Academic literature on the topic 'Smart energy demand'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smart energy demand.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Smart energy demand"
Lai, Jingang, Hong Zhou, Wenshan Hu, Dongguo Zhou, and Liang Zhong. "Smart Demand Response Based on Smart Homes." Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/912535.
Full textBorges, Yulle G. F., Rafael C. S. Schouery, Flávio K. Miyazawa, Fabrizio Granelli, Nelson L. S. da Fonseca, and Lucas P. Melo. "Smart energy pricing for demand‐side management in renewable energy smart grids." International Transactions in Operational Research 27, no. 6 (November 5, 2019): 2760–84. http://dx.doi.org/10.1111/itor.12747.
Full textNambi, S. N. Akshay Uttama, R. Venkatesha Prasad, and Antonio R. Lua. "Decentralized Energy Demand Regulation in Smart Homes." IEEE Transactions on Green Communications and Networking 1, no. 3 (September 2017): 372–80. http://dx.doi.org/10.1109/tgcn.2017.2721818.
Full textIslam, M. A., M. Hasanuzzaman, N. A. Rahim, A. Nahar, and M. Hosenuzzaman. "Global Renewable Energy-Based Electricity Generation and Smart Grid System for Energy Security." Scientific World Journal 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/197136.
Full textDwijendra, Ngakan Ketut Acwin, Oriza Candra, Ihsan Ali Mubarak, Hassan Taher Braiber, Muneam Hussein Ali, Iskandar Muda, R. Sivaraman, and A. Heri Iswanto. "Optimal Energy-Saving in Smart Energy Hub Considering Demand Management." Environmental and Climate Technologies 26, no. 1 (January 1, 2022): 1244–56. http://dx.doi.org/10.2478/rtuect-2022-0094.
Full textPalensky, Peter, and Dietmar Dietrich. "Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads." IEEE Transactions on Industrial Informatics 7, no. 3 (August 2011): 381–88. http://dx.doi.org/10.1109/tii.2011.2158841.
Full textAhmed, Ajaz. "Energy Smart Buildings: Potential for Conservation and Efficiency of Energy." Pakistan Development Review 53, no. 4II (December 1, 2014): 371–81. http://dx.doi.org/10.30541/v53i4iipp.371-381.
Full textWang, Xiaonan, Wentao Yang, Sana Noor, Chang Chen, Miao Guo, and Koen H. van Dam. "Blockchain-based smart contract for energy demand management." Energy Procedia 158 (February 2019): 2719–24. http://dx.doi.org/10.1016/j.egypro.2019.02.028.
Full textPan, Feng, Guoying Lin, Yuyao Yang, Sijian Zhang, Jucheng Xiao, and Shuai Fan. "Data-driven demand-side energy management approaches based on the smart energy network." Journal of Algorithms & Computational Technology 13 (January 2019): 174830261989161. http://dx.doi.org/10.1177/1748302619891611.
Full textFaria, Pedro, and Zita Vale. "Demand Response in Smart Grids." Energies 16, no. 2 (January 12, 2023): 863. http://dx.doi.org/10.3390/en16020863.
Full textDissertations / Theses on the topic "Smart energy demand"
Xia, Chunqiu. "Energy Demand Response Management in Smart Home Environments." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/20182.
Full textKühnlenz, F. (Florian). "Analyzing flexible demand in smart grids." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526223889.
Full textTiivistelmä Globaali energiajärjestelmä on hitaan, mutta massiivisen muutoksen edessä. Tämän muutostarpeen on käynnistänyt ympäristöämme koskevat huolet, mutta lisääntyvässä määrin tähän vaikuttaa nykyään uusiutuvan energian marginaalikustannusten nollataso. Tähän muutokseen liittyy selkeä sähköverkkojen roolin korostuminen, ja pyrkimyksenä näyttää olevan muutos, jossa sähköverkot siirtävät suurimman osan käyttämästämme energiasta. Tämän seurauksena on käynnistetty merkittäviä tutkimus-ja tuotekehityspanostuksia, joiden tavoitteena on nykyaikaistaa sähköverkot älysähköverkoiksi. Älysähköverkoissa yhdistyvät sähköverkkoon integroidut tietoliikenneverkot ja automaatio sekä modernit sähkömarkkinajärjestelmät ja -rakenteet. Tämä työ tuottaa lisää ymmärrystä uudistumisprosessiin tuottamalla kaksi uutta malliratkaisua. Ensimmäisessä mallissa kehitetään työkalu, jonka avulla pystytään paremmin ymmärtämään toisiinsa yhdistettyjen infrastruktuuriverkkojen toimintaa yksinkertaisella, mutta kompleksisella mallilla, jossa energia- ja tietoliikenneverkot sekä tarvittava päätöksenteko yhdistetään. Toinen malli tuottaa yksityiskohtaisen agenttipohjaisen ympäristön sähkömarkkinasta. Malli tukee erilaisten itsenäisten sähkömarkkinaosapuolten mallintamista korkealla aikaresoluutiolla ja erityisesti usein huomiotta jätettyjen toisiinsa kytkeytyvien eri markkinavaiheiden mallintamista. Malli antaa eväitä vastata kysymykseen, miten ensimmäisessä markkinavaiheessa (vuorokausimarkkina) syntyvä ero tuotannon ja kulutuksen välillä tasapainotetaan toisessa markkinavaiheessa (tasapainotusmarkkina). Kumpaakin luotua mallia hyödynnetään arvioitaessa kulutushallintaa, jossa sähköverkkojen perinteisestä tuotannon ja kulutuksen tasapainosta ainakin osittain luovutaan ja kysyntä- eli kulutusjoustoa käytetään tasaamaan kulutus tuotannon suuruiseksi. Tämänkaltaiset mekanismit ovat oleellisia ja kriittisiä, kun sähköverkkoon liitetään suuria määriä vaihtelevatuottoista uusiutuvaa energiaa, kuten aurinko- ja tuulienergiaa. Tutkimuksessa huomasimme merkittäviä ja monimutkaisia skaalautuvuusilmiöitä, jotka kertovat, että sähköverkkojen tutkimuksessa reaalimaailman kompleksisuuden huomioiminen on ollut riittämätöntä. Sähkömarkkinamallia hyödyntämällä huomasimme vastaavia epätoivottuja skaalausilmiöitä esiintyvän myös nykyisessä sähkömarkkinassa. Erityisesti loimme keinoja, joilla skaalausilmiöistä on mahdollista päästä eroon nykyistä sähkömarkkinarakennetta käytettäessä. Tässä työssä luotuja malleja ja niiden viitekehystä hyödyntämällä pystymme paremmin analysoimaan kyberfysikaalisia järjestelmiä ja hallitsemaan niiden kompleksisuutta
Ramaswamy, Vivek. "Oskarshamn - A Smart Energy Island Assessment." Thesis, KTH, Energisystemanalys, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-182669.
Full textEl, Rahi Georges. "Demand-Side Energy Management in the Smart Grid: Games and Prospects." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/78266.
Full textMaster of Science
Alhaider, Mohemmed Masooud. "Optimal Demand Response Models with Energy Storage Systems in Smart Grids." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6451.
Full textTARIQ, Zaheer. "Smart energy demand management. A collaborative approach towards consumers' active participation." Doctoral thesis, Università degli studi di Bergamo, 2014. http://hdl.handle.net/10446/30769.
Full textKhamphanchai, Warodom. "An Agent-based Platform for Demand Response Implementation in Smart Buildings." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/70869.
Full textPh. D.
Bowen, Brian (Brian Richard). "Climate control : smart thermostats, demand response, and energy efficiency in Austin, Texas." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97346.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 54-61).
Energy efficiency and demand response are critical resources for the transition to a cleaner electricity grid. Demand-side management programs can reduce electricity use during peak times when power is scarce and expensive, and they can help to integrate intermittent renewable energy resources by balancing real-time supply and demand for electricity. These programs are more cost-effective than large-scale energy storage technologies and are particularly important in cities and states with strong climate change and energy goals. Since 2000, Austin Energy has managed a residential demand response program that enables it to reduce air conditioning usage by remotely adjusting thermostat settings at tens of thousands of homes. The utility distributed free thermostats to households that participated in this program; however, by 2012, it determined that only one third of them were working as intended. During the summer of 2013, Austin Energy decided to implement a new program utilizing new technology, Wi-Fi connected "smart" thermostats. Instead of providing free thermostats to reduce peak demand, the utility encouraged residents to bring their own device and receive a one-time $85 enrollment incentive. This thesis analyzes these two approaches to residential demand response as measured by program enrollment rates and participant performance during demand response events. In addition, it assesses the smart thermostats' ability to reduce energy consumption (i.e. improve energy efficiency) over the course of the summer. My analysis indicates that smart thermostats were more effective at reducing peak demand than the free thermostats employed in the previous program. However, homes with smart thermostats used more energy for air conditioning over the course of the summer than homes without, indicating limited energy efficiency potential from smart thermostats among the study population.
by Brian Bowen.
M.C.P.
Sippel, Felix. "Tezpur University Smart Campus: Performance Optimization during Grid Outages using Demand Side Management." Thesis, KTH, Kraft- och värmeteknologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-263691.
Full textZhao, Zhiheng. "Thermal Inertia In Residential Buildings For Demand Response." Thesis, The University of Sydney, 2016. http://hdl.handle.net/2123/16018.
Full textBooks on the topic "Smart energy demand"
The smart grid: Enabling energy efficiency and demand response. Lilburn, GA: Fairmont Press, 2009.
Find full textSong, Meng, and Ciwei Gao. Integration of Distributed Resources in Smart Grids for Demand Response and Transactive Energy. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7170-8.
Full textPlanning communities for a changing climate: Smart growth, public demand and private opportunity : hearing before the Select Committee on Energy Independence and Global Warming, House of Representatives, One Hundred Tenth Congress, second session, June 18, 2008. Washington: U.S. G.P.O., 2010.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textGellings, Clark W. Smart Grid: Enabling Energy Efficiency and Demand Response. River Publishers, 2020.
Find full textAdvanced Applications for Smart Energy Systems Considering Grid-Interactive Demand Response. MDPI, 2019. http://dx.doi.org/10.3390/books978-3-03921-999-5.
Full textBook chapters on the topic "Smart energy demand"
Zhou, Kaile, and Lulu Wen. "Integrated Energy Services Based on Integrated Demand Response." In Smart Energy Management, 203–21. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9360-1_9.
Full textSpiegel, Stephan. "Optimization of In-House Energy Demand." In Smart Information Systems, 271–89. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14178-7_10.
Full textTakano, Willian Y., and Eduardo N. Asada. "Developing Energy Demand Forecasting Methods." In Handbook of Smart Energy Systems, 1–19. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-72322-4_47-1.
Full textMatsuyama, Takashi. "i-Energy: Smart Demand-Side Energy Management." In Green Energy and Technology, 141–63. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6281-0_8.
Full textZhou, Kaile, and Lulu Wen. "Power Demand and Probability Density Forecasting Based on Deep Learning." In Smart Energy Management, 101–34. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9360-1_5.
Full textZhou, Kaile, and Lulu Wen. "Incentive-Based Demand Response with Deep Learning and Reinforcement Learning." In Smart Energy Management, 155–82. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9360-1_7.
Full textSajjad, Intisar Ali, Haroon Farooq, Waqas Ali, and Rehan Liaqat. "Demand-Side Management in Smart Grids." In Handbook of Energy Transitions, 237–55. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003315353-14.
Full textMohammad, Nur, and Yateendra Mishra. "Demand-Side Management and Demand Response for Smart Grid." In Energy Systems in Electrical Engineering, 197–231. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1768-2_6.
Full textDu, Pengwei, Ning Lu, and Haiwang Zhong. "Integrated Demand Response in the Multi-Energy System." In Demand Response in Smart Grids, 121–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-19769-8_5.
Full textManojpraphakar, T., and Soundarrajan A. "Energy Demand Prediction Using Linear Regression." In Proceedings of International Conference on Artificial Intelligence, Smart Grid and Smart City Applications, 407–17. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-24051-6_40.
Full textConference papers on the topic "Smart energy demand"
Kiliccote, Sila, Mary Ann Piette, Girish Ghatikar, David Hafemeister, Daniel Kammen, Barbara Goss Levi, and Peter Schwartz. "Smart Buildings and Demand Response." In PHYSICS OF SUSTAINABLE ENERGY II: USING ENERGY EFFICIENTLY AND PRODUCING IT RENEWABLY. AIP, 2011. http://dx.doi.org/10.1063/1.3653861.
Full textSchellong, Wolfgang, and Sarah Gerngross. "Energy demand analysis in smart grids." In 2015 International Energy and Sustainability Conference (IESC). IEEE, 2015. http://dx.doi.org/10.1109/iesc.2015.7384385.
Full textTaqqali, Wasim M., and Nidhal Abdulaziz. "Smart Grid and demand response technology." In 2010 IEEE International Energy Conference (ENERGYCON 2010). IEEE, 2010. http://dx.doi.org/10.1109/energycon.2010.5771773.
Full textAntolic, Mladen, Boris Fazo, Srete Nikolovski, and Zoran Baus. "Active Demand Energy Services Decomposition." In 2018 International Conference on Smart Systems and Technologies (SST). IEEE, 2018. http://dx.doi.org/10.1109/sst.2018.8564584.
Full textBjornfors, M. "Energy Demand Research Project overview." In IET Seminar on Smart Metering 2009: Making it Happen. IET, 2009. http://dx.doi.org/10.1049/ic.2009.0054.
Full textHasan, R., Y. Tanveer, M. M. Aman, W. A. Qureshi, M. S. Khan, A. Abbas, and J. A. Qureshi. "Smart Electricity Demand Side Controller." In 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014. Institution of Engineering and Technology, 2014. http://dx.doi.org/10.1049/cp.2014.1452.
Full textSchien, Daniel, Paul Shabajee, John Brenton, Chris Jones, and Chris Preist. "IODiCUS - Smart Balancing of Local Energy Demand." In ICT for Sustainability 2016. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/ict4s-16.2016.32.
Full textNambi S. N., Akshay Uttama, Antonio R. Lua, and Venkatesha Prasad R. "Decentralized Energy Demand Regulation in Smart Homes." In 2016 IEEE Global Communications Conference (GLOBECOM). IEEE, 2016. http://dx.doi.org/10.1109/glocom.2016.7841718.
Full textOviedo, Raul J. Martinez, Zhong Fan, Sedat Gormus, Parag Kulkarni, and Dritan Kaleshi. "Residential energy demand management in smart grids." In 2012 IEEE/PES Transmission and Distribution Conference and Exposition (T&D). IEEE, 2012. http://dx.doi.org/10.1109/tdc.2012.6281573.
Full textHemapala, Kullappu T. M. U., and Asitha L. Kulasekera. "Demand Side Management for Microgrids through Smart Meters." In Power and Energy Systems. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.768-060.
Full textReports on the topic "Smart energy demand"
Aryal, Jeetendra Prakash. Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific. Asian Development Bank Institute, October 2022. http://dx.doi.org/10.56506/vaoy9373.
Full textAryal, Jeetendra P. Contribution of Agriculture to Climate Change and Low-Emission Agricultural Development in Asia and the Pacific. Asian Development Bank Institute, October 2022. http://dx.doi.org/10.56506/wdbc4659.
Full text