To see the other types of publications on this topic, follow the link: Smart Factory.

Journal articles on the topic 'Smart Factory'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Smart Factory.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Grawe, Christian. "Smart Factory." Controlling 28, no. 6 (2016): 362–63. http://dx.doi.org/10.15358/0935-0381-2016-6-362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hajrizi, E. "Smart Solution for Smart Factory." IFAC-PapersOnLine 49, no. 29 (2016): 1–5. http://dx.doi.org/10.1016/j.ifacol.2016.11.052.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

MATSUBARA, Atsushi. "Smart Factory and Smart Machine." Proceedings of Conference of Kansai Branch 2018.93 (2018): 03. http://dx.doi.org/10.1299/jsmekansai.2018.93.03.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lee, Jay. "Smart Factory Systems." Informatik-Spektrum 38, no. 3 (May 9, 2015): 230–35. http://dx.doi.org/10.1007/s00287-015-0891-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kletti, Nathalie. "Smart Factory Elements." VDI-Z 161, no. 04 (2019): 22–23. http://dx.doi.org/10.37544/0042-1766-2019-04-22.

Full text
Abstract:
Die Anforderungen an die Produktion sind enorm gewachsen, was zu einer gestiegenen Komplexität führt: zum Beispiel hohe Variantenvielfalt, kurze Lieferfristen, schnelle Prozessanpassungen, kleinere Losgrößen bis zu Losgröße 1. In Zeiten von Industrie 4.0 ist das ganz eindeutig ein Fall für die „Smart Factory“ – und diese wiederum benötigt bestimmte Prozesse und Funktionen, um den wachsenden Anforderungen gerecht zu werden: die Smart Factory Elements.
APA, Harvard, Vancouver, ISO, and other styles
6

Sinsel, Alexander, Christopher Bangert, Johannes Stoldt, and Thomas Büttner. "Wirtschaftlichkeitsbewertung der Smart Factory." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 112, no. 9 (September 28, 2017): 602–6. http://dx.doi.org/10.3139/104.111794.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rößler, Markus Philipp, and Mehdiyar Haschemi. "Smart Factory Assessment (SFA)." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 112, no. 10 (October 27, 2017): 699–703. http://dx.doi.org/10.3139/104.111800.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Sundari, Dr P. Gnana. "Smart Factory using IoT." International Journal for Research in Applied Science and Engineering Technology 7, no. 3 (March 31, 2019): 1089–97. http://dx.doi.org/10.22214/ijraset.2019.3193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Harrison, Robert, Daniel Vera, and Bilal Ahmad. "Engineering the smart factory." Chinese Journal of Mechanical Engineering 29, no. 6 (October 27, 2016): 1046–51. http://dx.doi.org/10.3901/cjme.2016.0908.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gohr, Katharina, and Jürgen Greifeneder. "Smart Factory Acceptance Test." atp edition - Automatisierungstechnische Praxis 56, no. 12 (December 1, 2014): 36. http://dx.doi.org/10.17560/atp.v56i12.468.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Gohr, Katharina. "Smart Factory Acceptance Test." atp magazin 56, no. 12 (December 2, 2014): 36–43. http://dx.doi.org/10.17560/atp.v56i12.2228.

Full text
Abstract:
Die Funktionsprüfung des Steuerungscodes eines Leitsystems ist integraler Bestandteil der Werksabnahme (factory acceptance test, FAT) einer Automatisierungslösung; sie wird heute weitestgehend manuell durchgeführt. Dies führt dazu, dass die Tests zeitaufwendig sind und teilweise unsystematisch ablaufen. Der erkannte Änderungsbedarf wird zwar, ebenfalls manuell, dokumentiert und entsprechend ausgeführt, ein erneuter Testdurchlauf stellt jedoch in der Regel keine Rückwirkungsfreiheit auf andere Teile des Systems sicher. Dieser Artikel stellt das Konzept Smart FAT vor, das Konzepte der Hardwareemulation sowie der Prozesssimulation verknüpft und um eine Test-Engine erweitert. Smart FAT ermöglicht es so, die das Leitsystem betreffenden Testreihen an der virtuellen Instanz automatisiert auszuführen.
APA, Harvard, Vancouver, ISO, and other styles
12

Schönheit, M., and T. Kuhnert. "Smart Factory – Die Planung der intelligenten Fabrik/Smart Factory - How to design a factory with future." wt Werkstattstechnik online 107, no. 04 (2017): 219–24. http://dx.doi.org/10.37544/1436-4980-2017-04-23.

Full text
Abstract:
Industrie 4.0 ist längst kein Schlagwort mehr. Es steht eine technische Revolution bevor, welche die Arbeitsbereiche grundlegend verändern wird. Vor diesem Hintergrund stellt sich die Frage, wie Industriebauten zu planen sind, um wettbewerbsfähig zu bleiben. Der Fachartikel entwirft den Rahmen für die Implementierung einer „intelligenten Fabrik“ und stellt dabei Instrumente sowie Maßnahmen eines erfahrenen Fabrikplaners vor. Eine besondere Rolle spielt der Mensch, der als gestaltende Größe im Zentrum der Prozesslandkarte steht und durch Anwendungen im Umfeld von Industrie 4.0 in seiner Rolle unterstützt wird.   Industry 4.0 is not just a buzzword anymore. We’re at the beginning of a new technical revolution which will transform our working areas completely. Against this background it’s important to discuss how to plan industrial buildings so that they remain competitive. The article helps to define the framework for implementing a Smart Factory by presenting suitable instruments and measures. Besides, the employee will play an important role being in the center of the processes and supported by applications in the surrounding of Industry 4.0.
APA, Harvard, Vancouver, ISO, and other styles
13

Byun, Dae Ho. "Trend of Smart Factory and Model Factory Cases." E-Business Studies 17, no. 4 (August 31, 2016): 211. http://dx.doi.org/10.20462/tebs.2016.08.17.4.211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Hoffmann-Walbeck, Thomas. "Smart factory: JDF and XJDF." Journal of Graphic Engineering and Design 9, no. 1 (June 2018): 5–9. http://dx.doi.org/10.24867/jged-2018-1-005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Matt, Dominik T., Erwin Rauch, and Daniel Fraccaroli. "Smart Factory für den Mittelstand." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 111, no. 1-2 (February 24, 2016): 52–55. http://dx.doi.org/10.3139/104.111471.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Herzog, Sebastian, Adam Sanders, Tobias Redlich, and Jens Wulfsberg. "Mitarbeiterqualifikation in der Smart Factory." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 111, no. 10 (October 27, 2016): 653–57. http://dx.doi.org/10.3139/104.111602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Schlick, Jochen. "Smart Factory auf dem Vormarsch." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 114, no. 12 (December 17, 2019): 811–14. http://dx.doi.org/10.3139/104.112198.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Shi, Zhan, Yongping Xie, Wei Xue, Yong Chen, Liuliu Fu, and Xiaobo Xu. "Smart factory in Industry 4.0." Systems Research and Behavioral Science 37, no. 4 (June 21, 2020): 607–17. http://dx.doi.org/10.1002/sres.2704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

uz. "Die Smart-Factory der Zukunft." JOT Journal für Oberflächentechnik 55, no. 9 (August 25, 2015): 10–11. http://dx.doi.org/10.1007/s35144-015-0707-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Resman, Matevž, Maja Turk, and Niko Herakovič. "Methodology for planning smart factory." Procedia CIRP 97 (2021): 401–6. http://dx.doi.org/10.1016/j.procir.2020.05.258.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Heuss, L., G. Lux-Gruenberg, V. Hammerstingl, F. Schnös, P. Rinck, G. Reinhart, and M. Zäh. "Autonome mobile Roboter in der Smart Factory*/Autonomous mobile robots in the smart factory." wt Werkstattstechnik online 108, no. 09 (2018): 574–79. http://dx.doi.org/10.37544/1436-4980-2018-09-10.

Full text
Abstract:
Megatrends wie die Kundenindividualisierung erfordern eine gesteigerte Wandlungsfähigkeit in der Produktion. Mobile Roboter zeigen hier großes Potenzial durch ihre Ortsungebundenheit, Skalierbarkeit und Konfigurationsfähigkeit. Vorgestellt wird ein Ansatz zur dynamischen Adaption durch modulare Softwarebausteine (Apps). Auf dieser Basis wird die Integration dieses Konzepts in die Gesamtarchitektur einer Smart Factory und die zugehörige Produktionsplanung beschrieben.   Megatrends such as mass customization require an increasing transformability in production. Mobile robots hold great potential to address this challenge. They can freely move to different locations, are scalable and configurable to various tasks. Thus, an approach for the dynamic adaption through modular software packages (apps) is introduced. Based on this, the integration of the concept into the entire architecture of a smart factory and related planning systems is presented.
APA, Harvard, Vancouver, ISO, and other styles
22

Herrmann, Frank. "The Smart Factory and Its Risks." Systems 6, no. 4 (October 26, 2018): 38. http://dx.doi.org/10.3390/systems6040038.

Full text
Abstract:
In this paper, the risks of a Smart Factory are to be examined and structured in order to be able to evaluate the status of the Smart Factory. This thesis thus serves as an overview of the technical components of a Smart Factory and the associated risks. The study takes a holistic view of the smart factory. The results show that the greatest need for action lies in the technological field. Thus, the topics of standardization, information security, availability of IT infrastructure, availability of fast internet and complex systems were prioritized. The organizational and financial risks, which also play an important role in a Smart Factory transformation, are addressed.
APA, Harvard, Vancouver, ISO, and other styles
23

Jung, Woo-Kyun, Dong-Ryul Kim, Hyunsu Lee, Tae-Hun Lee, Insoon Yang, Byeng D. Youn, Daniel Zontar, Matthias Brockmann, Christian Brecher, and Sung-Hoon Ahn. "Appropriate Smart Factory for SMEs: Concept, Application and Perspective." International Journal of Precision Engineering and Manufacturing 22, no. 1 (December 8, 2020): 201–15. http://dx.doi.org/10.1007/s12541-020-00445-2.

Full text
Abstract:
AbstractIn the manufacturing industry, the smart factory is considered the final stage of the Fourth Industrial Revolution. Manufacturing companies are pursuing breakthroughs by introducing various advanced technologies to ensure their competitiveness. However, it is difficult for small and medium-sized enterprises (SMEs) to adopt smart-factory technologies, owing to financial and technical burdens. This paper proposes a smart factory that can be applied technically and strategically to the introduction of a smart factory for SMEs. The concept of an ‘appropriate smart factory’ involves applying appropriate measures in terms of cost and scale with consideration of the situations faced by SMEs. The goal is to build a smart factory that has necessary functions (Essential) but can be easily operated (Simple) at a low cost (Affordable) and has compatibility (Interoperable). This paper presents technical application measures such as appropriate smart sensors, appropriate IoT (Internet of Things), and small data processing, along with the definition of an appropriate smart factory. In addition, a case study was examined where the quality inspection equipment for garment manufacturing SMEs was developed by applying the appropriate smart factory concept.
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Jinhan, Jinhyung Cho, and Saejae Lee. "Analysis of Factors Affecting Company Performance by Smart Factory." Journal of Society of Korea Industrial and Systems Engineering 42, no. 4 (December 31, 2019): 76–83. http://dx.doi.org/10.11627/jkise.2019.42.4.076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Brown, Alan S. "Manufacturing Gets Smart." Mechanical Engineering 138, no. 09 (September 1, 2016): 34–39. http://dx.doi.org/10.1115/1.2016-sep-1.

Full text
Abstract:
This article explores impact and advantages of information technology on manufacturing industry. Information technology on the factory floor promises a revolution in productivity. The industrial hype machine is among the favorites because of its full-on mashup of manufacturing with modern information technologies. There is use of intelligent software and machines to interact with one another (and with people) autonomously, both in the factory and through the cloud. According to the experts, this new combination of brains and muscle will revolutionize manufacturing in ways that rival the introduction of steam, electricity, and automation. It is foreseen that factory machines and logistics equipment would communicate with one another autonomously to assign and route jobs through the factory – and reroute them when unexpected problems arise. Cloud-based artificial intelligence would constantly compare parts and processes to optimize performance. As software gets better at communicating, ubiquitous sensors are adding more data to the mix.
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, Heeje, and Joongyoon Lee. "Development Concepts of Smart Service System-based Smart Factory (4SF)." INCOSE International Symposium 28, no. 1 (July 2018): 1153–69. http://dx.doi.org/10.1002/j.2334-5837.2018.00540.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sabah Jumaah, Alsammarraie Mohammed, and Jianbin Xue. "Developing Intelligent Machines with Smart Sensors for a Smart Factory." International Journal of Scientific and Research Publications (IJSRP) 9, no. 10 (October 12, 2019): p9430. http://dx.doi.org/10.29322/ijsrp.9.10.2019.p9430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Yashchyshyna, Iryna. "NATURE AND FEATURES OF SMART FACTORY." Scientific Notes of Ostroh Academy National University, "Economics" Series 1, no. 11(39) (December 20, 2018): 14–18. http://dx.doi.org/10.25264/2311-5149-2018-11(39)-14-18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Büchi, Giacomo, Monica Cugno, and Rebecca Castagnoli. "Smart factory performance and Industry 4.0." Technological Forecasting and Social Change 150 (January 2020): 119790. http://dx.doi.org/10.1016/j.techfore.2019.119790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Sjödin, David R., Vinit Parida, Markus Leksell, and Aleksandar Petrovic. "Smart Factory Implementation and Process Innovation." Research-Technology Management 61, no. 5 (September 3, 2018): 22–31. http://dx.doi.org/10.1080/08956308.2018.1471277.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Stalmach, Ulf. "Wie funktioniert eine Smart Paint Factory?" JOT Journal für Oberflächentechnik 59, no. 9 (August 29, 2019): 68–73. http://dx.doi.org/10.1007/s35144-019-0292-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ludwig, Christian, Thomas Farrenkopf, Thomas Panske, and Hilmar Gensert. "Smart Factory im Werkzeugbau bei KAMAX." Industrie 4.0 Management 2021, no. 4 (August 2, 2021): 29–33. http://dx.doi.org/10.30844/i40m_21-4_s29-33.

Full text
Abstract:
Unter „Smart Factory“ wird die Vision einer Produktionsumgebung verstanden, in der sich Fertigungsanlagen und Logistiksysteme ohne menschliche Eingriffe weitestgehend selbst organisieren [1]. Im Beitrag wird ein Projekt beschrieben, zu dessen Start keiner der Beteiligten das Thema „Smart Factory“ oder „Industrie 4.0“ auch nur ansatzweise mit dem Projekt in Verbindung brachte. Vielmehr wurde die Zielsetzung verfolgt, die heutige Lieferzeit von 6-8 Wochen drastisch zu reduzieren. Das Ergebnis ist ein vollständig digitalisierter Geschäftsprozess von der Auftragserstellung, der Produktentwicklung, der Konstruktion, der Fertigung sowie der Abwicklung für „Losgröße 1“ mit einer Reduzierung der Durchlaufzeit auf weniger als 10 %.
APA, Harvard, Vancouver, ISO, and other styles
33

Jung, Woo-Kyun, Jae-Won Lee, Yong-Chul Park, and Sung-Hoon Ahn. "Factory Workers’ Perception for Applying Smart Factory in Developing Country." Academic Society for Appropriate Technology 6, no. 1 (June 30, 2020): 56–64. http://dx.doi.org/10.37675/jap.2020.6.1.56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sharma, Akash, V. K. Dwivedi, and Deepak Sharma. "Industry 4.0 A Smart Factory: An Overview." Advanced Science, Engineering and Medicine 12, no. 7 (July 1, 2020): 914–17. http://dx.doi.org/10.1166/asem.2020.2648.

Full text
Abstract:
Industry 4.0 is an industrial transformation towards a smart factory. Industry 4.0 brings a revolution throughout the world in Industrial sector by integration of several processes together in manufacturing. A smart industry 4.0 is a bundled structure which comprises of data, people, processes, services, systems. Industry 4.0 is a next level which makes the industry a smart factory by including the IOT (internet of things), Cloud Computing, Cyber-Physical Systems, System Integration, Big Data analytics, IT (information technology) and OT (operational technology) together. In this paper, an overview of industry 4.0 a smart factory is presented that how industry 4.0 is implemented and also issues in implementing a smart industry 4.0 with the help of nine digital industrial technologies and its applications and to study the industrial transformation towards the smart industry 4.0.
APA, Harvard, Vancouver, ISO, and other styles
35

Jang, Moo-Kyung. "The effect of SMEs smart factory acceptance posture on smart factory construction performance - Focused on the mediating effect of related factors -." Journal of the Korea Management Engineers Society 27, no. 1 (March 31, 2022): 97–110. http://dx.doi.org/10.35373/kmes.27.1.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jin, Jae-keun. "Manufacturing Technology Factors and Overseas Case Studies in Smart Factory:." KBM Journal 4, no. 1 (June 30, 2020): 63–79. http://dx.doi.org/10.51858/kbmj.2020.06.4.1.63.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Sajadieh, Seyed Mohammad Mehdi, Yoo Ho Son, and Sang Do Noh. "A Conceptual Definition and Future Directions of Urban Smart Factory for Sustainable Manufacturing." Sustainability 14, no. 3 (January 21, 2022): 1221. http://dx.doi.org/10.3390/su14031221.

Full text
Abstract:
Today, megatrends such as individualization, climate change, emissions, energy, and resource scarcity, urbanization, and human well-being, impact almost every aspect of people’s lives. Transformative impacts on many sectors are inevitable, and manufacturing is not an exception. Many studies have investigated solutions that focus on diverse directions, with urban production being the focus of many research efforts and recent studies concentrating on Industry 4.0 and smart manufacturing technologies. This study investigated the integration of smart factory technologies with urban manufacturing as a solution for the aforementioned megatrends. A literature review on related fields, mass personalization, sustainable manufacturing, urban factory, and smart factory was conducted to analyze the benefits, challenges, and correlations. In addition, applications of smart factory technologies in urban production with several case studies are summarized from the literature review. The integration of smart factory technologies and urban manufacturing is proposed as the urban smart factory which has three major characteristics, human-centric, sustainable, and resilient. To the best of the author’s knowledge, no such definition has been proposed before. Practitioners could use the conceptual definition of an urban smart factory presented in this study as a reference model for enhancement of urban production while academics could benefit from the mentioned future research directions.
APA, Harvard, Vancouver, ISO, and other styles
38

Sufian, Amr T., Badr M. Abdullah, Muhammad Ateeq, Roderick Wah, and David Clements. "Six-Gear Roadmap towards the Smart Factory." Applied Sciences 11, no. 8 (April 15, 2021): 3568. http://dx.doi.org/10.3390/app11083568.

Full text
Abstract:
The fourth industrial revolution is the transformation of industrial manufacturing into smart manufacturing. The advancement of digital technologies that make the trend Industry 4.0 are considered as the transforming force that will enable this transformation. However, Industry 4.0 digital technologies need to be connected, integrated and used effectively to create value and to provide insightful information for data driven manufacturing. Smart manufacturing is a journey and requires a roadmap to guide manufacturing organizations for its adoption. The objective of this paper is to review different methodologies and strategies for smart manufacturing implementation to propose a simple and a holistic roadmap that will support the transition into smart factories and achieve resilience, flexibility and sustainability. A comprehensive review of academic and industrial literature was preformed based on multiple stage approach and chosen criteria to establish existing knowledge in the field and to evaluate latest trends and ideas of Industry 4.0 and smart manufacturing technologies, techniques and applications in the manufacturing industry. These criteria are sub-grouped to fit within various stages of the proposed roadmap and attempts to bridge the gap between academia and industry and contributes to a new knowledge in the literature. This paper presents a conceptual approach based on six stages. In each stage, key enabling technologies and strategies are introduced, the common challenges, implementation tips and case studies of industrial applications are discussed to potentially assist in a successful adoption. The significance of the proposed roadmap serve as a strategic practical tool for rapid adoption of Industry 4.0 technologies for smart manufacturing and to bridge the gap between the advanced technologies and their application in manufacturing industry, especially for SMEs.
APA, Harvard, Vancouver, ISO, and other styles
39

Quan Chong, Zhen, Cheng Yee Low, Ubaidullah Mohammad, Ramhuzaini Abd Rahman, and Mohd Saiful Bahari Shaari. "Conception of Logistics Management System for Smart Factory." International Journal of Engineering & Technology 7, no. 4.27 (November 30, 2018): 126. http://dx.doi.org/10.14419/ijet.v7i4.27.22499.

Full text
Abstract:
An interconnected, data driven smart logistics management system is crucial in a smart factory in context of Industry 4.0. Applying the concept of cyber-physical systems (CPSs) and Internet of Things (IoT) will create a standardized logistics system. This system can be applied across the supply chain to enable the sharing of information in real-time which consequently optimize logistics processes. In this project, a conceptual model of a smart logistics management system between a supplier and a manufacturer using NFC smart tags technology is developed and its application is shown using prototype demonstrator. The system is equipped with functions to monitor and manage logistic related data. The interface is built using windows form application and android phone application. The developed model’s abilities and specifications in context of industry 4.0 is evaluated using the VDMA Toolbox Industry 4.0. In the end this system achieved an average of level 4 in the Industry 4.0 evaluation and this system provides a concept on applying a smart logistic management system for manufacturers as a key step in transforming into smart factories.
APA, Harvard, Vancouver, ISO, and other styles
40

Bay, Renate. "Intelligente Datenverarbeitung für die Welt von morgen." Konstruktion 73, no. 01-02 (2021): 26–29. http://dx.doi.org/10.37544/0720-5953-2021-01-02-26.

Full text
Abstract:
Ob vorausschauende Wartung, selbstlernende Maschinen oder ferngesteuerte Frachtschiffe: Sogenannte Smart Factory- oder auch Smart Shipping-Anwendungen lassen sich nur mit intelligenten Sensoren realisieren, in denen die immensen Datenmengen bereits vorverarbeitet und komprimiert werden. Smarte Sensoren schaffen ideale Voraussetzungen für diese Industrie 4.0-Applikationen. Mit intelligenten Inertialsensoren (vom lateinischen „inertia“ = Trägheit) bietet der Sensor-Spezialist ASC passende Messlösungen für verschiedenste Einsatzgebiete.
APA, Harvard, Vancouver, ISO, and other styles
41

Boos, Wolfgang, Michael Salmen, Advan Begovic, and Felix Rittstieg. "Smart Factory in der Einzel- und Kleinserienfertigung." ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 112, no. 5 (May 29, 2017): 337–40. http://dx.doi.org/10.3139/104.111711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Simons, Stephan. "Die Smart Factory AutFab der Hochschule Darmstadt." atp magazin 60, no. 09 (October 2, 2018): 46–61. http://dx.doi.org/10.17560/atp.v60i09.2358.

Full text
Abstract:
Industrie 4.0 verlangt von den Hochschulen, den Studierenden neue Kompetenzen beizubringen. Der Beitrag stellt die, im wesentlichen durch Studierende realisierte, Smart Factory der Hochschule Darmstadt mit einer Vielzahl von Industrie 4.0-Technologien von der Identifikation mittels RFID, der virtuellen Inbetriebnahme, des Einsatzes von Mixed Reality, der Anbindung von MES und ERP-Systemen bis hin zur der Cloud-Anbindung vor. Anschließend folgt eine Beschreibung der problem-basierten und projekt-basierten Lehre in der AutFab, mit der die notwendigen Kompetenzen erworben werden sollen. Der Beitrag schließt mit einem Fazit zum bisherigen sehr positiven Lehrerfolg und einem Ausblick auf künftige Industrie 4.0-Erweiterungen der Smart Factory.
APA, Harvard, Vancouver, ISO, and other styles
43

Mohammad, Ubaidullah, Cheng Yee Low, Ramhuzaini Abd Rahman, Laban Asmar, Martin Rabe, Roman Dumitrescu, and Noor Ayuni Che Zakaria. "Systematic Development of Smart Factory using CONSENS." Procedia Manufacturing 24 (2018): 278–83. http://dx.doi.org/10.1016/j.promfg.2018.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Wan, Jiafu, Jun Yang, Zhongren Wang, and Qingsong Hua. "Artificial Intelligence for Cloud-Assisted Smart Factory." IEEE Access 6 (2018): 55419–30. http://dx.doi.org/10.1109/access.2018.2871724.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Altamura, Angelo, Francesco Inchingolo, Gianvito Mevoli, and Pietro Boccadoro. "SAFE: Smart helmet for advanced factory environment." Internet Technology Letters 2, no. 2 (January 8, 2019): e86. http://dx.doi.org/10.1002/itl2.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Pottin, Frank, and Torsten Dietz. "Automation goes 4.0: The “SMART” AAC factory." ce/papers 2, no. 4 (September 2018): 25–35. http://dx.doi.org/10.1002/cepa.898.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Gurjanov, A. V., D. A. Zakoldaev, A. V. Shukalov, and I. O. Zharinov. "Algorithm for designing smart factory Industry 4.0." IOP Conference Series: Materials Science and Engineering 327 (March 2018): 022111. http://dx.doi.org/10.1088/1757-899x/327/2/022111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Reuß, Christopher. "Produktion von Elektrofahrzeugen in der Smart Factory." ATZproduktion 6, no. 2 (May 2019): 58. http://dx.doi.org/10.1007/s35726-019-0017-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Li, Defang. "Perspective for smart factory in petrochemical industry." Computers & Chemical Engineering 91 (August 2016): 136–48. http://dx.doi.org/10.1016/j.compchemeng.2016.03.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Cheng, Zhou, Ju Likai, Cao Min, and Zhang Xiangyan. "Mechanical Safety Risk Analysis of Smart Factory." Journal of Physics: Conference Series 1884, no. 1 (April 1, 2021): 012037. http://dx.doi.org/10.1088/1742-6596/1884/1/012037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography