To see the other types of publications on this topic, follow the link: Small spaces.

Journal articles on the topic 'Small spaces'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Small spaces.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Pfeffer, Washek F., and Karel Prikry. "Small Spaces." Proceedings of the London Mathematical Society s3-58, no. 3 (1989): 417–38. http://dx.doi.org/10.1112/plms/s3-58.3.417.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Najafov, Alik. "ON SOME DIFFERENTIAL PROPERTIES OF SMALL SMALL SOBOLEV-MORREY SPACES." Eurasian Mathematical Journal 12, no. 1 (2021): 57–67. http://dx.doi.org/10.32523/2077-9879-2021-12-1-57-67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Comfort, W. W. "Small Spaces which "Generate" Large Spaces." Proceedings of the American Mathematical Society 104, no. 3 (1988): 973. http://dx.doi.org/10.2307/2046824.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Comfort, W. W. "Small spaces which ‘‘generate” large spaces." Proceedings of the American Mathematical Society 104, no. 3 (1988): 973. http://dx.doi.org/10.1090/s0002-9939-1988-0964881-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Buskes, G., and A. van Rooij. "Small Riesz spaces." Mathematical Proceedings of the Cambridge Philosophical Society 105, no. 3 (1989): 523–36. http://dx.doi.org/10.1017/s0305004100077902.

Full text
Abstract:
Many facts in the theory of general Riesz spaces are easily verified by thinking in terms of spaces of functions. A proof via this insight is said to use representation theory. In recent years a growing number of authors has successfully been trying to bypass representation theorems, judging them to be extraneous. (See, for instance, [9,10].) In spite of the positive aspects of these efforts the following can be said. Firstly, avoiding representation theory does not always make the facts transparent. Reading the more cumbersome constructions and procedures inside the Riesz space itself one feels the need for a pictorial representation with functions, and one suspects the author himself of secret heretical thoughts. Secondly, the direct method leads to repeating constructions of the same nature over and over again.
APA, Harvard, Vancouver, ISO, and other styles
6

Virk, Žiga. "Small loop spaces." Topology and its Applications 157, no. 2 (2010): 451–55. http://dx.doi.org/10.1016/j.topol.2009.10.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Catt, Richard. "Small urban spaces." Structural Survey 13, no. 2 (1995): 21–25. http://dx.doi.org/10.1108/02630809510094535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Catt, Richard. "Small urban spaces." Structural Survey 14, no. 1 (1996): 21–30. http://dx.doi.org/10.1108/eum0000000000011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Clarke, Jenni. "Small spaces outside." Early Years Educator 13, no. 1 (2011): 34–36. http://dx.doi.org/10.12968/eyed.2011.13.1.34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Brian, Will, and Alan Dow. "Small cardinals and small Efimov spaces." Annals of Pure and Applied Logic 173, no. 1 (2022): 103043. http://dx.doi.org/10.1016/j.apal.2021.103043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Nijim, Basheer K. "Large Spaces/Small Spaces: Strategies of Control." Professional Geographer 40, no. 3 (1988): 341–42. http://dx.doi.org/10.1111/j.0033-0124.1988.00341.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Anick, David, and Brayton Gray. "Small H spaces related to Moore spaces." Topology 34, no. 4 (1995): 859–81. http://dx.doi.org/10.1016/0040-9383(95)00001-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Gowers, W. T., and B. Maurey. "Banach spaces with small spaces of operators." Mathematische Annalen 307, no. 4 (1997): 543–68. http://dx.doi.org/10.1007/s002080050050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Murray, Royce W. "Sampling of Small Spaces." Analytical Chemistry 69, no. 11 (1997): 327A. http://dx.doi.org/10.1021/ac971635s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kubiś, Wiesław, and Henryk Michalewski. "Small Valdivia compact spaces." Topology and its Applications 153, no. 14 (2006): 2560–73. http://dx.doi.org/10.1016/j.topol.2005.09.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Catt, Richard. "Surveying small urban spaces." Structural Survey 14, no. 4 (1996): 10–20. http://dx.doi.org/10.1108/02630809610148615.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Kitagawa, Susumu. "Chemistry of Small Spaces." Chemistry International 40, no. 4 (2018): 4–9. http://dx.doi.org/10.1515/ci-2018-0402.

Full text
Abstract:
Abstract The fundamental science of materials and life, which has greatly contributed to humanity, lies in atoms and molecules. For two centuries, chemistry focused on synthesizing molecules or “skeletons assembled from atoms.” This approach led to the development of various substances (pharmaceuticals, foods, dyes, pesticides, clothes, plastics, etc.). In the late 20th century, this concept evolved into supramolecular chemistry, where molecules were used as constituents and eventually led to the nanoscience field.
APA, Harvard, Vancouver, ISO, and other styles
18

Capone, Claudia, and Alberto Fiorenza. "On small Lebesgue spaces." Journal of Function Spaces and Applications 3, no. 1 (2005): 73–89. http://dx.doi.org/10.1155/2005/192538.

Full text
Abstract:
We consider a generalized version of the small Lebesgue spaces, introduced in [5] as the associate spaces of the grand Lebesgue spaces. We find a simplified expression for the norm, prove relevant properties, compute the fundamental function and discuss the comparison with the Orlicz spaces.
APA, Harvard, Vancouver, ISO, and other styles
19

Navara, Mirko. "Small Quantum Structures with Small State Spaces." International Journal of Theoretical Physics 47, no. 1 (2007): 36–43. http://dx.doi.org/10.1007/s10773-007-9415-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

OMI, Takashi, and Keiji KITAHARA. "FORM AND FORMATIVE FACTOR OF SMALL-URBAN-SPACES." Journal of Architecture, Planning and Environmental Engineering (Transactions of AIJ) 424 (1991): 79–87. http://dx.doi.org/10.3130/aijax.424.0_79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dodos, Pandelis. "On classes of Banach spaces admitting ‘‘small” universal spaces." Transactions of the American Mathematical Society 361, no. 12 (2009): 6407–28. http://dx.doi.org/10.1090/s0002-9947-09-04913-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Domínguez, Oscar. "Tractable embeddings of Besov spaces into small Lebesgue spaces." Mathematische Nachrichten 289, no. 14-15 (2016): 1739–59. http://dx.doi.org/10.1002/mana.201500244.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

EGAWA, TOMOKI, and HIDEAKI OSHIMA. "Maps between small Hopf spaces." Mathematical journal of Ibaraki University 32 (2000): 33–61. http://dx.doi.org/10.5036/mjiu.32.33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Murray, Royce. "Analytical Chemistry in Small Spaces." Analytical Chemistry 63, no. 15 (1991): 763a. http://dx.doi.org/10.1021/ac00015a600.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Ajami, Dariush, and Julius Rebek. "More Chemistry in Small Spaces." Accounts of Chemical Research 46, no. 4 (2012): 990–99. http://dx.doi.org/10.1021/ar300038r.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Thio, Tineke. "Coaxing light into small spaces." Nature Nanotechnology 2, no. 3 (2007): 136–38. http://dx.doi.org/10.1038/nnano.2007.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rebek, Julius. "Molecular Behavior in Small Spaces." Accounts of Chemical Research 42, no. 10 (2009): 1660–68. http://dx.doi.org/10.1021/ar9001203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Gruenhage, Gary. "Spaces having a small diagonal." Topology and its Applications 122, no. 1-2 (2002): 183–200. http://dx.doi.org/10.1016/s0166-8641(01)00140-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Bekolle, David. "Bergman spaces with small exponents." Indiana University Mathematics Journal 49, no. 3 (2000): 0. http://dx.doi.org/10.1512/iumj.2000.49.1687.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jacques, Wesley. "Small Spaces by Katherine Arden." Bulletin of the Center for Children's Books 72, no. 1 (2018): 6. http://dx.doi.org/10.1353/bcc.2018.0545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Murphy, N. "Graphical interfaces for small spaces." Information Professional 1, no. 1 (2004): 32–35. http://dx.doi.org/10.1049/inp:20040106.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

VEOMETT, E., and K. WILDRICK. "SPACES OF SMALL METRIC COTYPE." Journal of Topology and Analysis 02, no. 04 (2010): 581–97. http://dx.doi.org/10.1142/s1793525310000422.

Full text
Abstract:
Mendel and Naor's definition of metric cotype extends the notion of the Rademacher cotype of a Banach space to all metric spaces. Every Banach space has metric cotype at least 2. We show that any metric space that is bi-Lipschitz is equivalent to an ultrametric space having infimal metric cotype 1. We discuss the invariance of metric cotype inequalities under snowflaking mappings and Gromov–Hausdorff limits, and use these facts to establish a partial converse of the main result.
APA, Harvard, Vancouver, ISO, and other styles
33

Storme, Leo. "Small arcs in projective spaces." Journal of Geometry 58, no. 1-2 (1997): 179–91. http://dx.doi.org/10.1007/bf01222939.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Choe, Boo Rim, Hyungwoon Koo, and Wayne Smith. "Composition Operators on Small Spaces." Integral Equations and Operator Theory 56, no. 3 (2006): 357–80. http://dx.doi.org/10.1007/s00020-006-1420-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Ding, Guanggui. "Small into isomorphisms onL ∞ spaces." Acta Mathematica Sinica 11, no. 4 (1995): 417–21. http://dx.doi.org/10.1007/bf02248752.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

A’campo-Neuen, Annette, and Jürgen Hausen. "Orbit spaces of Small Tori." Results in Mathematics 43, no. 1-2 (2003): 13–22. http://dx.doi.org/10.1007/bf03322717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Anatriello, Giuseppina, Maria Rosaria Formica, and Raffaella Giova. "Fully measurable small Lebesgue spaces." Journal of Mathematical Analysis and Applications 447, no. 1 (2017): 550–63. http://dx.doi.org/10.1016/j.jmaa.2016.10.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Bennett, Grahame. "Sequence spaces with small ?-duals." Mathematische Zeitschrift 194, no. 3 (1987): 321–29. http://dx.doi.org/10.1007/bf01162240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Pustylnik, Evgeniy. "Sobolev type inequalities in ultrasymmetric spaces with applications to Orlicz-Sobolev embeddings." Journal of Function Spaces and Applications 3, no. 2 (2005): 183–208. http://dx.doi.org/10.1155/2005/254184.

Full text
Abstract:
LetDkfmean the vector composed by all partial derivatives of orderkof a functionf(x),x∈Ω⊂ℝn. Given a Banach function spaceA, we look for a possibly small spaceBsuch that‖f‖B≤c‖|Dkf|‖Afor allf∈C0k(Ω). The estimates obtained are applied to ultrasymmetric spacesA=Lφ,E,B=Lψ,E, giving some optimal (or rather sharp) relations between parameter-functionsφ(t)andψ(t)and new results for embeddings of Orlicz-Sobolev spaces.
APA, Harvard, Vancouver, ISO, and other styles
40

Shelah, Saharon, and Stevo Todorcevic. "A Note on Small Baire Spaces." Canadian Journal of Mathematics 38, no. 3 (1986): 659–65. http://dx.doi.org/10.4153/cjm-1986-033-8.

Full text
Abstract:
A Baire space is a topological space which satisfies the Baire Category Theorem, i.e., in which the intersection of countably many dense open sets is dense. In this note we shall be interested in the size of Baire spaces, so to avoid trivialities we shall consider only non-atomic spaces, that is, spaces X whose regular open algebras ro(X) are non-atomic. All natural examples of Baire spaces, such as complete metric spaces or compact spaces, seem to have sizes at least 2ℵ0. So a natural question, asked first by W. Fleissner and K. Kunen [5], is whether there exists a Baire space of the minimal possible size ℵ1. The purpose of this note is to show that such a space need not exist by proving the following result.
APA, Harvard, Vancouver, ISO, and other styles
41

González, Manuel, and José M. Herrera. "Decompositions for real Banach spaces with small spaces of operators." Studia Mathematica 183, no. 1 (2007): 1–14. http://dx.doi.org/10.4064/sm183-1-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Raudensky, Jeanne. "Big Drives, Small Fairway: Teaching Golf in Small Spaces." Strategies 13, no. 2 (1999): 17–21. http://dx.doi.org/10.1080/08924562.1999.10591426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Alford, Arezoo, and Simon Brinkworth. "Maximising image quality in small spaces." Journal of Visual Communication in Medicine 38, no. 1-2 (2015): 4–12. http://dx.doi.org/10.3109/17453054.2015.1035635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Mycielski, Jan, and Grzegorz Tomkowicz. "On Small Subsets in Euclidean Spaces." Bulletin Polish Acad. Sci. Math. 64, no. 2,3 (2016): 109–18. http://dx.doi.org/10.4064/ba8085-10-2016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Jarosz, Krzysztof. "Small isomorphisms ofC(X,E) spaces." Pacific Journal of Mathematics 138, no. 2 (1989): 295–315. http://dx.doi.org/10.2140/pjm.1989.138.295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rödl, Vojtěch. "Small Spaces with Large Point Character." European Journal of Combinatorics 8, no. 1 (1987): 55–58. http://dx.doi.org/10.1016/s0195-6698(87)80020-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

McVicar, Mhairi. "1:1 – Architects Build Small Spaces." Architectural Research Quarterly 14, no. 3 (2010): 195–200. http://dx.doi.org/10.1017/s1359135510000965.

Full text
Abstract:
Squeezed into the narrow confines of a parasitic Mumbai dwelling; gathered around a ceramic tea-set in an elevated tea-house; trapped in the transparent void of a tree; and nestled in a vertical tower of fur, books and timber the 1:1 – Architects Build Small Spaces exhibition offered a tactile and intimate encounter with the intense experiences and emotions evoked by a series of small architectural spaces. Installed throughout the Victoria and Albert Museum, the exhibition ran from 15 June – 30 August 2010.
APA, Harvard, Vancouver, ISO, and other styles
48

Lehman, Niles. "Evolution Finds Shelter in Small Spaces." Chemistry & Biology 19, no. 4 (2012): 439–40. http://dx.doi.org/10.1016/j.chembiol.2012.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Perrin, N. "Small codimension subvarieties in homogeneous spaces." Indagationes Mathematicae 20, no. 4 (2009): 557–81. http://dx.doi.org/10.1016/s0019-3577(09)80026-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Catt, Richard. "Small urban spaces: part 6 ‐ pavings." Structural Survey 14, no. 3 (1996): 27–39. http://dx.doi.org/10.1108/02630809610180178.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!