Journal articles on the topic 'Slippery Liquid Infused Porous surfaces (SLIPS)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Slippery Liquid Infused Porous surfaces (SLIPS).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wang, Chenghong, and Zhiguang Guo. "A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application." Nanoscale 12, no. 44 (2020): 22398–424. http://dx.doi.org/10.1039/d0nr06009g.
Full textVeronesi, Federico, Guia Guarini, Alessandro Corozzi, and Mariarosa Raimondo. "Evaluation of the Durability of Slippery, Liquid-Infused Porous Surfaces in Different Aggressive Environments: Influence of the Chemical-Physical Properties of Lubricants." Coatings 11, no. 10 (2021): 1170. http://dx.doi.org/10.3390/coatings11101170.
Full textAbdulkareem, Asma, Aya E. Abusrafa, Sifani Zavahir, et al. "Novel Slippery Liquid-Infused Porous Surfaces (SLIPS) Based on Electrospun Polydimethylsiloxane/Polystyrene Fibrous Structures Infused with Natural Blackseed Oil." International Journal of Molecular Sciences 23, no. 7 (2022): 3682. http://dx.doi.org/10.3390/ijms23073682.
Full textHabib, Salma, Sifani Zavahir, Aya E. Abusrafa, et al. "Slippery Liquid-Infused Porous Polymeric Surfaces Based on Natural Oil with Antimicrobial Effect." Polymers 13, no. 2 (2021): 206. http://dx.doi.org/10.3390/polym13020206.
Full textHabib, Salma, Sifani Zavahir, Aya E. Abusrafa, et al. "Slippery Liquid-Infused Porous Polymeric Surfaces Based on Natural Oil with Antimicrobial Effect." Polymers 13, no. 2 (2021): 206. http://dx.doi.org/10.3390/polym13020206.
Full textWang, Nan, Dangsheng Xiong, Sai Pan, Kun Wang, Yan Shi, and Yaling Deng. "Robust superhydrophobic coating and the anti-icing properties of its lubricants-infused-composite surface under condensing condition." New Journal of Chemistry 41, no. 4 (2017): 1846–53. http://dx.doi.org/10.1039/c6nj02824a.
Full textXiang, Huiying, Yuan Yuan, Cheng Zhang, et al. "Effect of Lubricant Viscosity on Wetting Behaviors and Durability of Anti-icing Slippery Liquid-Infused Porous Surfaces." Journal of Physics: Conference Series 2351, no. 1 (2022): 012004. http://dx.doi.org/10.1088/1742-6596/2351/1/012004.
Full textMikriukova, Mariia, Johanna Lahti, Janne Haapanen, Jyrki M. Mäkelä, and Jurkka Kuusipalo. "Paperboard as a substrate for biocompatible slippery liquid-infused porous surfaces." Nordic Pulp & Paper Research Journal 35, no. 3 (2020): 479–89. http://dx.doi.org/10.1515/npprj-2019-0102.
Full textShams, Hamza, Kanza Basit, Muhammad Ali Khan, Asif Mansoor, and Sajid Saleem. "Scalable wear resistant 3D printed slippery liquid infused porous surfaces (SLIPS)." Additive Manufacturing 48 (December 2021): 102379. http://dx.doi.org/10.1016/j.addma.2021.102379.
Full textWilson, Peter W., Weizhe Lu, Haojun Xu, et al. "Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS)." Phys. Chem. Chem. Phys. 15, no. 2 (2013): 581–85. http://dx.doi.org/10.1039/c2cp43586a.
Full textGuan, Jian H., Gary G. Wells, Ben Xu, et al. "Evaporation of Sessile Droplets on Slippery Liquid-Infused Porous Surfaces (SLIPS)." Langmuir 31, no. 43 (2015): 11781–89. http://dx.doi.org/10.1021/acs.langmuir.5b03240.
Full textYuan, Yuan, Liang Wang, Guoyong Liu, and Ruijin Liao. "Fabrication of Ultralow Ice-Adhesion Slippery Liquid Infused Porous Surfaces on Aluminum Alloy (7075-T651)." Coatings 10, no. 11 (2020): 1025. http://dx.doi.org/10.3390/coatings10111025.
Full textArmstrong, S., G. McHale, R. Ledesma-Aguilar, and G. G. Wells. "Evaporation and Electrowetting of Sessile Droplets on Slippery Liquid-Like Surfaces and Slippery Liquid-Infused Porous Surfaces (SLIPS)." Langmuir 36, no. 38 (2020): 11332–40. http://dx.doi.org/10.1021/acs.langmuir.0c02020.
Full textKhammas, Ruqaya, and Heli Koivuluoto. "Durable Icephobic Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Flame- and Cold-Spraying." Sustainability 14, no. 14 (2022): 8422. http://dx.doi.org/10.3390/su14148422.
Full textHe, Xiaodong, Jianfeng Zhang, Xiaoping Zhang, and Youquan Deng. "Droplet manipulation with polarity-dependent low-voltage electrowetting on an open slippery liquid infused porous surface." Soft Matter 15, no. 26 (2019): 5211–19. http://dx.doi.org/10.1039/c9sm00812h.
Full textCheng, Yang, Qing Yang, Yu Lu, et al. "A femtosecond Bessel laser for preparing a nontoxic slippery liquid-infused porous surface (SLIPS) for improving the hemocompatibility of NiTi alloys." Biomaterials Science 8, no. 23 (2020): 6505–14. http://dx.doi.org/10.1039/d0bm01369b.
Full textChen, Yi, and Zhiguang Guo. "An ionic liquid-infused slippery surface for temperature stability, shear resistance and corrosion resistance." Journal of Materials Chemistry A 8, no. 45 (2020): 24075–85. http://dx.doi.org/10.1039/d0ta08717c.
Full textWang, Yang, Haifeng Zhang, Xiaowei Liu, and Zhiping Zhou. "Slippery liquid-infused substrates: a versatile preparation, unique anti-wetting and drag-reduction effect on water." Journal of Materials Chemistry A 4, no. 7 (2016): 2524–29. http://dx.doi.org/10.1039/c5ta09936f.
Full textDeng, Ran, Ting Shen, Honglei Chen, Jiaxing Lu, Hao-Cheng Yang, and Weihua Li. "Slippery liquid-infused porous surfaces (SLIPSs): a perfect solution to both marine fouling and corrosion?" Journal of Materials Chemistry A 8, no. 16 (2020): 7536–47. http://dx.doi.org/10.1039/d0ta02000a.
Full textMaji, Kousik, Avijit Das, Manideepa Dhar, and Uttam Manna. "Synergistic chemical patterns on a hydrophilic slippery liquid infused porous surface (SLIPS) for water harvesting applications." Journal of Materials Chemistry A 8, no. 47 (2020): 25040–46. http://dx.doi.org/10.1039/d0ta09271a.
Full textZhang, Guotao, Yingkang Shi, Baohong Tong, Yunlong Jiao, Yanguo Yin, and Kun Liu. "Exudation behavior and pinning effect of the droplet on slippery liquid-infused porous surfaces (SLIPS)." Surface and Coatings Technology 433 (March 2022): 128062. http://dx.doi.org/10.1016/j.surfcoat.2021.128062.
Full textZhu, Geyunjian H., Szu-Hao Cho, Huan Zhang, Mengmeng Zhao, and Nicole S. Zacharia. "Slippery Liquid-Infused Porous Surfaces (SLIPS) Using Layer-by-Layer Polyelectrolyte Assembly in Organic Solvent." Langmuir 34, no. 16 (2018): 4722–31. http://dx.doi.org/10.1021/acs.langmuir.8b00335.
Full textTian, Xinchun, Souvik Banerjee, Ian Gonzalez-Alfonzo, and Ludovico Cademartiri. "Suppressing Evaporative Loss in Slippery Liquid-Infused Porous Surfaces (SLIPS) with Self-Suspended Perfluorinated Nanoparticles." Langmuir 36, no. 19 (2020): 5106–11. http://dx.doi.org/10.1021/acs.langmuir.0c00160.
Full textNguyễn, Thị Minh Thủy, Thị Mai Sùng, Thị Thanh Mai Đàm, Sonemany Souphaphone, Thị Trang Bùi та Thanh Bình Nguyễn. "CHỐNG ĐÓNG BĂNG TRÊN CÁC BỀ MẶT SỬ DỤNG KHÁI NIỆM SLIPS (Slippery Liquid-Infused Porous surfaces)". SCIENTIFIC JOURNAL OF TAN TRAO UNIVERSITY 7, № 21 (2021): 14–21. http://dx.doi.org/10.51453/2354-1431/2021/505.
Full textAlahi, Md Eshrat E., Yonghong Liu, Sara Khademi, et al. "Slippery Epidural ECoG Electrode for High-Performance Neural Recording and Interface." Biosensors 12, no. 11 (2022): 1044. http://dx.doi.org/10.3390/bios12111044.
Full textLi, Hui, Eugene Shkolyar, Jing Wang, et al. "SLIPS-LAB—A bioinspired bioanalysis system for metabolic evaluation of urinary stone disease." Science Advances 6, no. 21 (2020): eaba8535. http://dx.doi.org/10.1126/sciadv.aba8535.
Full textSousa, Maria F. B., Hugo C. Loureiro, and Celso A. Bertran. "Anti-scaling performance of slippery liquid-infused porous surface (SLIPS) produced onto electrochemically-textured 1020 carbon steel." Surface and Coatings Technology 382 (January 2020): 125160. http://dx.doi.org/10.1016/j.surfcoat.2019.125160.
Full textHuang, Junfei, Jiajie Kang, Jiaxu Zhang, Jinxia Huang, and Zhiguang Guo. "Slippery Surface with Petal-like Structure for Protecting Al Alloy: Anti-corrosion, Anti-fouling and Anti-icing." Journal of Bionic Engineering 19, no. 1 (2021): 83–91. http://dx.doi.org/10.1007/s42235-021-00124-6.
Full textVicente, Adrián, Pedro J. Rivero, Paloma García, et al. "Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications." Polymers 13, no. 23 (2021): 4164. http://dx.doi.org/10.3390/polym13234164.
Full textHao, Lingwan, Rujian Jiang, Jie Gao, et al. "Metal-organic framework (MOF)-based slippery liquid-infused porous surface (SLIPS) for purely physical antibacterial applications." Applied Materials Today 27 (June 2022): 101430. http://dx.doi.org/10.1016/j.apmt.2022.101430.
Full textMa, Liqun, Zichen Zhang, Linyue Gao, Yang Liu, and Hui Hu. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation." Renewable Energy 162 (December 2020): 2344–60. http://dx.doi.org/10.1016/j.renene.2020.10.013.
Full textWang, Xue-Wei, Shen-Ao Zhang, Cui Guo, and Zhi-Hao Yuan. "Rapid Movement of Water Droplets on the Hydrophobic Surface of ZnO Nanorod Array Impregnated by Lubricant." Nano 10, no. 04 (2015): 1550051. http://dx.doi.org/10.1142/s1793292015500514.
Full textZhao, Zexu, Guoyun Luo, Manping Cheng, and Lijun Song. "Water-Repellent Coatings on Corrosion Resistance by Femtosecond Laser Processing." Coatings 12, no. 11 (2022): 1736. http://dx.doi.org/10.3390/coatings12111736.
Full textMa, Liqun, Zichen Zhang, Linyue Gao, Yang Liu, and Hui Hu. "Bio-Inspired Icephobic Coatings for Aircraft Icing Mitigation: A Critical Review." Reviews of Adhesion and Adhesives 8, no. 2 (2020): 168–99. http://dx.doi.org/10.7569/raa.2020.097307.
Full textBoveri, Giulio, Alessandro Corozzi, Federico Veronesi, and Mariarosa Raimondo. "Different Approaches to Low-Wettable Materials for Freezing Environments: Design, Performance and Durability." Coatings 11, no. 1 (2021): 77. http://dx.doi.org/10.3390/coatings11010077.
Full textBoveri, Giulio, Alessandro Corozzi, Federico Veronesi, and Mariarosa Raimondo. "Different Approaches to Low-Wettable Materials for Freezing Environments: Design, Performance and Durability." Coatings 11, no. 1 (2021): 77. http://dx.doi.org/10.3390/coatings11010077.
Full textLong, Yifei, Xingxing Yin, Peng Mu, Qingtao Wang, Jiangjun Hu, and Jian Li. "Slippery liquid-infused porous surface (SLIPS) with superior liquid repellency, anti-corrosion, anti-icing and intensified durability for protecting substrates." Chemical Engineering Journal 401 (December 2020): 126137. http://dx.doi.org/10.1016/j.cej.2020.126137.
Full textYong, Jiale, Feng Chen, Qing Yang, et al. "Nepenthes Inspired Design of Self-Repairing Omniphobic Slippery Liquid Infused Porous Surface (SLIPS) by Femtosecond Laser Direct Writing." Advanced Materials Interfaces 4, no. 20 (2017): 1700552. http://dx.doi.org/10.1002/admi.201700552.
Full textHao, Yi Chun, Qiu Lin Wang, Zi Ai Liu, Xin Liu, Jing Sun, and Jin Long Song. "Preparation of Scalpel with Stable Anti-Blood Property." Materials Science Forum 996 (June 2020): 70–75. http://dx.doi.org/10.4028/www.scientific.net/msf.996.70.
Full textShi, Zhiqiang, Yamei Xiao, Ri Qiu, Shuyan Niu, and Peng Wang. "A facile and mild route for fabricating slippery liquid-infused porous surface (SLIPS) on CuZn with corrosion resistance and self-healing properties." Surface and Coatings Technology 330 (December 2017): 102–12. http://dx.doi.org/10.1016/j.surfcoat.2017.09.053.
Full textFeng, Haoqiang, Zichuan Yi, Ruizhi Yang, et al. "Designing Splicing Digital Microfluidics Chips Based on Polytetrafluoroethylene Membrane." Micromachines 11, no. 12 (2020): 1067. http://dx.doi.org/10.3390/mi11121067.
Full textLi, Tong, Yizhi Zhuo, Verner Håkonsen, Sigrid Rønneberg, Jianying He, and Zhiliang Zhang. "Epidermal Gland Inspired Self-Repairing Slippery Lubricant-Infused Porous Coatings with Durable Low Ice Adhesion." Coatings 9, no. 10 (2019): 602. http://dx.doi.org/10.3390/coatings9100602.
Full textAsawa, Kaustubh, Santosh Kumar, Yuping Huang, and Chang-Hwan Choi. "Guiding light via slippery liquid-infused porous surfaces." Applied Physics Letters 118, no. 9 (2021): 091602. http://dx.doi.org/10.1063/5.0038910.
Full textXiao, Linlin, Junsheng Li, Sophie Mieszkin, et al. "Slippery Liquid-Infused Porous Surfaces Showing Marine Antibiofouling Properties." ACS Applied Materials & Interfaces 5, no. 20 (2013): 10074–80. http://dx.doi.org/10.1021/am402635p.
Full textZhao, Dan, Xiao-dong Xu, Shuai-shuai Yuan, et al. "Fouling-resistant behavior of liquid-infused porous slippery surfaces." Chinese Journal of Polymer Science 35, no. 7 (2017): 887–96. http://dx.doi.org/10.1007/s10118-017-1930-9.
Full textBalordi, Marcella, Giorgio Santucci de Magistris, and Cristina Chemelli. "A Novel Simple Anti-Ice Aluminum Coating: Synthesis and In-Lab Comparison with a Superhydrophobic Hierarchical Surface." Coatings 10, no. 2 (2020): 111. http://dx.doi.org/10.3390/coatings10020111.
Full textYao, Wenhui, Liang Wu, Lidong Sun, Bin Jiang, and Fusheng Pan. "Recent developments in slippery liquid-infused porous surface." Progress in Organic Coatings 166 (May 2022): 106806. http://dx.doi.org/10.1016/j.porgcoat.2022.106806.
Full textYu, Peng, Zhongxu Lian, Jinkai Xu, and Huadong Yu. "Slippery liquid infused porous surfaces with corrosion resistance potential on aluminum alloy." RSC Advances 11, no. 2 (2021): 847–55. http://dx.doi.org/10.1039/d0ra08674f.
Full textInoue, Tomohiro, Akira Koyama, Damian Kowalski, Chunyu Zhu, Yoshitaka Aoki, and Hiroki Habazaki. "Fluorine‐Free Slippery Liquid‐Infused Porous Surfaces Prepared Using Hierarchically Porous Aluminum." physica status solidi (a) 217, no. 13 (2020): 1900836. http://dx.doi.org/10.1002/pssa.201900836.
Full textInoue, Tomohiro, Akira Koyama, Damian Kowalski, Chunyu Zhu, Yoshitaka Aoki, and Hiroki Habazaki. "Fluorine‐Free Slippery Liquid‐Infused Porous Surfaces Prepared Using Hierarchically Porous Aluminum." physica status solidi (a) 217, no. 13 (2020): 2070042. http://dx.doi.org/10.1002/pssa.202070042.
Full text