Academic literature on the topic 'Small molecule separation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Small molecule separation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Small molecule separation"
Islam, Molla Rafiquel, and P. R. Sundararajan. "Morphology of a hydrogen-bond mediated self-assembling small molecule in a polycarbonate matrix." Canadian Journal of Chemistry 86, no. 6 (June 1, 2008): 600–607. http://dx.doi.org/10.1139/v08-073.
Full textWeller, Harold N., Katalin Ebinger, William Bullock, Kurt J. Edinger, Mark A. Hermsmeier, Steven L. Hoffman, David S. Nirschl, et al. "Orthogonality of SFC versus HPLC for Small Molecule Library Separation." Journal of Combinatorial Chemistry 12, no. 6 (November 8, 2010): 877–82. http://dx.doi.org/10.1021/cc100118y.
Full textMukherjee, Biswaroop, and Buddhapriya Chakrabarti. "Gelation Impairs Phase Separation and Small Molecule Migration in Polymer Mixtures." Polymers 12, no. 7 (July 16, 2020): 1576. http://dx.doi.org/10.3390/polym12071576.
Full textKim, Sungyoon, Damien Thirion, Thien S. Nguyen, Byoungkook Kim, Nesibe A. Dogan, and Cafer T. Yavuz. "Sustainable Synthesis of Superhydrophobic Perfluorinated Nanoporous Networks for Small Molecule Separation." Chemistry of Materials 31, no. 14 (June 19, 2019): 5206–13. http://dx.doi.org/10.1021/acs.chemmater.9b01447.
Full textPerry, John D., Kazukiyo Nagai, and William J. Koros. "Polymer Membranes for Hydrogen Separations." MRS Bulletin 31, no. 10 (October 2006): 745–49. http://dx.doi.org/10.1557/mrs2006.187.
Full textZhai, Yunhui, Yongwen Liu, Xijun Chang, Xiaofang Ruan, and Jiali Liu. "Metal ion-small molecule complex imprinted polymer membranes: Preparation and separation characteristics." Reactive and Functional Polymers 68, no. 1 (January 2008): 284–91. http://dx.doi.org/10.1016/j.reactfunctpolym.2007.08.013.
Full textFang, Jin, Dan Deng, Zaiyu Wang, Muhammad Abdullah Adil, Tong Xiao, Yuheng Wang, Guanghao Lu, et al. "Critical Role of Vertical Phase Separation in Small-Molecule Organic Solar Cells." ACS Applied Materials & Interfaces 10, no. 15 (March 23, 2018): 12913–20. http://dx.doi.org/10.1021/acsami.8b00886.
Full textShi, Junqing, Anna Isakova, Abasi Abudulimu, Marius van den Berg, Oh Kyu Kwon, Alfred J. Meixner, Soo Young Park, Dai Zhang, Johannes Gierschner, and Larry Lüer. "Designing high performance all-small-molecule solar cells with non-fullerene acceptors: comprehensive studies on photoexcitation dynamics and charge separation kinetics." Energy & Environmental Science 11, no. 1 (2018): 211–20. http://dx.doi.org/10.1039/c7ee02967e.
Full textReed, Douglas A., Dianne J. Xiao, Henry Z. H. Jiang, Khetpakorn Chakarawet, Julia Oktawiec, and Jeffrey R. Long. "Biomimetic O2 adsorption in an iron metal–organic framework for air separation." Chemical Science 11, no. 6 (2020): 1698–702. http://dx.doi.org/10.1039/c9sc06047b.
Full textSulas, Dana B., Emily J. Rabe, and Cody W. Schlenker. "Kinetic Competition between Charge Separation and Triplet Formation in Small-Molecule Photovoltaic Blends." Journal of Physical Chemistry C 121, no. 48 (November 21, 2017): 26667–76. http://dx.doi.org/10.1021/acs.jpcc.7b09365.
Full textDissertations / Theses on the topic "Small molecule separation"
Bow, Hansen Chang. "Characterization of nanofilter arrays for small molecule separation." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37934.
Full textIncludes bibliographical references (p. 59-60).
Experimental studies were performed to evaluate methods of improving separation resolution and speed in microfabricated nanofilter arrays. Experiment parameters investigated include electric field strength, nanofilter geometry, and buffer concentration. DNA polymers of size 25-1000 base pairs were the subject of our study. We concluded that increasing electric field strength resulted in inferior separation for larger DNA polymers (400-1000 bp). Additionally, we quantified the improvement in resolution of smaller nanofilter pores and lower buffer concentration. A theoretical model based on Macrotransport Theory was developed to estimate average species velocity and peak dispersion.
by Hansen Chang Bow.
S.M.
Yang, Shaowei. "Ultramicroporous zeolite membranes for energy and environment related small molecule gas separation." University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1458643927.
Full textLiu, Kun. "Polymeric Monolithic Stationary Phases for Capillary Reversed-phase Liquid Chromatography of Small Molecules." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/3843.
Full textAnim-Mensah, Alexander R. "Evaluation of Solvent Resistant Nano-Filtration (SRNF) Membranes for Small-Molecule Purification and Recovery of Polar Aprotic Solvents for Re-Use." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1195148766.
Full textSchünemann, Christoph. "Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-105169.
Full textThe aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI
Spáčil, Zdeněk. "Mass Spectrometry of Biologically Active Small Molecules : Focusing on polyphenols, alkaloids and amino acids." Doctoral thesis, Stockholms universitet, Institutionen för analytisk kemi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-33233.
Full textAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In press. Paper 5: Manuscript.
Aljohani, Wael Hamad H. "Fabrication and characterisation of organic monolithic columns for the separation of small molecules using HPLC-MS : the Frame Problem revisited." Thesis, King's College London (University of London), 2017. https://kclpure.kcl.ac.uk/portal/en/theses/fabrication-and-characterisation-of-organic-monolithic-columns-for-the-separation-of-small-molecules-using-hplcms(b5ace486-6de8-4a35-ba45-6024e6bea2b7).html.
Full textOfurum, Ulunna K. "Evaluation of acetonitrile precipitation as a method for separating small from high molecular mass proteins in cytosol from MCF-7 breast cancer cells." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/1670.
Full textThesis research directed by: Dept. of Chemistry and Biochemistry. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Pfützner, Steffen. "Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-83486.
Full textDiese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert
Chien-En, Hsu, and 許荐恩. "Capillary Electrophoretic Separations of DNA or Small Molecules Using Polymer solutions." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/41511325204956364034.
Full textBooks on the topic "Small molecule separation"
Valencia, Susana, and Fernando Rey, eds. New Developments in Adsorption/Separation of Small Molecules by Zeolites. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-63853-5.
Full textBoudreau, Joseph F., and Eric S. Swanson. Quantum mechanics II–many body systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198708636.003.0023.
Full textAveyard, Bob. Surfactants. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198828600.001.0001.
Full textBook chapters on the topic "Small molecule separation"
Swartz, Michael E., and John VanAntwerp. "Small-Molecule Pharmaceutical Separations by Capillary Electrophoresis." In ACS Symposium Series, 190–202. Washington, DC: American Chemical Society, 1992. http://dx.doi.org/10.1021/bk-1992-0512.ch015.
Full textNagarajan, Ramanathan. "Micelle-Based Separations of Small Organic Molecules, Proteins, Carbon Nanotubes, and Nanoparticles: Molecular Origin of Selectivity." In Multidisciplinary Advances in Efficient Separation Processes, 303–33. Washington, DC: American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1348.ch010.
Full textKemp, Kingsley Christian, Jung Gi Min, Hyun June Choi, and Suk Bong Hong. "Small Gas Adsorption and Separation in Small-Pore Zeolites." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 1–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_67.
Full textWang, Guangquan, Jeffrey R. Salm, Patrick V. Gurgel, and Ruben G. Carbonell. "Small Peptide Ligands for Affinity Separations of Biological Molecules." In Chemical Engineering, 63–83. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470025018.ch3.
Full textPérez-Pellitero, Javier, and Gerhard D. Pirngruber. "Industrial Zeolite Applications for Gas Adsorption and Separation Processes." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 195–225. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_75.
Full textMangano, Enzo, and Stefano Brandani. "Measurement of Diffusion in Small Pore Zeolites to Improve Selectivity in Separation Processes." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 121–44. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_65.
Full textGutiérrez-Sevillano, Juan José, and Sofía Calero. "Computational Approaches to Zeolite-Based Adsorption Processes." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 57–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_66.
Full textClaessens, Benjamin, Julien Cousin-Saint-Remi, and Joeri F. M. Denayer. "Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 85–119. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_68.
Full textVillarroel-Rocha, Jhonny, Deicy Barrera, José J. Arroyo-Gómez, and Karim Sapag. "Critical Overview of Textural Characterization of Zeolites by Gas Adsorption." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 31–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_69.
Full textMartins, Vanessa F. D., Ana M. Ribeiro, Alexandre F. P. Ferreira, and Alírio E. Rodrigues. "Perspectives of Scaling Up the Use of Zeolites for Selective Separations from Lab to Industry." In New Developments in Adsorption/Separation of Small Molecules by Zeolites, 145–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/430_2020_71.
Full textConference papers on the topic "Small molecule separation"
Kameoka, Jun, Hongwei Zhong, Jack Henion, and Harold G. Craighead. "Polymeric microfluidic device for separation of small molecules." In Micromachining and Microfabrication, edited by Carlos H. Mastrangelo and Holger Becker. SPIE, 2001. http://dx.doi.org/10.1117/12.443062.
Full textRajesh, P. K., P. Ponnambalam, N. Ramakrishnan, and K. Prakasan. "Diffusion Modeling in a Microchannel for Separation of Species." In ASME 2004 2nd International Conference on Microchannels and Minichannels. ASMEDC, 2004. http://dx.doi.org/10.1115/icmm2004-2361.
Full textBuldakov, Michail A., Elena V. Koryukina, Victor N. Cherepanov, and Yuliya N. Kalugina. "Theoretical investigation of dipole moment function of LiH molecule for small internuclear separations." In SPIE Proceedings, edited by Gelii A. Zherebtsov and Gennadii G. Matvienko. SPIE, 2006. http://dx.doi.org/10.1117/12.675204.
Full textHsieh, Yi-Cheng, Huinan Liang, and Jeffrey D. Zahn. "Microdevices for Microdialysis and Membrane Separations." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-55052.
Full textYang, Jui-Ming, and Philip R. LeDuc. "Three-Dimensional Laminar Flow for Localized Cellular Stimulation." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61643.
Full textSridhar, Manoj, Anthony B. Hmelo, Leonard C. Feldman, Dongyan Xu, and Deyu Li. "Molecular Dynamics Simulations of Bubble Formation in Nanochannels." In ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42533.
Full textLi, Dongqing. "Electrokinetic Microfluidics and Biomedical Lab-on-a-Chip Devices." In ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2011. http://dx.doi.org/10.1115/icnmm2011-58305.
Full textSalmanzadeh, Alireza, Hadi Shafiee, Mark A. Stremler, and Rafael V. Davalos. "Mixing Enhancement in Microfluidic Devices Using Contactless Dielectrophoresis (cDEP)." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-54008.
Full textIverson, Zachariah, Ajit Achuthan, Pier Marzocca, Daryush Aidun, and Ken Caird. "Performance and Reliability Analysis of an Off-Grid Hybrid Power System." In ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64197.
Full textSinha, Ashok, Ranjan Ganguly, and Ishwar K. Puri. "Magnetic Micromanipulation of a Single Magnetic Microsphere in a Microchannel." In ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2006. http://dx.doi.org/10.1115/icnmm2006-96202.
Full textReports on the topic "Small molecule separation"
Morris, John B. Chemically modified polymeric resins for separation of cations, organic acids, and small polar moleculea by high performance liquid chromatography. Office of Scientific and Technical Information (OSTI), July 1993. http://dx.doi.org/10.2172/10116711.
Full text