Dissertations / Theses on the topic 'SLAM'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'SLAM.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
TEIXEIRA, LUCAS PINTO. "LOCAL SLAM." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2010. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29056@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
PROGRAMA DE EXCELENCIA ACADEMICA
BOLSA NOTA 10
Atualmente, sistemas de visão computacional em computadores portáteis estão se tornando uma importante ferramenta de uso pessoal. Sistemas de visão para localização de objetos é uma área de pesquisa muito ativa. Essa dissertação propõe um algoritmo para localizar posições no espaço e objetos em ambientes não instrumentados com o uso de uma câmera web e um computador pessoal. Para isso, são usados dois algoritmos de rastreamento de marcadores para reinicializar frequentemente um algoritmo de Visual Simultaneous Localisation and Mapping. Essa dissertação também apresenta uma implementação e um conjunto de testes para validar o algoritmo proposto.
Nowadays, vision systems in portable computers are becoming an important tool for personal use. Vision systems for object localization are an active area of research. This dissertation proposes an algorithm to locate position and objects in a regular environment with the use of a simple webcam and a personal computer. To that end, we use two algorithms of marker tracking to reboot often a Visual Simultaneous Localisation and Mapping algorithm. This dissertation also presents an implementation and a set of tests that validate the proposed algorithm.
Rosen, David Matthew 1986. "Certifiably correct SLAM." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/107296.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 151-162).
The ability to construct an accurate model of the environment is an essential capability for mobile autonomous systems, enabling such fundamental functions as planning, navigation, and manipulation. However, the general form of this problem, simultaneous localization and mapping (SLAM), is typically formulated as a maximum-likelihood estimation (MLE) that requires solving a nonconvex nonlinear program, which is computationally hard. Current state-of-the-art SLAM algorithms address this difficulty by applying fast local optimization methods to compute a critical point of the MLE. While this approach has enabled significant advances in SLAM as a practical technology by admitting the development of fast and scalable estimation methods, it provides no guarantees on the quality of the recovered estimates. This lack of reliability in existing SLAM algorithms in turn presents a serious barrier to the development of robust autonomous systems generally. To address this problem, in this thesis we develop a suite of algorithms for SLAM that preserve the computational efficiency of existing state-of-the-art methods while additionally providing explicit performance guarantees. Our contribution is threefold. First, we develop a provably reliable method for performing fast local optimization in the online setting. Our algorithm, Robust Incremental least-Squares Estimation (RISE), maintains the superlinear convergence rate of existing state-of-the-art online SLAM solvers while providing superior robustness to nonlinearity and numerical ill-conditioning; in particular, we prove that RISE is globally convergent under very mild hypotheses (namely, that the objective is twice-continuously differentiable with bounded sublevel sets). We show experimentally that RISE's enhanced convergence properties lead to dramatically improved performance versus alternative methods on SLAM problems exhibiting strong nonlinearities, such as those encountered in visual mapping or when employing robust cost functions. Next, we address the lack of a priori performance guarantees when applying local optimization methods to the nonconvex SLAM MLE by proposing a post hoc verification method for computationally certifying the correctness of a recovered estimate for pose-graph SLAM. The crux of our approach is the development of a (convex) semidefinite relaxation of the SLAM MLE that is frequently exact in the low to moderate measurement noise regime. We show that when exactness holds, it is straightforward to construct an optimal solution Z* for this relaxation from an optimal solution X* of the SLAM problem; the dual solution Z* (whose optimality can be verified directly post hoc) then serves as a certificate of optimality for the solution X* from which it was constructed. Extensive evaluation on a variety of simulated and real-world pose-graph SLAM datasets shows that this verification method succeeds in certifying optimal solutions across a broad spectrum of operating conditions, including those typically encountered in application. Our final contribution is the development of SE-Sync, a pose-graph SLAM inference algorithm that employs a fast purpose-built optimization method to directly solve the aforementioned semidefinite relaxation, and thereby recover a certifiably globally optimal solution of the SLAM MLE whenever exactness holds. As in the case of our verification technique, extensive empirical evaluation on a variety of simulated and real-world datasets shows that SE-Sync is capable of recovering globally optimal pose-graph SLAM solutions across a broad spectrum of operating conditions (including those typically encountered in application), and does so at a computational cost that scales comparably with that of fast Newton-based local search techniques. Collectively, these algorithms provide fast and robust inference and verification methods for pose-graph SLAM in both the online and offline settings, and can be straightforwardly incorporated into existing concurrent filtering smoothing architectures. The result is a framework for real-time mapping and navigation that preserves the computational speed of current state-of-the-art techniques while delivering certifiably correct solutions.
by David M. Rosen.
Sc. D.
Newcombe, Richard. "Dense visual SLAM." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/24704.
Full textSalas-Moreno, Renato F. "Dense semantic SLAM." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24524.
Full textMaffei, Renan de Queiroz. "Segmented DP-SLAM." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2013. http://hdl.handle.net/10183/80521.
Full textSimultaneous Localization and Mapping (SLAM) is one of the most difficult tasks in mobile robotics, since there is a mutual dependency between the estimation of the robot pose and the construction of the environment map. Most successful strategies in SLAM focus in building a probabilistic metric map employing Bayesian filtering techniques. While these methods allow the construction of consistent and coherent local solutions, the SLAM remains a critical problem in operations within large environments. To circumvent this limitation, many strategies divide the environment in small regions, and formulate the SLAM problem as a combination of multiple precise metric submaps associated in a topological map. This work proposes a SLAM method based on the Distributed Particle SLAM (DPSLAM) and the Segmented SLAM (SegSLAM) algorithms. SegSLAM is an algorithm that generates multiple submaps for every region of the environment, and then build the global map by selecting combinations of submaps. DP-SLAM is a Rao-Blackwellized particle filter algorithm that uses an efficient distributed representation of the particles maps associated with an ancestry tree of the particles. The distributed characteristic of these structures favors the combination of locally accurate map segments, that can increase the diversity of global level solutions. The algorithm proposed in this dissertation, called SDP-SLAM, segments and combines different hypotheses of robot trajectories to reconstruct the environment map. Our main contributions are the development of novel strategies for the matching of submaps and for the estimation of good submaps combinations. SDP-SLAM was evaluated through experiments performed by a mobile robot operating in real and simulated environments.
Miharbi, Ali. "Detect, Bite, Slam." VCU Scholars Compass, 2010. http://scholarscompass.vcu.edu/etd/2157.
Full textMunguía, Alcalá Rodrigo Francisco. "Bearing-only slam methods." Doctoral thesis, Universitat Politècnica de Catalunya, 2009. http://hdl.handle.net/10803/22677.
Full textSimultaneous Localization and Mapping (SLAM) is perhaps the most fundamental problem to solve in robotics in order to build truly autonomous mobile robots. SLAM is about on how can a mobile robot operate in an a priori unknown environment and use only onboard sensors to simultaneously build a map of its surroundings and use it to track its position. The robot’s sensors have a large impact on the algorithm used for SLAM. Early SLAM approaches focused on the use of range sensors as sonar rings or lasers. Nevertheless there are some disadvantages with the use of range sensors in SLAM: Correspondence or data association is difficult. They are expensive. They are generally limited to 2D maps and computational overhead due to large number of features. The aforementioned issues have propitiated that recent work is moving towards the use of cameras as the primary sensing modality. Cameras have become more and more interesting for the robotic research community, because it yield a lot of information allowing reliable data association. Cameras are well adapted for embedded systems: they are light, cheap and power saving. Using vision, a robot can localize itself using common objects as landmarks. On the other hand, at difference of range sensors (i.e. sonar or laser) which provides range and angular information, a camera is a projective sensor which measures the bearing of images features. Therefore depth information (range) cannot be obtained in a single frame. This fact has propitiated the emergence of a new family of SLAM methods: The Bearing-Only SLAM methods, which mainly relies in especial techniques for features system-initialization in order to enable the use of bearing sensors (as cameras) in SLAM systems. This thesis is focused on the study of the Bearing-Only SLAM problematic: It gives an extensive overview of the subject. It point out the principal challenges nowadays. And it presents new methods and algorithms which address different sub problems concerning to the Bearing-Only SLAM problematic. These sub problems must be solved, in order to build systems capable of operating in extremely diverse and complex environments. The research described in this dissertation has been divided into three parts: 3DOF Bearing-Only SLAM: The initialization process for new features is perhaps the most important sub problem for addressing in Bearing-Only SLAM. In this part of the thesis we introduce a novel method called Delayed Inverse Depth Features Initialization for a 3DOF odometry-available context. In this method, which uses an inverse depth parameterization, initial depth and uncertainty of each feature are dynamically estimated priors to add the new landmark in the stochastic map. We also present a Sound-based SLAM system, called SSLAM, which uses “Sound Sources” as map’s features. The main contributions of the SSLAM are demonstrating the viability on the inclusion of the hearing sense in SLAM and show that is straightforward to use alternative bearing in SLAM systems. Data association methods for camera-based SLAM: the data association problem is possibly one of the hardest problems in robotic and also one of the most important sub problems to solve in SLAM. The correspondence problem is the problem of determining if sensor measurements taken at different points in time correspond to the same physical object in the world. In this part of the thesis, we propose different methods for addressing the data association problem in a context of vision-based SLAM. 6DOF Monocular SLAM: 6-DOF monocular SLAM possibly represents the harder variant of SLAM, since a low cost hand-held camera is used as the only sensory input to the system. In this part of the thesis, we extend our 2DOF Bearing-Only SLAM algorithm for being used in a monocular SLAM context. Also a novel framework called Distributed Monocular SLAM is proposed for addressing the problem of building and maintaining a global and consistent map of large environments at real time. The key idea is to divide the whole estimation into two concurrent estimation processes. First a state of the art monocular SLAM method (Called Virtual Sensor) is modified as a complex virtual sensor that emulates typical sensors such as laser for range measurement and encoders for dead reckoning. Afterward, a classic SLAM method (called Global SLAM) is plugged in for building and maintaining the final map. Several references, graphics, comparisons, simulations and experiments with real data are presented in order to demonstrate the performance of the methods.
Pietzsch, Tobias. "Towards Dense Visual SLAM." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2011. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-78943.
Full textPersson, Mikael. "Online Monocular SLAM : Rittums." Thesis, Linköpings universitet, Datorseende, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-112779.
Full textTan, Feng Ph D. Massachusetts Institute of Technology. "Analytical SLAM without linearization." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108927.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 161-173).
This thesis solves the classical problem of simultaneous localization and mapping (SLAM) in a fashion which avoids linearized approximations altogether. Based on creating virtual synthetic measurements, the algorithm uses a linear time-varying (LTV) Kalman observer, bypassing errors and approximations brought by the linearization process in traditional extended Kalman filtering (EKF) SLAM. Convergence rates of the algorithm are established using contraction analysis. Different combinations of sensor information can be exploited, such as bearing measurements, range measurements, optical flow, or time-to-contact. As illustrated in simulations, the proposed algorithm can solve SLAM problems in both 2D and 3D scenarios with guaranteed convergence rates in a full nonlinear context. A novel distributed algorithm SLAM-DUNK is proposed in the thesis. The algorithm uses virtual vehicles to achieve information exclusively from corresponding landmarks. Computation complexity is reduced to 0(n), with simulations on Victoria Park dataset to support the validity of the algorithm. In the final section of the thesis, we propose a general framework for cooperative navigation and mapping. The frameworks developed for three different use cases use the null space terms of SLAM problem to guarantee that robots starting with unknown initial conditions could converge to a shared consensus coordinate system with estimates reflecting the truth.
by Feng Tan.
Ph. D.
Frost, Duncan. "Long range monocular SLAM." Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:af38cfa6-fc0a-48ab-b919-63c440ae8774.
Full textLovegrove, Steven. "Parametric dense visual SLAM." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/9618.
Full textMelbouci, Kathia. "Contributions au RGBD-SLAM." Thesis, Université Clermont Auvergne (2017-2020), 2017. http://www.theses.fr/2017CLFAC006/document.
Full textTo guarantee autonomous and safely navigation for a mobile robot, the processing achieved for its localization must be fast and accurate enough to enable the robot to perform high-level tasks for navigation and obstacle avoidance. The authors of Simultaneous Localization And Mapping (SLAM) based works, are trying since year, to ensure the speed/accuracy trade-off. Most existing works in the field of monocular (SLAM) has largely centered around sparse feature-based representations of the environment. By tracking salient image points across many frames of video, both the positions of the features and the motion of the camera can be inferred live. Within the visual SLAM community, there has been a focus on both increasing the number of features that can be tracked across an image and efficiently managing and adjusting this map of features in order to improve camera trajectory and feature location accuracy. However, visual SLAM suffers from some limitations. Indeed, with a single camera and without any assumptions or prior knowledge about the camera environment, rotation can be retrieved, but the translation is up to scale. Furthermore, visual monocular SLAM is an incremental process prone to small drifts in both pose measurement and scale, which when integrated over time, become increasingly significant over large distances. To cope with these limitations, we have centered our work around the following issues : integrate additional information into an existing monocular visual SLAM system, in order to constrain the camera localization and the mapping points. Provided that the high speed of the initial SLAM process is kept and the lack of these added constraints should not give rise to the failure of the process. For these last reasons, we have chosen to integrate the depth information provided by a 3D sensor (e.g. Microsoft Kinect) and geometric information about scene structure. The primary contribution of this work consists of modifying the SLAM algorithm proposed by Mouragnon et al. (2006b) to take into account the depth measurement provided by a 3D sensor. This consists of several rather straightforward changes, but also on a way to combine the depth and visual data in the bundle adjustment process. The second contribution is to propose a solution that uses, in addition to the depth and visual data, the constraints lying on points belonging to the plans of the scene. The proposed solutions have been validated on a synthetic sequences as well as on a real sequences, which depict various environments. These solutions have been compared to the state of art methods. The performances obtained with the previous solutions demonstrate that the additional constraints developed, improves significantly the accuracy and the robustness of the SLAM localization. Furthermore, these solutions are easy to roll out and not much time consuming
Bourque, Donald. "CUDA-Accelerated ORB-SLAM for UAVs." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/882.
Full textSillén, Erik. "Robustifying SLAM using multiple cameras." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191247.
Full textDetta examensarbete handlar om att ta itu med några begränsningar som en viss monokulär visuell SLAM-algoritm har. SLAM-algoritmen är inte robust mot snabba kamerarörelser och indatabilder som innehåller få karaktärsdrag. Genom att introducera en extra kamera, en accelerometer och en gyrometer, behandlas dessa problem i denna rapport. En metod för att välja kamera att hämta indatabilder från, baserat på det skattade antalet karaktärsdrag i respektive bild implementerades. Denna metod är tänkt att lösa problemet då indatabilder har få karaktärsdrag. Experiment visar att denna metod fungerar bra för långsamma rörelser. En metod som jämför gyrometerdata med ett tröskelvärde tillsammans med en rörelsemodell implementerades för att lösa problemen vid snabb rörelse. Dessa metoder undersöks och diskuteras i rapporten.
Barron-Gonzalez, Hector. "Cognitive model for visual SLAM." Thesis, University of Sheffield, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.575461.
Full textLanda, Yafim. "Prioritized text spotting using SLAM." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85437.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 91-94).
We show how to exploit temporal and spatial coherence of image observations to achieve efficient and effective text detection and decoding for a sensor suite moving through an environment rich in text at a variety of scales and orientations with respect to the observer. We use simultaneous localization and mapping (SLAM) to isolate planar "tiles" representing scene surfaces and prioritize each tile according to its distance and obliquity with respect to the sensor, and how recently (if ever) and at what scale the tile has been inspected for text. We can also incorporate prior expectations about the spatial locus and scale at which text occurs in the world, for example more often on vertical surfaces than non-vertical surfaces, and more often at shoulder height than at knee height. Finally, we can use SLAM-produced information about scene surfaces (e.g. standoff, orientation) and egomotion (e.g. yaw rate) to focus the system's text extraction efforts where they are likely to produce usable text rather than garbage. The technique enables text detection and decoding to run effectively at frame rate on the sensor's full surround, even though the CPU resources typically available on a mobile platform (robot, wearable or handheld device) are not sufficient to such methods on full images at sensor rates. Moreover, organizing detected text in a locally stable 3D frame enables combination of multiple noisy text observations into a single higher-confidence estimate of environmental text.
by Yafim Landa.
M. Eng.
Mustafa, Mohamed. "Guaranteed SLAM : an interval approach." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/guaranteed-slaman-interval-approach(50242329-e0fa-43dd-881b-6719c5504231).html.
Full textHuai, Jianzhu. "Collaborative SLAM with Crowdsourced Data." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1483669256597152.
Full textRamadasan, Datta. "SLAM temporel à contraintes multiples." Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22653/document.
Full textThis report describes my thesis work conducted within the ComSee (Computers That See) team related to the ISPR axis (ImageS, Perception Systems and Robotics) of Institut Pascal. It was financed by the Auvergne Région and the European Fund of Regional Development. The thesis was motivated by localization issues related to Augmented Reality and autonomous navigation. The framework developed during this thesis is a generic approach to implement SLAM algorithms : Simultaneous Localization And Mapping. The proposed approach use multiple constraints in the localization and mapping processes. Those constraints come from sensors data and also from knowledge given by the application context. Each constraint is used into one optimization algorithm in order to improve the estimation of the motion and the accuracy of the map. Three problems have been tackled. The first deals with constraints on the map to accurately estimate the pose of 3D objects partially known in the environment. The second problem is about merging multiple heterogeneous and asynchronous data coming from different sensors using an optimization algorithm. The last problem is to write an efficient and real-time implementation of the SLAM problem using multiple constraints. A generic approach is used to design the framework and to generate different configurations, according to the constraints, of each SLAM problem. A particular interest has been put in the low computational requirement (in term of memory and CPU) while offering a high portability. Moreover, meta-programming techniques have been used to automatically and specifically generate the more complex parts of the code according to the given problem. The optimization library LMA, developed during this thesis, is made available of the community in open-source. Several experiments were done on synthesis and real data. An exhaustive benchmark shows the performances of the LMA library compared to the most used alternatives of the state of the art. Moreover, the SLAM framework is used on different problems with an increasing difficulty and amount of constraints. Augmented Reality and autonomous navigation applications show the good performances and accuracies in multiple constraints context
Park, Chanoh. "Multimodal dense map-centric SLAM." Thesis, Queensland University of Technology, 2021. https://eprints.qut.edu.au/209881/1/Chanoh_Park_Thesis.pdf.
Full textPretto, Alberto. "Visual-SLAM for Humanoid Robots." Doctoral thesis, Università degli studi di Padova, 2009. http://hdl.handle.net/11577/3426516.
Full textNell’ambito della robotica, il Simultaneous Localization and Mapping (SLAM) é il processo grazie al quale un robot autonomo é in grado di creare una mappa dell’ambiente circostante e allo stesso tempo di localizzarsi avvalendosi di tale mappa. Negli ultimi anni un considerevole numero di ricercatori ha sviluppato nuove famiglie di algoritmi di SLAM, basati su vari sensori e utilizzando varie piattaforme robotiche. Uno degli ambiti più complessi nella ricerca sullo SLAM é il cosiddetto Visual-SLAM, che prevede l’utilizzo di vari tipi di telecamera come sensore per la navigazione. Le telecamere sono sensori economici che raccolgono molte informazioni sull’ambiente circostante. D’altro canto, la complessità degli algoritmi di visione artificiale e la forte dipendenza degli approcci attualmente realizzati dalle caratteristiche dell’ambiente, rendono il Visual-SLAM un problema lontano dal poter essere considerato risolto. Molti degli algoritmi di SLAM sono solitamente testati usando robot dotati di ruote. Sebbene tali piattaforme siano ormai robuste e stabili, la ricerca sulla progettazione di nuove piattaforme robotiche sta in parte migrando verso la robotica umanoide. Proprio come gli esseri umani, i robot umanoidi sono in grado di adattarsi ai cambiamenti dell’ambiente per raggiungere efficacemente i propri obiettivi. Nonostante ciò, solo pochi ricercatori hanno focalizzato i loro sforzi su implementazioni stabili di algoritmi di SLAM e Visual-SLAM adatti ai robot umanoidi. Tali piattaforme robotiche introducono nuove problematiche che possono compromettere la stabilità degli algoritmi di navigazione convenzionali, specie se basati sulla visione. I robot umanoidi sono dotati di un alto grado di libertà di movimento, con la possibilità di effettuare velocemente movimenti complessi: tali caratteristiche introducono negli spostamenti vibrazioni non deterministiche in grado di compromettere l’affidabilit` dei dati sensoriali acquisiti, per esempio introducendo nei flussi video effetti indesiderati quali il motion blur. A causa dei vincoli imposti dal bilanciamento del corpo, inoltre, tali robot non sempre possono essere dotati di unit` di elaborazione molto performanti che spesso sono ingombranti e dal peso elevato: ci` limita l’utilizzo di algoritmi complessi e computazionalmente gravosi. Infine, al contrario di quanto accade per i robot dotati di ruote, la complessa cinematica di un robot umanoide impedisce di ricostruire il movimento basandosi sulle informazioni provenienti dagli encoder posti sui motori. In questa tesi ci si é focalizzati sullo studio e sullo sviluppo di nuove metodologie per affrontare il problema del Visual-SLAM, ponendo particolare enfasi ai problemi legati all’utilizzo di piccoli robot umanoidi dotati di una singola telecamera come piattaforme per gli esperimenti. I maggiori sforzi nell’ambito della ricerca sullo SLAM e sul Visual-SLAM si sono concentrati nel campo del processo di stima dello stato del robot, ad esempio la stima della propria posizione e della mappa dell’ambiente. D’altra parte, la maggior parte delle problematiche incontrate nella ricerca sul Visual-SLAM sono legate al processo di percezione, ovvero all’interpretazione dei dati provenienti dai sensori. In questa tesi ci si é perciò concentrati sul miglioramento dei processi percettivi da un punto di vista della visione artificiale. Sono stati affrontati i problemi che scaturiscono dall’utilizzo di piccoli robot umanoidi come piattaforme sperimentali, come ad esempio la bassa capacità di calcolo, la bassa qualit` dei dati sensoriali e l’elevato numero di gradi di libertà nei movimenti. La bassa capacità di calcolo ha portato alla creazione di un nuovo metodo per misurare la similarità tra le immagini, che fa uso di una descrizione dell’immagine compatta, utilizzabile in applicazioni di SLAM topologico. Il problema del motion blur é stato affrontato proponendo una nuova tecnica di rilevamento di feature visive, unitamente ad un nuovo schema di tracking, robusto an- che in caso di motion blur non uniforme. E’ stato altresì sviluppato un framework per l’odometria basata sulle immagini, che fa uso delle feature visive presentate. Si propone infine un approccio al Visual-SLAM basato sulle omografie, che sfrutta le informazioni ottenute da una singola telecamera montata su un robot umanoide. Tale approccio si basa sull’assunzione che il robot si muove su una superficie piana. Tutti i metodi proposti sono stati validati con esperimenti e studi comparativi, usando sia dataset standard che immagini acquisite dalle telecamere installate su piccoli robot umanoidi.
Tanguy, Arnaud. "Visual SLAM for humanoid robot localization and closed-loop control." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS082/document.
Full textThis thesis deals with the problem of localizing and controlling humanoid robots with respect to its environment, as observed by its on-board sensors. Dense visual SLAM, consisting in the simultaneous estimation of a 3D map of the environment and of the robot localization within that maps is exploited to extend and robustify multi-contact planning and control. Establishing and exploiting robot-environment contacts allows the accomplishment of both locomotion and manipulation tasks. Uncertainties in the initial robot posture, and perturbations arising from improper contact-modelling and external causes are accounted for by observing the state of the robot and its environment. A whole-body calibration method is also proposed, so that robust knowledge of the robot's kinematic structure is known, a prerequisite to all robot-environment interaction tasks. Finally, a walking method based on model predictive control is robustified by taking into account large perturbations, and adjusting the footstep and center-of-mass trajectories accordingly to guarantee stability while accomplishing desired objectives.Several experiments on an HRP-2Kai and an HRP-4 humanoid robots are presented and discussed to illustrate and validate each of the proposed methods
Larsson, Anton. "Förbränning av slam i Rottneros bruks barkpanna : Framtagande av bränslemix bestående av slam, flis och bark." Thesis, Karlstads universitet, Avdelningen för energi-, miljö- och byggteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45461.
Full textFarneti, Elia. "Millimeter wave radar for SLAM applications." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19782/.
Full textEngberg, Robert. "Abusive slam on a car hood." Thesis, University West, Department of Technology, Mathematics and Computer Science, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-816.
Full textSkoglund, Martin. "Evaluating SLAM algorithms for Autonomous Helicopters." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-12282.
Full textNavigation with unmanned aerial vehicles (UAVs) requires good knowledge of the current position and other states. A UAV navigation system often uses GPS and inertial sensors in a state estimation solution. If the GPS signal is lost or corrupted state estimation must still be possible and this is where simultaneous localization and mapping (SLAM) provides a solution. SLAM considers the problem of incrementally building a consistent map of a previously unknown environment and simultaneously localize itself within this map, thus a solution does not require position from the GPS receiver.
This thesis presents a visual feature based SLAM solution using a low resolution video camera, a low-cost inertial measurement unit (IMU) and a barometric pressure sensor. State estimation in made with a extended information filter (EIF) where sparseness in the information matrix is enforced with an approximation.
An implementation is evaluated on real flight data and compared to a EKF-SLAM solution. Results show that both solutions provide similar estimates but the EIF is over-confident. The sparse structure is exploited, possibly not fully, making the solution nearly linear in time and storage requirements are linear in the number of features which enables evaluation for a longer period of time.
Hallgren, Sara. "Pumpning av slam med hög TS." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Maskinteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-38959.
Full textPittol, Diego. "Exploração autônoma utilizando SLAM monocular esparso." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2018. http://hdl.handle.net/10183/178895.
Full textIn recent years, we have seen the dawn of a large number of applications that use autonomous robots. For a robot to be considered truly autonomous, it is primordial that it has the ability to learn about the environment in which it operates. SLAM (Simultaneous Location and Mapping) methods build a map of the environment while estimating the robot’s correct trajectory. However, to autonomously obtain a complete map of the environment, it is necessary to guide the robot throughout the environment, which is done in the exploration problem. Cameras are inexpensive sensors that can be used for building 3D maps. However, the exploration problem in maps generated by monocular SLAM methods (i.e. that extract information from a single camera) is still an open problem, since such methods generate sparse or semi-dense maps that are ill-suitable for navigation and exploration. For such a situation, it is necessary to develop exploration methods capable of dealing with the limitation of the cameras and the lack of information in the maps generated by monocular SLAMs. We proposes an exploration strategy that uses local volumetric maps, generated using the lines of sight, allowing the robot to safely navigate. In these local maps, objectives are defined to lead the robot to explore the environment while avoiding obstacles. The proposed approach aims to answer the fundamental question in exploration: "Where to go?". In addition, it seeks to determine correctly when the environment is sufficiently explored and the exploration must stop. The effectiveness of the proposed approach is evaluated in experiments on single and multi-room environments.
Kaminski, Kamil. "Data association for object-based SLAM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-290935.
Full textExamensarbetet tar upp problemet med dataassociation för monokulärt objektbaserat SLAM, som ofta utelämnas i relaterade verk. En metod för att uppskatta ellipsoida landmärkesrepresentationer implementeras. Den här metoden använder avgränsningsrutor med flera vyer i 2D-bilder med hjälp av YOLOv3-objektdetektor och ORB-SLAM2 för uppskattning av kamerapositioner. Onlinedataassociationen använder SIFT intressepunktsmatchning samt matchnin gav landmärkesbakprojektioner mot avgränsningsrutorna för att associera dessa objektdetektioner. Denna kombination och dess utvärdering är huvudbidraget i examensarbetet. Den övergripande algoritmen testas på flera datasätt, bådeverkliga och datorgenererade. Associeringsalgoritmen hanterar väl de testa desekvenserna och det visas att matchning med bakprojektionerna av ellipsoidalandmärken gör associeringen mer robust. Det visas att med vissa implementeringsförändringarkan algoritmen köras i realtid. Landmarkeringsberäkningsdelen fungerar acceptabelt för initiering av landmärken. Baserat på resultaten föreslås framtid arbete.
Kaminski, Kamil. "Data association for object-based SLAM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291206.
Full textExamensarbetet tar upp problemet med dataassociation för monokulärt objektbaserat SLAM, som ofta utelämnas i relaterade verk. En metod för att uppskatta ellipsoida landmärkesrepresentationer implementeras. Den här metodenanvänder avgränsningsrutor med flera vyer i 2D-bilder med hjälp av YOLOv3-objektdetektor och ORB-SLAM2 för uppskattning av kamerapositioner. Online dataassociationen använder SIFT intressepunktsmatchning samt matchningav landmärkesbakprojektioner mot avgränsningsrutorna för att associera dessaobjektdetektioner. Denna kombination och dess utvärdering är huvudbidrageti examensarbetet. Den övergripande algoritmen testas på flera datasätt, bådeverkliga och datorgenererade. Associeringsalgoritmen hanterar väl de testadesekvenserna och det visas att matchning med bakprojektionerna av ellipsoidalandmärken gör associeringen mer robust. Det visas att med vissa implementeringsförändringar kan algoritmen köras i realtid. Landmarkeringsberäkningsdelen fungerar acceptabelt för initiering av landmärken. Baserat på resultatenföreslås framtid arbete.
Li, Siqi. "Testing and Evaluation of Collaborative SLAM." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494312769643864.
Full textChli, Margarita. "Applying information theory to efficient SLAM." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/5634.
Full textFalchetti, Pareja Angelo. "Random finite sets in visual Slam." Tesis, Universidad de Chile, 2017. http://repositorio.uchile.cl/handle/2250/144603.
Full textEste trabajo trata sobre el diseño e implementación de un sistema de Localización y Mapeo Simultáneo (SLAM) visual usando la teoría de Conjuntos Finitos Aleatorios (RFS), en el que un navegador (e.g. robot, auto, teléfono celular, etc.) utiliza una cámara de vídeo RGB-D para reconstruir la escena a su alrededor y al mismo tiempo descubrir su propia posición. Esta capacidad es relevante para las tecnologías del futuro, que deberán desplazarse sin ayuda externa. Se considera la inclusión de modelos realistas de medición y movimiento, incluyendo la intermitencia de las detecciones de objetos, la presencia de falsos positivos en las mediciones y el ruido en la imagen. Para ello se analizan sistemas basados en la teoría RFS, que es capaz de incluir estos efectos de manera fundamentada, a diferencia de otras alternativas del estado del arte que se basan en heurísticas poco realistas como el conocimiento absoluto de las asociaciones de datos entre mediciones y puntos en el mapa. Se incluye una amplia revisión de la literatura, desde Structure from Motion a Odometría Visual, a los distintos algoritmos para SLAM. Luego, se procede a explicar los detalles de implementación de un sistema flexible para el análisis de algoritmos de SLAM, así como la implementación particular del algoritmo Rao-Blackwellized (RB)-Probability Hypothesis Density (PHD)-SLAM. Se presentan análisis del desempeño de este algoritmo al cambiar las distintas estadísticas que pueden variar en su uso práctico. Se hace una comparación detallada con la alternativa Incremental Smoothing and Mapping (iSAM2), usualmente usada en otros sistemas del estado del arte. Luego, basado en la teoría de Modelos Gráficos Probabilísticos (PGM) que está detrás de iSAM2, se propone un nuevo algoritmo, Loopy PHD-SLAM, capaz de propagar información a lo largo del grafo inducido de manera eficiente, incluyendo las estadísticas de RFS. Con una implementación sencilla como prueba de concepto, se observa la capacidad de este nuevo método de cerrar ciclos y converger a soluciones correctas.
Este trabajo ha sido auspiciado por Conicyt
Caesar, Felix. "A Novel SLAM Quality Evaluation Method." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-255014.
Full textAutonoma fordon har vuxit till ett viktigt ämne både inom forskning och industri. För att ett fordon ska kunna köras autonomt behövs det att flera olika system fungerar korrekt. En av de viktigaste av dem är simultaneous localization and mapping (SLAM). Det används för att uppskatta fordonets position samt för att bygga en karta av miljön runt fordonet. I det här examensarbetet har vi utvecklat en ny metod för att mäta och utvärdera kvaliteten på en landmärkes-baserad SLAM-algoritm i en statisk miljö. Metoden består av följande feltyper: medelvärdet av positionsfelet, det maximala positionsfelet, antal falskt negativa fel, antal falskt positiva fel samt ett fel relaterat till avståndet när ett landmärke läggs till i kartan. Genom att använda vikter för varje fel kan metoden skräddarsys till en specifik applikation. En liten konceptbil med flera olika sensorer och ett yttre spårningssystem användes för att skapa flera dataset. Dataseten innehåller tre olika kartlayouter och tre olika effektinställningar på bilen för att skapa stor variation i dataseten. FastSLAM och EKF-SLAM användes vid testningen av den nya metoden för kvalitetsbedömning av SLAM. Den nya metoden jämfördes mot positionsfelet för att analysera ifall den nya metoden är ett bättre sätt att mäta SLAMkvalitet. Våra resultat visar att positionsfelet ofta är en tillräckligt bra indikator för SLAM-kvalitet, men det kan ibland vara vilseledande gällande fel i kartläggningen (positioner av landmärken, falskt negativa fel och falskt positiva fel). Genom att använda metoden som presenteras i det här examensarbete är fel som är relaterade till kartläggningen lättare att upptäcka än om man enbart kollar på positionsfelet.
Contreras, Samamé Luis Federico. "SLAM collaboratif dans des environnements extérieurs." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0012/document.
Full textThis thesis proposes large-scale mapping model of urban and rural environments using 3D data acquired by several robots. The work contributes in two main ways to the research field of mapping. The first contribution is the creation of a new framework, CoMapping, which allows to generate 3D maps in a cooperative way. This framework applies to outdoor environments with a decentralized approach. The CoMapping's functionality includes the following elements: First of all, each robot builds a map of its environment in point cloud format.To do this, the mapping system was set up on computers dedicated to each vehicle, processing distance measurements from a 3D LiDAR moving in six degrees of freedom (6-DOF). Then, the robots share their local maps and merge the point clouds individually to improve their local map estimation. The second key contribution is the group of metrics that allow to analyze the merging and card sharing processes between robots. We present experimental results to validate the CoMapping framework with their respective metrics. All tests were carried out in urban outdoor environments on the surrounding campus of the École Centrale de Nantes as well as in rural areas
Nava, Chocron Yoshua. "Visual-LiDAR SLAM with loop closure." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-265532.
Full textSpjutspetsen inom Lidar-baserade teknik för fordonsodometri har den senaste tiden uppnått exceptionella nivåer av noggrannhet. Med det sagt har de metoder som presenterats fokuserat på att lösa lokaliseringsproblemet och därför gjort förenklande antaganden såsom att de sköter kartläggning av miljön löpande utan platsåterkoppling, och att de inte kan återlokalisera i tidigare kända miljöer. Således utvecklar vi i detta arbete ett system som kombinerar dessa noggranna lidarodometriska tekniker med algoritmer för platsigenkänning för att möjliggöra loopdetektion. Vi använder vitt tillgängliga dataset av körning i stadstrafik samt i utomhusområden för utveckling och utvärdering av systemet. Resultaten visar att platsåterkoppling förbättrar noggrannheten hos Lidar-baserade lokaliseringsmetoder och gör dem mer robusta, samt att man med hjälp av detektorer baserade på punktmolnssegmentering och visuella särdrag erhåller ett system som uppvisar mycket goda resultat under utvärderingsfasen.
Abouzahir, Mohamed. "Algorithmes SLAM : Vers une implémentation embarquée." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS058/document.
Full textAutonomous navigation is a main axis of research in the field of mobile robotics. In this context, the robot must have an algorithm that allow the robot to move autonomously in a complex and unfamiliar environments. Mapping in advance by a human operator is a tedious and time consuming task. On the other hand, it is not always reliable, especially when the structure of the environment changes. SLAM algorithms allow a robot to map its environment while localizing it in the space.SLAM algorithms are becoming more efficient, but there is no full hardware or architectural implementation that has taken place . Such implantation of architecture must take into account the energy consumption, the embeddability and computing power. This scientific work aims to evaluate the embedded systems implementing locatization and scene reconstruction (SLAM). The methodology will adopt an approach AAM ( Algorithm Architecture Matching) to improve the efficiency of the implementation of algorithms especially for systems with high constaints. SLAM embedded system must have an electronic and software architecture to ensure the production of relevant data from sensor information, while ensuring the localization of the robot in its environment. Therefore, the objective is to define, for a chosen algorithm, an architecture model that meets the constraints of embedded systems. The first work of this thesis was to explore the different algorithmic approaches for solving the SLAM problem. Further study of these algorithms is performed. This allows us to evaluate four different kinds of algorithms: FastSLAM2.0, ORB SLAM, SLAM RatSLAM and linear. These algorithms were then evaluated on multiple architectures for embedded systems to study their portability on energy low consumption systems and limited resources. The comparison takes into account the time of execution and consistency of results. After having deeply analyzed the temporal evaluations for each algorithm, the FastSLAM2.0 was finally chosen for its compromise performance-consistency of localization result and execution time, as a candidate for further study on an embedded heterogeneous architecture. The second part of this thesis is devoted to the study of an embedded implementing of the monocular FastSLAM2.0 which is dedicated to large scale environments. An algorithmic modification of the FastSLAM2.0 was necessary in order to better adapt it to the constraints imposed by the largescale environments. The resulting system is designed around a parallel multi-core architecture. Using an algorithm architecture matching approach, the FastSLAM2.0 was implemeted on a heterogeneous CPU-GPU architecture. Uisng an effective algorithme partitioning, an overall acceleration factor o about 22 was obtained on a recent dedicated architecture for embedded systems. The nature of the execution of FastSLAM2.0 algorithm could benefit from a highly parallel architecture. A second instance hardware based on programmable FPGA architecture is proposed. The implantation was performed using high-level synthesis tools to reduce development time. A comparison of the results of implementation on the hardware architecture compared to GPU-based architectures was realized. The gains obtained are promising, even compared to a high-end GPU that currently have a large number of cores. The resulting system can map a large environments while maintainingthe balance between the consistency of the localization results and real time performance. Using multiple calculators involves the use of a means of data exchange between them. This requires strong coupling (communication bus and shared memory). This thesis work has put forward the interests of parallel heterogeneous architectures (multicore, GPU) for embedding the SLAM algorithms. The FPGA-based heterogeneous architectures can particularly become potential candidatesto bring complex algorithms dealing with massive data
Holdcroft, Kevin. "Come on and SLAM: Analysis of the Impact of Field of View on Wide-Angle Cameras in SLAM." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235772.
Full textEn kommersiellt tillgänglig kamera, bestående av två separata kameror med fisheyelinser med 195 graders synfält föreslås för användning till monokulär SLAM. OpenCVs kameramodell för fisheyelinser korrigeras för att kunna hantera vinklar större än 90 grader och integrerades i ORB-SLAM2. Vi visar sedan med hjälp av fisheyemodellen, samt också MultiCol-SLAM, fördelarna med att använda vidvinkellinser för SLAM. Den prestanda gällande tracking som tillhandahålls med en fisheyelins vid snabba rotationer överträffar den för konventionella perspektivkameror. Vi hävdar att så länge som kameramodellen är tillräcklig noggrann, kommer den fullständiga bild av miljön som fås med vidvinkellins att göra monokulär SLAM robust för rotation.
Boucher, Maxime. "Quelques contributions en localisation et cartographie simultanées multi-capteurs : application à la réalité augmentée." Thesis, Evry-Val d'Essonne, 2014. http://www.theses.fr/2014EVRY0055/document.
Full textGathering informations from the images of a camera, over time, in order to map the environment and localize the camera in it, is a task refered to as Simultaneous Localization and Mapping, or SLAM. Developped both by the robotics and computer vision scientific communities, its applications are many. Robots gain autonomy from this ability. Quite recently, impressive results have been obtained in applications to autonomous transportation vehicles. Another field of application is augmented reality. The localization offered by SLAM enables us to display virtual objects in a consistent way a user movements. Thus, cinema, video games, tourisme applications can benefit from SLAM methods. Visual aids to workers performing complex or repetetive tasks is also an interesting application of SLAM methods. During this PhD thesis, we took interest in SLAM with the idea of realistic augmented reality applications in mind. Though the topic has been extensively explored and many impressive results obtained, the task isn't completely solved. The problem is still an open one, regarding spatial facets (drift, loop closure) as well as temporal (processing time). As part of our monocular SLAM explorations, we mainly studied the drift issue. We then explored multisensor SLAM, both as a mean to handle problematical rotational movements for the monocular setup and as mean to reduce the substantial processing times needed to solve the problem
Aulinas, Masó Josep M. "Selective submap joining SLAM for autonomous vehicles." Doctoral thesis, Universitat de Girona, 2011. http://hdl.handle.net/10803/48718.
Full textEls algoritmes de localització i creació de mapes simultàniament (Simultaneous Localization and Mapping - SLAM) no produeixen mapes correctes de grans àrees a causa de l'augment gradual de la incertesa en les missions de llarga durada. El cost de computació augmenta a mesura que el mapa creix. Aquesta tesi presenta un estudi de les tècniques de SLAM en entorns grans. També s'estudien aquells treballs centrats en ambients submarins. Es proposa una nova tècnica basada en l'ús de submapes independents i un mapa estocàstic global. Aquesta tècnica s'ha anomenat Unió Selectiva de Submapes en SLAM (SSJS). El mapa global conté les transformacions relatives entre mapes, que s'actualitzen en revisitar zones conegudes. Així doncs, els submapes que comparteixen informació es fusionen, mantenint les correlacions entre el vehicle i les fites. L'ús de submapes redueix el cost de càlcul i millora la consistència del mapa en comparació a les tècniques existents.
Laminetti, Giordano. "Depth estimation using deep learning and SLAM." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textValencia, Carreño Rafael. "Mapping, planning and exploration with Pose SLAM." Doctoral thesis, Universitat Politècnica de Catalunya, 2013. http://hdl.handle.net/10803/117471.
Full textGranström, Karl, and Jonas Callmer. "Large Scale SLAM in an Urban Environment." Thesis, Linköping University, Department of Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-11833.
Full textSimultaneous Localisation And Mapping SLAM-problemet är ett robotikproblem som består av att låta en robot kartlägga ett tidigare okänt område, och samtidigt lokalisera sig i den skapade kartan. Det här exjobbet presenterar ett försök till en lösning på SLAM-problemet som fungerar i konstant tid i en urban miljö. En sådan lösning måste hantera en datamängd som ständigt ökar, utan att beräkningskomplexiteten ökar signifikant.
Ett informationsfilter på fördröjd tillståndsform används för estimering av robotens trajektoria, och kamera och laseravståndssensorer används för att samla spatial information om omgivningarna längs färdvägen. Två olika metoder för att detektera loopslutningar föreslås. Den första är bildbaserad och använder Tree of Words för jämförelse av bilder. Den andra metoden är laserbaserad och använder en tränad klassificerare för att jämföra laserscans. När två posar, position och riktning, kopplats samman i en loopslutning beräknas den relativa posen med laserscansinriktning med hjälp av en kombination av Conditional Random Field-Match och Iterative Closest Point.
Experiment visar att både bild- och laserscansbaserad loopslutningsdetektion fungerar bra i stadsmiljö, och resulterar i good estimering av kartan såväl som robotens trajektoria.
In robotics, the Simultaneous Localisation And Mapping SLAM problem consists of letting a robot map a previously unknown environment, while simultaneously localising the robot in the same map. In this thesis, an attempt to solve the SLAM problem in constant time in a complex environment, such as a suburban area, is made. Such a solution must handle increasing amounts of data without significant increase in computation time.
A delayed state information filter is used to estimate the robot's trajectory, and camera and laser range sensors are used to acquire spatial information about the environment along the trajectory. Two approaches to loop closure detection are proposed. The first is image based using Tree of Words for image comparison. The second is laser based using a trained classifier for laser scan comparison. The relative pose, the difference in position and heading, of two poses matched in loop closure is calculated with laser scan alignment using a combination of Conditional Random Field-Match and Iterative Closest Point.
Experiments show that both image and laser based loop closure detection works well in a suburban area, and results in good estimation of the map as well as the robot's trajectory.
Johnsson, Cecilia. "Flödesanalys av spårelement från källa till slam." Thesis, Uppsala universitet, Luft-, vatten och landskapslära, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-158558.
Full textMetals are transported to wastewater treatment plants (WWTPs) from diffuse and point sources in the Swedish society, these metals will end up in sewage sludge or receiving water. Sewage sludge contains a lot of plant nutrients, like phosphorus and nitrogen, which should be returned to arable land. But sludge also contains metals and if the metal content is too high the sewage sludge cannot be returned to the arable land. REVAQ is a certification system and the objective with it is to develop and systematize the WWTPs work to improve the wastewater and by that enable the return of plant nutrients to arable land. The accumulation rate of antimony, gold, cadmium, silver and bismuth are high in arable land fertilized by sewage sludge and because of that these trace elements are prioritized in WWTPs, certified by REVAQ, work to improve wastewater. Source Finder (SoFi) is a tool that can be used by the WWTPs to quantify emissions of cadmium, copper, chrome, mercury and zink from identified sources. The objectives of this master thesis were to develop and adapt the tool SoFi to estimate the trace elements antimony, gold, silver and bismuth and to develop the source household by survey the emissions of the trace elements and cadmium in it. Sources of the trace elements in the sewage system were identified by literature and emission coefficients were compiled for those sources that were possible. The new version of Source Finder was tested in the municipal WWTP Käppala and an estimation of the reasonableness of the results was made. The results showed that a good estimation of cadmium flow is made by the tool and that antimony, silver and bismuth flows are underestimated. It was not possible to determine emission coefficients for all identified sources to antimony, silver and bismuth because of the lack of knowledge about these trace elements. No emissions of gold could be quantified and the trace element was therefore not calculated by the tool. Since all identified sources have not been quantified it is not possible to determine whether all sources have been identified or not. The tool is ready to be used by the WWTPs in their work to improve the wastewater, though by quantifying further identified sources the tool will be of better use. To make that possible new studies have to be done.
Flödesanalys av spårelement från källa till slam
Lindfors, Elin. "Undersökning av utökade användningsområden för Lotsbroverkets slam." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-175304.
Full textMoses, Matti Nuha. "Undersökning av Ammoniumoxiderande Arkéer i reningsverks slam." Thesis, Mälardalens högskola, Akademin för hållbar samhälls- och teknikutveckling, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-11295.
Full textLawlor, M. Catherine. "SLAM, a multimedia mathematics teaching support system." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ38391.pdf.
Full textGee, Andrew P. "Incorporating Higher Level Structure in Visual SLAM." Thesis, University of Bristol, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525469.
Full textWangsiripitak, Somkiat. "Incorporating objects and surfaces into SLAM maps." Thesis, University of Oxford, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542991.
Full text