content gave the higher permeability value in 28 days of curing time with respect to GGBS type I. In addition, most of the mixtures prepared by steel slag gave the acceptable permeability values in 28 days of curing period. Unconfined compressive strength of all mixtures increase by increasing curing time. Cc, Cr, Cv, kcon values were found from consolidation test results. Permeability values found from consolidation tests are 10 times to 100 times higher than flexible wall k results for the same effective stress of 150 kPa. Generally, mv values are decreasing with increasing curing time. As mv decreases, D increases.
Topbas, Selim. "Effect Of Trass, Granulated Blast Furnace Slag And Fly Ash On Delayed Ettringite Formation." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612494/index.pdf.
Full textRyno, Barnard. "Mechanical properties of fly ash/slag based geopolymer concrete with the addition of macro fibres." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95866.
Full textENGLISH ABSTRACT: Geopolymer concrete is an alternative construction material that has comparable mechanical properties to that of ordinary Portland cement concrete, consisting of an aluminosilicate and an alkali solution. Fly ash based geopolymer concrete hardens through a process called geopolymerisation. This hardening process requires heat activation of temperatures above ambient. Thus, fly ash based geopolymer concrete will be an inadequate construction material for in-situ casting, as heat curing will be uneconomical. The study investigated fly ash/slag based geopolymer concrete. When slag is added to the matrix, curing at ambient temperatures is possible due to calcium silicate hydrates that form in conjunction with the geopolymeric gel. The main goal of the study is to obtain a better understanding of the mechanical properties of geopolymer concrete, cured at ambient temperatures. A significant number of mix variations were carried out to investigate the influence that the various parameters, present in the matrix, have on the compressive strength of fly ash/slag based geopolymer concrete. Promising results were found, as strengths as high as 72 MPa were obtained. The sodium hydroxide solution, the slag content and the amount of additional water in the matrix had the biggest influence on the compressive strength of the fly ash/slag based geopolymer concrete. The modulus of the elasticity of fly ash/slag based geopolymer concrete did not yield promising results as the majority of the specimens, regardless of the compressive strength, yielded a stiffness of less than 20 GPa. This is problematic from a structural point of view as this will result in large deflections of elements. The sodium hydroxide solution had the most significant influence on the elastic modulus of the geopolymer concrete. Steel and polypropylene fibres were added to a high- and low strength geopolymer concrete matrix to investigate the ductility improvement. The limit of proportionality mainly depended on the compressive strength of the geopolymer concrete, while the amount of fibres increased the energy absorption of the concrete. A similar strength OPC concrete mix was compared to the low strength geopolymer concrete and it was found that the OPC concrete specimen yielded slightly better flexural behaviour. Fibre pull-out tests were also conducted to investigate the fibre-matrix interface. From the knowledge gained during this study, it can be concluded that the use of fly ash/slag based geopolymer concrete, as an alternative binder material, is still some time away as there are many complications that need to be dealt with, especially the low modulus of elasticity. However, fly ash/slag based geopolymer concrete does have potential if these complications can be addressed.
AFRIKAANSE OPSOMMING: Geopolimeerbeton is ‘n alternatiewe konstruksiemateriaal wat vergelykbare meganiese eienskappe met beton waar OPC die binder is, en wat bestaan uit ‘n aluminosilikaat en ‘n alkaliese oplossing. Vliegas-gebaseerde geopolimeerbeton verhard tydens ‘n proses wat geopolimerisasie genoem word. Hierdie verhardingsproses benodig hitte-aktivering van temperature hoër as dié van die onmiddellike omgewing. Gevolglik sal vliegas-gebaseerde geopolimeerbeton ‘n ontoereikende konstruksiemateriaal vir in situ gietvorming wees, aangesien hitte-nabehandeling onekonomies sal wees. Die studie het vliegas/slagmentgebaseerde geopolimeerbeton ondersoek. Wanneer slagment by die bindmiddel gevoeg word, is nabehandeling by omliggende temperature moontlik as gevolg van kalsiumsilikaathidroksiede wat in verbinding met die geopolimeriese jel vorm. Die hoofdoel van die studie was om ‘n beter begrip te kry van die meganiese eienskappe van geopolimeerbeton, wat nabehandeling by omliggende temperature ontvang het. ‘n Aansienlike aantal meng variasies is uitgevoer om die invloed te ondersoek wat die verskeie parameters, aanwesig in die bindmiddel, op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton het. Belowende resultate is verkry en sterktes van tot so hoog as 72 MPa is opgelewer. Daar is gevind dat die sodiumhidroksiedoplossing, die slagmentinhoud en die hoeveelheid water in die bindmiddel die grootste invloed op die druksterkte van die vliegas/slagmentgebaseerde geopolimeerbeton gehad het. Die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton het nie belowende resultate opgelewer nie. Die meeste van die monsters, ongeag die druksterkte, het ‘n styfheid van minder as 20 GPa opgelewer. Vanuit ‘n strukturele oogpunt is dit problematies, omdat groot defleksies in elemente sal voorkom. Die sodiumhidroksiedoplossing het die grootste invloed op die styfheid van die vliegas/slagmentgebaseerde geopolimeerbeton gehad. Staal en polipropileenvesels is by ‘n hoë en lae sterke geopolimeer beton gevoeg om die buigbaarheid te ondersoek. Die die maksimum buigbaarheid het hoofsaaklik afgehang van die beton se druksterkte terwyl die hoeveelheid vesels die beton se energie-opname verhoog het. ‘n OPC beton mengsel van soortgelyke sterkte is vergelyk met die lae sterkte geopolimeerbeton en daar is gevind dat die OPC beton ietwat beter buigbaarheid opgelewer het. Veseluittrektoetse is uitgevoer om die veselbindmiddel se skeidingsvlak te ondersoek. Daar kan tot die gevolgtrekking gekom word dat, alhoewel belowende resultate verkry is, daar steeds sommige aspekte is wat ondersoek en verbeter moet word, in besonder die styfheid, voordat geopolimeerbeton as ‘n alternatiewe bindmiddel kan optree. Volgens die kennis opgedoen tydens hierdie studie, kan dit afgelei word dat die gebruik van vliegas/slagmentgebaseerde geopolimeerbeton, as 'n alternatiewe bindmiddel, nog 'n geruime tyd weg is, as gevolg van baie komplikasies wat gehandel moet word, veral die lae elastisiteitsmodulus. Tog het vliegas/slagmentgebaseerde geopolimeerbeton potensiaal as hierdie komplikasies verbeter kan word.
Chibulu, Chizya. "The influence of fly ash and ground granulated blastfurnace slag on restrained shrinkage cracking of bonded overlays." Master's thesis, University of Cape Town, 2016. http://hdl.handle.net/11427/20521.
Full textZheng, Yong Chu. "Shrinkage behaviour of geopolymers /." Connect to thesis, 2010. http://repository.unimelb.edu.au/10187/7157.
Full textNaalisvaara, M. (Mikko). "Mechanical properties and drying shrinkage of fibre-reinforced alkali activated fly ash/slag binder s using ceramic waste aggregate." Bachelor's thesis, University of Oulu, 2018. http://urn.fi/URN:NBN:fi:oulu-201805221855.
Full textPortlandsementti, eräs yleisimmistä rakennusmateriaaleista, on merkittävä kasvihuonekaasupäästöjen aiheuttaja. Portlandsementin valmistusprosessi käyttää paljon energiaa, ja se kuluttaa maapallon luonnonvaroja hälyttävällä tahdilla. Uusia materiaaleja, joilla Portlandsementti voitaisiin korvata, ollaan tutkittu ja kehitelty jo vuosikymmeniä, ja eräs lupaavista ehdokkaista on alkali-aktivoidut materiaalit. Näiden valmistaminen ei vaadi paljoa luonnonvaroja, sillä useita teollisuuden sivutuotteita voidaan hyödyntää lähes suoraan raaka-aineina, kuten masuunikuonaa ja lentotuhkaa. Lisäksi alkali-aktivaatioreaktio on huomattavasti Portlandsementin valmistuksessa tarvittavia kemiallisia reaktioita ympäristöystävällisempi. Yksi-osaiset alkali-aktivoidut sideaineet ovat kiinteässä muodossa veden lisäämiseen asti, joten niitä on helppoa ja turvallista käsitellä ja kuljettaa. Tässä työssä suoritettiin kokeita, joiden avulla mitattiin erään alkali-aktivoiduista sideaineista valmistetun betonin mekaanisia ominaisuuksia, sekä kuivumisen aiheuttamaa kutistumista. Kokeissa tutkittiin optimaalista lentotuhkan ja masuunikuonan välistä suhdetta, sekä kolmen erilaisen kuidun vaikutusta lisäaineena. Rakenneaineena käytettiin keraamista jätettä, eli posliinia, joka murskattiin haluttuun raekokoon leukamyllyllä. Jätteenä posliini on huono kierrätettävä, joten sille mahdollisten käyttötarkoituksien löytäminen on tärkeää. Tulosten perusteella betonin pohjaksi valittiin lentotuhka-masuunikuonasuhteeltaan 40/50 koostuva variantti. Polypropyleeni- (PP), basaltti- (Ba) ja polyvinyylialkoholikuituja (PVA) testattiin eri suhteissa niin, että niiden kokonaisosuus aineen tilavuudesta oli 1,5 %. Tulosten mukaan yleisesti kuitujen lisääminen lisäsi näytteiden taivutuslujuutta. Jäätymis-sulamissyklit heikensivät kuidullisia näytteitä enemmän kuin kuiduttomia taivutuslujuustestissä, mutta puristuslujuudessa vaikutusta ei juurikaan havaittu. Kuivumisen aiheuttama kutistuminen vaihteli eri kuituyhdistelmien välillä, mutta yleisesti ottaen kuituyhdistelmät yksittäisten kuitujen sijaan aiheuttivat vähiten kutistumista
Almuwbber, Omar Mohamed. "The effect of different Ordinary Portland cement binders, partially replaced by fly ash and slag, on the properties of self-compacting concrete." Thesis, Cape Peninsula University of Technology, 2015. http://hdl.handle.net/20.500.11838/1040.
Full textSelf-compacting concrete (SCC) is a flowable self-consolidating concrete which can fill formwork without any external vibration. A self-compacting concrete mix requires the addition of superplasticiser (SP), which allows it to become more workable without the addition of excessive water to the mixture. The effect of different CEM I 52.5N cements produced by one company at different factories on self-compacting concrete was investigated. The properties of SCC are highly sensitive to changes in material properties, water content and addition of admixtures. For self-compacting concrete to be more accepted in South Africa, the effect that locally sourced materials have on SCC, partially replaced with extenders, needs to be investigated. The European guidelines for SCC (2005) determined the standard, through an extensive study, for the design and testing of self-compacting concrete. Using these guidelines, the properties of self-compacting concrete with the usage of local materials were investigated. The effect on SCC mixes was studied by using four cements; two types of SPs – partially replaced with two types of fly ash; and one type of slag. Mix design and tests were done according to the European Specification and Guidelines for Self-Compacting Concrete (2005). Using locally sourced materials (different cements, sand, coarse aggregate, fly ashes and slag), mixes were optimised with different SPs. Optimisation was achieved when self-compacting criteria, as found in the European guidelines, were adhered to, and the binders in these required mixes were then partially replaced with fly ash and slag at different concentrations. Tests done were the slump flow, V-funnel, L-box, sieve segregation resistance as well as the compressive strength tests. The results obtained were then compared with the properties prescribed by the European guidelines. The cements reacted differently when adding the SPs, and partially replacing fly ash and slag. According to the tests, replacing cement with extenders – in order to get a sufficient SCC – seemed to depend on the chemical and physical properties of each cement type, including the soluble alkali in the mixture, C3A, C3S and the surface area. The range, in which the concentration of these chemical and physical cement compounds should vary – in order to produce an acceptable SCC partially replaced by extenders – was determined and suggested to the cement producer. The main conclusion of this project is that cement properties vary sufficiently from factory to factory so as to influence the performance of an SCC mix. The problem becomes even bigger when such cements are extended with fly ash or slag, and when different SPs are used. When designing a stable SCC mix, these factors should be taken into account.
Watterson, Scott Michael. "Strength of Concrete Masonry Prisms Constructed with Non-Traditional Grout and Type-M Mortar." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2909.
Full textBooks on the topic "Slag-Fly ash"
Boyd, Andrew James. Salt scaling resistance of concrete containing slag and fly ash. Ottawa: National Library of Canada, 1995.
Find full textInternational Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete (9th 2007 Warsaw, Poland). Ninth CANMET/ACI international conference on fly ash, silica fume, slag & natural pozzolans in concrete. Edited by Malhotra V. M, Canada Centre for Mineral and Energy Technology., and American Concrete Institute. Farmington Hills, Mich: American Concrete Institute, 2007.
Find full textInternational Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete (6th 1998 Bangkok, Thailand). Fly ash, silica fume, slag & natural pozzolans in concrete: Proceedings, Sixth CANMET/ACI International Conference, Bangkok, Thailand, 1998. Edited by Malhotra V. M, Canada Centre for Mineral and Energy Technology., and American Concrete Institute. Farmington Hills, Mich: ACI International, 1998.
Find full textInternational, Conference on Fly Ash Silica Fume Slag and Natural Pozzolans in Concrete (7th 2001 Madras India). Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete. Farmington Hills, Michigan: ACI International, 2001.
Find full textInternational, Conference on Fly Ash Silica Fume Slag and Natural Pozzolans in Concrete (7th 2001 Chennai India). Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete: [proceedings of the conference held July 22-27, 2001, in Chennai (Madras), India]. Farmington Hills, MI: American Concrete Institute, 2001.
Find full textInternational Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete (9th 2007 Las Vegas, Nev.). Ninth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. Edited by Malhotra V. M and American Concrete Institute. Farmington Hills, MI: American Concrete Institute, 2007.
Find full textInternational Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete (4th 1992 Istanbul, Turkey). Fly ash, silicafume, slag, and natural pozzolans in concrete: Proceedings fourth International Conference, Istanbul, Turkey, May 1992. Edited by Malhotra V. M and American Concrete Institute. Detroit: American Concrete Institute, 1993.
Find full textInternational Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete (4th 1992 Istanbul, Turkey). Fly ash, silicafume, slag, and natural pozzolans in concrete: Proceedings fourth International Conference, Istanbul, Turkey, May 1992. Edited by Malhotra V. M and American Concrete Institute. Detroit: American Concrete Institute, 1993.
Find full textInternational Conference on the Use of Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete (4th 1991 Istanbul, Turkey). Fly ash, silica fume, slag, and natural pozzolans in concrete: Proceedings, fourth international conference, Istanbul, Turkey, May 1992. Edited by Malhotra V. M, Canada Centre for Mineral and Energy Technology., and American Concrete Institute. Detroit, Mich: American Concrete Institute, 1993.
Find full textInternational, Conference on Fly Ash Silica Fume Slag and natural Pozzolans in Concrete (5th 1995 Milwaukee Wis ). Fly ash, silica fume, slag, and natural pozzolans in concrete: Proceedings fifth International Conference, Milwaukee, Wisconsin, USA, 1995. Detroit: American Concrete Institute, 1995.
Find full textBook chapters on the topic "Slag-Fly ash"
Nedeljković, Marija, Yibing Zuo, Kamel Arbi, and Guang Ye. "Natural Carbonation of Alkali-Activated Fly Ash and Slag Pastes." In High Tech Concrete: Where Technology and Engineering Meet, 2213–23. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_253.
Full textJirasit, F., C. H. Rüscher, L. Lohaus, and P. Chindaprasirt. "Durability Performance of Alkali-Activated Metakaolin, Slag, Fly Ash, and Hybrids." In Developments in Strategic Ceramic Materials II, 1–12. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119321811.ch1.
Full textAmbekar, Mangesh Subhash, and Hrishikesh Ashok Shahane. "Laboratory Investigation of Black Cotton Soil—Fly Ash—Steel Slag Mixes." In Lecture Notes in Civil Engineering, 717–26. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6444-8_64.
Full textAlderete, Natalia, Yury A. Villagrán-Zaccardi, and Nele De Belie. "Long-Term Capillary Imbibition of Mortars with Slag and Fly Ash." In RILEM Bookseries, 161–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76551-4_15.
Full textSakai, Koji, Takeju Matsuka, and Yasunori Suzuki. "Low-Carbon Concrete Using Ground Granulated Blast-Furnace Slag and Fly Ash." In Innovative Materials and Techniques in Concrete Construction, 101–14. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1997-2_6.
Full textSoyonar, Emre, Seyhan Fırat, Gülgün Yilmaz, and Volkan Okur. "Performance of Steel Slag and Fly Ash Added Soil as Subbase Materials." In Lecture Notes in Civil Engineering, 799–807. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63709-9_61.
Full textWang, Ying, Luca Montanari, W. Jason Weiss, and Prannoy Suraneni. "Internal Curing Using Superabsorbent Polymers for Alkali Activated Slag-Fly Ash Mixtures." In 3rd International Conference on the Application of Superabsorbent Polymers (SAP) and Other New Admixtures Towards Smart Concrete, 239–47. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33342-3_26.
Full textRoy, Biswajit, and Aminul Islam Laskar. "Rheological Behavior of Geopolymer Mortar with Fly Ash, Slag and Their Blending." In Lecture Notes in Civil Engineering, 99–110. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5235-9_8.
Full textMarathe, Shriram, I. R. Mithanthaya, and Siddhivinayaka Hegde. "Slag–Fly Ash–Glass Powder-Based Alkali-Activated Concrete—A Critical Review." In Lecture Notes in Civil Engineering, 293–309. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_19.
Full textMarathe, Shriram, I. R. Mithanthaya, and S. K. Susmitha. "Investigations on Slag-Fly Ash-Glass Powder Based Ecofriendly Interlocking Paver Blocks." In Lecture Notes in Civil Engineering, 381–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-2826-9_25.
Full textConference papers on the topic "Slag-Fly ash"
Trinh, Quyen Van, Sándor Nagy, and Gábor Mucsi. "Preliminary Geopolymerization Experiments of Vietnamese Fly Ash and Slag." In MultiScience - XXXIII. microCAD International Multidisciplinary Scientific Conference. University of Miskolc, 2019. http://dx.doi.org/10.26649/musci.2019.009.
Full textSunil, Rugma, Parvathy Panicker L, R. Megha, Athira K. Vijayan, and Ramaswamy K. P. "Preparation and Properties of Alkali Activated Coarse Aggregates Using Fly Ash and Slag." In International Web Conference in Civil Engineering for a Sustainable Planet. AIJR Publisher, 2021. http://dx.doi.org/10.21467/proceedings.112.45.
Full textXie, Jixing, Jie Yin, Junjing Chen, and Jianzhong Xu. "Study on the Geopolymer Based on Fly Ash and Slag." In 2009 International Conference on Energy and Environment Technology. IEEE, 2009. http://dx.doi.org/10.1109/iceet.2009.607.
Full textZhaoyi, He, Lu Zhaofeng, and Weirong Huang. "Pavement Performance Research on Fly Ash-Carbide Slag Residue Concrete." In GeoHunan International Conference 2011. Reston, VA: American Society of Civil Engineers, 2011. http://dx.doi.org/10.1061/47624(403)11.
Full textZwahr, Heiner. "Ash Recycling: Just a Dream?" In 12th Annual North American Waste-to-Energy Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/nawtec12-2211.
Full textNtuli, F., T. Falayi, and U. Thwanane. "Removal of sulphates from acid mine drainage using desilicated fly ash slag." In WASTE MANAGEMENT 2016. Southampton UK: WIT Press, 2016. http://dx.doi.org/10.2495/wm160341.
Full textBansode, Samitinjay Sadashivrao. "Comparative Analysis between Properties of Steel Slag, Fly Ash, and Clay Bricks." In GeoCongress 2012. Reston, VA: American Society of Civil Engineers, 2012. http://dx.doi.org/10.1061/9780784412121.391.
Full textAltmami, Munir, and Mahmoud Khatab. "Development of composite mortars based on lime, blastfurnce slag and fly ash." In INTERNATIONAL CONFERENCE ON KEY ENABLING TECHNOLOGIES (KEYTECH 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123693.
Full textXiao, Y., M. Oorsprong, Y. Yang, and J. H. L. Voncken. "Vitrification of Bottom Ash From AVR MSW Incinerators." In 14th Annual North American Waste-to-Energy Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/nawtec14-3192.
Full textChi, Maochieh, Jiang-Jhy Chang, and Weichung Yeih. "Physical and Mechanical Properties of Concrete with Circulated Fluidized Bed Combustion Fly Ash, Ground Granulated Blast Furnace Slag and Coal Fly Ash." In 5th International Conference on Advanced Design and Manufacturing Engineering. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icadme-15.2015.6.
Full textReports on the topic "Slag-Fly ash"
Sugama, T., J. Warren, T. Butcher, Lance Brothers, and D. Bour. Self-degradable Slag/Class F Fly Ash-Blend Cements. Office of Scientific and Technical Information (OSTI), March 2011. http://dx.doi.org/10.2172/1030632.
Full textHarbour, J. Characterization of Slag, Fly Ash and Portland Cement for Saltstone. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/890223.
Full textYildirim, Irem, Monica Prezzi, Meera Vasudevan, and Helen Santoso. Use of Soil-Steel Slag-Class-C Fly Ash Mixtures in Subgrade Applications. Purdue University, October 2013. http://dx.doi.org/10.5703/1288284315188.
Full textKrishnan, Anand, Jinesh Mehta, and J. Olek. Technical Issues Related to the Use of Fly Ash and Slag During Late-Fall (Low Temperature) Construction Season. West Lafayette, IN: Purdue University, 2006. http://dx.doi.org/10.5703/1288284313382.
Full textLomboy, Gilson, Douglas Cleary, Seth Wagner, Yusef Mehta, Danielle Kennedy, Benjamin Watts, Peter Bly, and Jared Oren. Long-term performance of sustainable pavements using ternary blended concrete with recycled aggregates. Engineer Research and Development Center (U.S.), May 2021. http://dx.doi.org/10.21079/11681/40780.
Full text