Journal articles on the topic 'SLC22A23'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SLC22A23.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Engelhart, Darcy C., Jeffry C. Granados, Da Shi, Milton H. Saier Jr., Michael E. Baker, Ruben Abagyan, and Sanjay K. Nigam. "Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs." International Journal of Molecular Sciences 21, no. 5 (March 5, 2020): 1791. http://dx.doi.org/10.3390/ijms21051791.
Full textMoss, Darren M., Neill J. Liptrott, Paul Curley, Marco Siccardi, David J. Back, and Andrew Owen. "Rilpivirine Inhibits Drug Transporters ABCB1, SLC22A1, and SLC22A2In Vitro." Antimicrobial Agents and Chemotherapy 57, no. 11 (September 3, 2013): 5612–18. http://dx.doi.org/10.1128/aac.01421-13.
Full textKang, Weiting, Meng Zhang, Qiang Wang, Da Gu, Zhilong Huang, Hanbo Wang, Yuzhu Xiang, Qinghua Xia, Zilian Cui, and Xunbo Jin. "The SLC Family Are Candidate Diagnostic and Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma." BioMed Research International 2020 (May 2, 2020): 1–17. http://dx.doi.org/10.1155/2020/1932948.
Full textLapczuk-Romanska, Joanna, Diana Busch, Ewa Gieruszczak, Agnieszka Drozdzik, Katarzyna Piotrowska, Robert Kowalczyk, Stefan Oswald, and Marek Drozdzik. "Membrane Transporters in Human Parotid Gland-Targeted Proteomics Approach." International Journal of Molecular Sciences 20, no. 19 (September 28, 2019): 4825. http://dx.doi.org/10.3390/ijms20194825.
Full textBennett, Katie M., Jun Liu, Courtney Hoelting, and James Stoll. "Expression and analysis of two novel rat organic cation transporter homologs, SLC22A17 and SLC22A23." Molecular and Cellular Biochemistry 352, no. 1-2 (February 27, 2011): 143–54. http://dx.doi.org/10.1007/s11010-011-0748-y.
Full textAL-Eitan, Laith, Basima Almomani, Ahmad Nassar, Barakat Elsaqa, and Nesreen Saadeh. "Metformin Pharmacogenetics: Effects of SLC22A1, SLC22A2, and SLC22A3 Polymorphisms on Glycemic Control and HbA1c Levels." Journal of Personalized Medicine 9, no. 1 (March 25, 2019): 17. http://dx.doi.org/10.3390/jpm9010017.
Full textGottier Nwafor, Janine, Marta Nowik, Naohiko Anzai, Hitoshi Endou, and Carsten A. Wagner. "Metabolic Acidosis Alters Expression of Slc22 Transporters in Mouse Kidney." Kidney and Blood Pressure Research 45, no. 2 (2020): 263–74. http://dx.doi.org/10.1159/000506052.
Full textCheong, Hyun Sub, Hae Deun Kim, Han Sung Na, Ji On Kim, Lyoung Hyo Kim, Seung Hee Kim, Joon Seol Bae, Myeon Woo Chung, and Hyoung Doo Shin. "Screening of genetic variations of SLC15A2, SLC22A1, SLC22A2 and SLC22A6 genes." Journal of Human Genetics 56, no. 9 (July 28, 2011): 666–70. http://dx.doi.org/10.1038/jhg.2011.77.
Full textEngelhart, Darcy C., Priti Azad, Suwayda Ali, Jeffry C. Granados, Gabriel G. Haddad, and Sanjay K. Nigam. "Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress." International Journal of Molecular Sciences 21, no. 6 (March 15, 2020): 2002. http://dx.doi.org/10.3390/ijms21062002.
Full textTamai, Ikumi. "Pharmacological and pathophysiological roles of carnitine/organic cation transporters (OCTNs: SLC22A4, SLC22A5 and Slc22a21)." Biopharmaceutics & Drug Disposition 34, no. 1 (October 14, 2012): 29–44. http://dx.doi.org/10.1002/bdd.1816.
Full textWu, Wei, Michael E. Baker, Satish A. Eraly, Kevin T. Bush, and Sanjay K. Nigam. "Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members." Physiological Genomics 38, no. 2 (July 2009): 116–24. http://dx.doi.org/10.1152/physiolgenomics.90309.2008.
Full textZazuli, Zulfan, Naut J. C. B. Duin, Katja Jansen, Susanne J. H. Vijverberg, Anke H. Maitland-van der Zee, and Rosalinde Masereeuw. "The Impact of Genetic Polymorphisms in Organic Cation Transporters on Renal Drug Disposition." International Journal of Molecular Sciences 21, no. 18 (September 10, 2020): 6627. http://dx.doi.org/10.3390/ijms21186627.
Full textMulgaonkar, Aditi, Jürgen Venitz, Dirk Gründemann, and Douglas H. Sweet. "Human Organic Cation Transporters 1 (SLC22A1), 2 (SLC22A2), and 3 (SLC22A3) as Disposition Pathways for Fluoroquinolone Antimicrobials." Antimicrobial Agents and Chemotherapy 57, no. 6 (April 1, 2013): 2705–11. http://dx.doi.org/10.1128/aac.02289-12.
Full textSerrano León, Alejandra, Mandana Amir Shaghaghi, Natalia Yurkova, Charles N. Bernstein, Hani El-Gabalawy, and Peter Eck. "Single-nucleotide polymorphisms in SLC22A23 are associated with ulcerative colitis in a Canadian white cohort." American Journal of Clinical Nutrition 100, no. 1 (April 16, 2014): 289–94. http://dx.doi.org/10.3945/ajcn.113.080549.
Full textPhate, Sagar D., Bharti R. Daswani, Deepika N. Mishra, and Kedar S. Joshi. "Genetic analysis of SLC47A1, SLC22A1, SLC22A2, ATM gene polymorphisms among diabetics in an Indian population." International Journal of Basic & Clinical Pharmacology 9, no. 6 (May 21, 2020): 891. http://dx.doi.org/10.18203/2319-2003.ijbcp20202189.
Full textDuga, Balázs, Márta Czakó, Katalin Komlósi, Kinga Hadzsiev, Katalin Sümegi, Péter Kisfali, Márton Melegh, and Béla Melegh. "Attention deficit hyperactivity disorder analyzed with array comparative genome hybridization method. Case report." Orvosi Hetilap 155, no. 40 (October 2014): 1598–601. http://dx.doi.org/10.1556/oh.2014.30006.
Full textHu, Dong Gui, Peter I. Mackenzie, Pramod C. Nair, Ross A. McKinnon, and Robyn Meech. "The Expression Profiles of ADME Genes in Human Cancers and Their Associations with Clinical Outcomes." Cancers 12, no. 11 (November 13, 2020): 3369. http://dx.doi.org/10.3390/cancers12113369.
Full textBourdet, David L., John B. Pritchard, and Dhiren R. Thakker. "Differential Substrate and Inhibitory Activities of Ranitidine and Famotidine toward Human Organic Cation Transporter 1 (hOCT1; SLC22A1), hOCT2 (SLC22A2), and hOCT3 (SLC22A3)." Journal of Pharmacology and Experimental Therapeutics 315, no. 3 (September 1, 2005): 1288–97. http://dx.doi.org/10.1124/jpet.105.091223.
Full textYang, Jian, Maria Kalogerou, John Gallacher, Julian R. Sampson, and Ming Hong Shen. "Renal tumours in a Tsc1+/– mouse model show epigenetic suppression of organic cation transporters Slc22a1, Slc22a2 and Slc22a3, and do not respond to metformin." European Journal of Cancer 49, no. 6 (April 2013): 1479–90. http://dx.doi.org/10.1016/j.ejca.2012.10.027.
Full textYoungblood, Geri L., and Douglas H. Sweet. "Identification and functional assessment of the novel murine organic anion transporter Oat5 (Slc22a19) expressed in kidney." American Journal of Physiology-Renal Physiology 287, no. 2 (August 2004): F236—F244. http://dx.doi.org/10.1152/ajprenal.00012.2004.
Full textWang, Li, and Douglas H. Sweet. "Potential for food–drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11)." Biochemical Pharmacology 84, no. 8 (October 2012): 1088–95. http://dx.doi.org/10.1016/j.bcp.2012.07.027.
Full textLee, Wing-Kee, Markus Reichold, Bayram Edemir, Giuliano Ciarimboli, Richard Warth, Hermann Koepsell, and Frank Thévenod. "Organic cation transporters OCT1, 2, and 3 mediate high-affinity transport of the mutagenic vital dye ethidium in the kidney proximal tubule." American Journal of Physiology-Renal Physiology 296, no. 6 (June 2009): F1504—F1513. http://dx.doi.org/10.1152/ajprenal.90754.2008.
Full textWang, Li, and Douglas H. Sweet. "Interaction of Natural Dietary and Herbal Anionic Compounds and Flavonoids with Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11)." Evidence-Based Complementary and Alternative Medicine 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/612527.
Full textVassileva, Vessela, Marta Braga, Chris Barnes, Justyna Przystal, Ali Ashek, Louis Allott, Diana Brickute, et al. "Effective Detection and Monitoring of Glioma Using [18F]FPIA PET Imaging." Biomedicines 9, no. 7 (July 13, 2021): 811. http://dx.doi.org/10.3390/biomedicines9070811.
Full textSleutels, F. "Imprinted silencing of Slc22a2 and Slc22a3 does not need transcriptional overlap between Igf2r and Air." EMBO Journal 22, no. 14 (July 15, 2003): 3696–704. http://dx.doi.org/10.1093/emboj/cdg341.
Full textWang, Li, and Douglas H. Sweet. "Competitive Inhibition of Human Organic Anion Transporters 1 (SLC22A6), 3 (SLC22A8) and 4 (SLC22A11) by Major Components of the Medicinal Herb Salvia miltiorrhiza (Danshen)." Drug Metabolism and Pharmacokinetics 28, no. 3 (2013): 220–28. http://dx.doi.org/10.2133/dmpk.dmpk-12-rg-116.
Full textMagyari, Lili, and Béla Melegh. "Susceptibility genetic variants in Hungarian morbus Crohn and ulcerative colitis patients." Orvosi Hetilap 150, no. 2 (January 1, 2009): 81–88. http://dx.doi.org/10.1556/oh.2009.28445.
Full textBreljak, Davorka, Marija Ljubojević, Yohannes Hagos, Vedran Micek, Daniela Balen Eror, Ivana Vrhovac Madunić, Hrvoje Brzica, et al. "Distribution of organic anion transporters NaDC3 and OAT1-3 along the human nephron." American Journal of Physiology-Renal Physiology 311, no. 1 (July 1, 2016): F227—F238. http://dx.doi.org/10.1152/ajprenal.00113.2016.
Full textGyawali, Asmita, Seung Jae Hyeon, Hoon Ryu, and Young-Sook Kang. "The Alteration of L-Carnitine Transport and Pretreatment Effect under Glutamate Cytotoxicity on Motor Neuron-Like NSC-34 Lines." Pharmaceutics 13, no. 4 (April 14, 2021): 551. http://dx.doi.org/10.3390/pharmaceutics13040551.
Full textMoss, Darren M., Wai San Kwan, Neill J. Liptrott, Darren L. Smith, Marco Siccardi, Saye H. Khoo, David J. Back, and Andrew Owen. "Raltegravir Is a Substrate for SLC22A6: a Putative Mechanism for the Interaction between Raltegravir and Tenofovir." Antimicrobial Agents and Chemotherapy 55, no. 2 (November 15, 2010): 879–87. http://dx.doi.org/10.1128/aac.00623-10.
Full textMartinez, Alfonso, Antonio Valdivia, Dora Pascual-Salcedo, Alejandro Balsa, Concepcion Nunez, Benjamin Fenandez-Gutierrez, Emilio Gomez de la Concha, and Elena Urcelay. "F.74. Role of SLC22A4, SLC22A5 and RUNX1 Genes in Rheumatoid Arthritis." Clinical Immunology 119 (January 2006): S77. http://dx.doi.org/10.1016/j.clim.2006.04.114.
Full textBene, Judit, Katalin Komlósi, Lili Magyari, Gábor Talián, Krisztina Horváth, Beáta Gasztonyi, Pál Miheller, et al. "Plasma carnitine ester profiles in Crohn's disease patients characterized for SLC22A4 C1672T and SLC22A5 G-207C genotypes." British Journal of Nutrition 98, no. 2 (August 2007): 345–50. http://dx.doi.org/10.1017/s0007114507705020.
Full textKoehler, M. R., B. Wissinger, V. Gorboulev, H. Koepsell, and M. Schmid. "The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26." Cytogenetic and Genome Research 79, no. 3-4 (1997): 198–200. http://dx.doi.org/10.1159/000134720.
Full textLakner, Lilla, Veronika Csöngei, Lili Magyari, Márta Varga, Pál Miheller, Patrícia Sarlós, Péter Orosz, et al. "Possible role of selected IGR and SLC22A4/SLC22A5 loci in development of inflammatory bowel diseases." Orvosi Hetilap 150, no. 29 (July 1, 2009): 1375–80. http://dx.doi.org/10.1556/oh.2009.28677.
Full textAntonescu, Irina E., Maria Karlgren, Maria L. Pedersen, Ivailo Simoff, Christel A. S. Bergström, Sibylle Neuhoff, Per Artursson, Bente Steffansen, and Carsten Uhd Nielsen. "Acamprosate Is a Substrate of the Human Organic Anion Transporter (OAT) 1 without OAT3 Inhibitory Properties: Implications for Renal Acamprosate Secretion and Drug–Drug Interactions." Pharmaceutics 12, no. 4 (April 24, 2020): 390. http://dx.doi.org/10.3390/pharmaceutics12040390.
Full textBreljak, Davorka, Hrvoje Brzica, Douglas H. Sweet, Naohiko Anzai, and Ivan Sabolic. "Sex-dependent expression of Oat3 (Slc22a8) and Oat1 (Slc22a6) proteins in murine kidneys." American Journal of Physiology-Renal Physiology 304, no. 8 (April 15, 2013): F1114—F1126. http://dx.doi.org/10.1152/ajprenal.00201.2012.
Full textFENG, Yun, Ping ZHENG, Hang ZHAO, and Kai WU. "SLC22A4 and SLC22A5 gene polymorphisms and Crohn's disease in the Chinese Han population." Journal of Digestive Diseases 10, no. 3 (August 2009): 181–87. http://dx.doi.org/10.1111/j.1751-2980.2009.00383.x.
Full textButt, C., S. Sun, C. Greenwood, D. Gladman, and P. Rahman. "Lack of association of SLC22A4, SLC22A5, SLC9A3R1 and RUNX1 variants in psoriatic arthritis." Rheumatology 44, no. 6 (March 15, 2005): 820–21. http://dx.doi.org/10.1093/rheumatology/keh606.
Full textBarros, Scott A., Chutima Srimaroeng, Jennifer L. Perry, Ramsey Walden, Neetu Dembla-Rajpal, Douglas H. Sweet, and John B. Pritchard. "Activation of Protein Kinase Cζ Increases OAT1 (SLC22A6)- and OAT3 (SLC22A8)-mediated Transport." Journal of Biological Chemistry 284, no. 5 (November 21, 2008): 2672–79. http://dx.doi.org/10.1074/jbc.m808078200.
Full textYamazaki, Keiko, Masakazu Takazoe, Torao Tanaka, Toshiki Ichimori, Susumu Saito, Aritoshi Iida, Yoshihiro Onouchi, Akira Hata, and Yusuke Nakamura. "Association analysis of SLC22A4, SLC22A5 and DLG5 in Japanese patients with Crohn disease." Journal of Human Genetics 49, no. 12 (October 19, 2004): 664–68. http://dx.doi.org/10.1007/s10038-004-0204-x.
Full textBhatnagar, Vibha, Gang Xu, Bruce A. Hamilton, David M. Truong, Satish A. Eraly, Wei Wu, and Sanjay K. Nigam. "Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3)." Journal of Human Genetics 51, no. 6 (April 29, 2006): 575–80. http://dx.doi.org/10.1007/s10038-006-0398-1.
Full textSánchez Rodríguez, Luz Helena, Olga Marcela Medina Pérez, Fernando Rondón González, Giovanna Rincón Cruz, Linda Rocha Muñoz, and Oscar Flórez-Vargas. "Genetic Polymorphisms in Multispecific Transporters Mitigate Mercury Nephrotoxicity in an Artisanal and Small-Scale Gold Mining Community in Colombia." Toxicological Sciences 178, no. 2 (September 18, 2020): 338–46. http://dx.doi.org/10.1093/toxsci/kfaa142.
Full textChaves, Catarina, Federica Campanelli, Hélène Chapy, David Gomez-Zepeda, Fabienne Glacial, Maria Smirnova, Meryam Taghi, et al. "An Interspecies Molecular and Functional Study of Organic Cation Transporters at the Blood-Brain Barrier: From Rodents to Humans." Pharmaceutics 12, no. 4 (March 28, 2020): 308. http://dx.doi.org/10.3390/pharmaceutics12040308.
Full textDíaz, N. Paniagua, E. Tranquilino Batres, L. Sánchez Chapul, A. P. López Flores, A. L. Álvarez Grijalva, A. Lózano Cardenas, F. Sánchez Muñoz, and A. López Macay. "Study of Epigenetic Control of TLR2, TLR4, SLC2A9, SLC22A12, SLC22A3 and ABCG2 Genes in Leukocytes of Gout Patients." Osteoarthritis and Cartilage 25 (April 2017): S215. http://dx.doi.org/10.1016/j.joca.2017.02.372.
Full textBene, Judit. "Prevalence of SLC22A4, SLC22A5 and CARD15 gene mutations in Hungarian pediatric patients with Crohn’s disease." World Journal of Gastroenterology 12, no. 34 (2006): 5550. http://dx.doi.org/10.3748/wjg.v12.i34.5550.
Full textKnapstein, J., M. Heise, A. Lautem, J. Schattenberg, P. R. Galle, G. Otto, M. Schuchmann, and T. Zimmermann. "285 DOWNREGULATION OF ORGANIC CATION TRANSPORTERS OCT1 (SLC22A1) AND OCT3 (SLC22A3) IN HUMAN HEPATOCELLULAR CARCINOMA AND THEIR PROGNOSTIC SIGNIFICANCE." Journal of Hepatology 56 (April 2012): S118. http://dx.doi.org/10.1016/s0168-8278(12)60298-0.
Full textMagyari, Lili, Judit Bene, Katalin Komlósi, Gábor Talián, Bernadett Faragó, Veronika Csöngei, Luca Járomi, et al. "Prevalence of SLC22A4 1672T and SLC22A5 −207C combination defined TC haplotype in Hungarian ulcerative colitis patients." Pathology & Oncology Research 13, no. 1 (March 2007): 53–56. http://dx.doi.org/10.1007/bf02893441.
Full textNies, Anne T., Hermann Koepsell, Stefan Winter, Oliver Burk, Kathrin Klein, Reinhold Kerb, Ulrich M. Zanger, Dietrich Keppler, Matthias Schwab, and Elke Schaeffeler. "Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver." Hepatology 50, no. 4 (May 28, 2009): 1227–40. http://dx.doi.org/10.1002/hep.23103.
Full textFu, Li, Yan-Ru Qin, Xiao-Yan Ming, Xian-Bo Zuo, Yu-Wen Diao, Li-Yi Zhang, Jiaoyu Ai, et al. "RNA editing of SLC22A3 drives early tumor invasion and metastasis in familial esophageal cancer." Proceedings of the National Academy of Sciences 114, no. 23 (May 22, 2017): E4631—E4640. http://dx.doi.org/10.1073/pnas.1703178114.
Full textPozdnyakov, N. O., I. N. Kagarmanyan, A. E. Miroshnikov, E. S. Emelyanov, A. A. Gruzdeva, A. M. Sirotkina, I. A. Dukhanina, A. A. Milkina, A. A. Khokhlov, and S. O. Pozdnyakov. "Pharmacogenetic Aspects of Type 2 Diabetes Treatment." Acta Biomedica Scientifica 5, no. 3 (July 13, 2020): 13–23. http://dx.doi.org/10.29413/abs.2020-5.3.2.
Full text