Academic literature on the topic 'Smart Structures - Vibration Control'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smart Structures - Vibration Control.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Smart Structures - Vibration Control"
Itoh, T., T. Shimomura, and H. Okubo. "2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control." Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.
Full textZhang, Ting, and Hongguang Li. "Adaptive modal vibration control for smart flexible beam with two piezoelectric actuators by multivariable self-tuning control." Journal of Vibration and Control 26, no. 7-8 (January 6, 2020): 490–504. http://dx.doi.org/10.1177/1077546319889842.
Full textGarg, Devendra P., and Gary L. Anderson. "Structural Damping and Vibration Control via Smart Sensors and Actuators." Journal of Vibration and Control 9, no. 12 (December 2003): 1421–52. http://dx.doi.org/10.1177/1077546304031169.
Full textBenjeddou, Ayech, Nazih Mechbal, and Jean-François Deü. "Smart structures and materials: Vibration and control." Journal of Vibration and Control 26, no. 13-14 (April 16, 2020): 1109. http://dx.doi.org/10.1177/1077546320923279.
Full textKhond, Vaibhav V., and Santosh D. Dalvi. "A Comprehensive Review on Applicability of Shape Memory Alloy Hybrid Composite Beam in Vibration Control." International Journal of Current Engineering and Technology 10, no. 01 (October 31, 2021): 53–61. http://dx.doi.org/10.14741/ijcet/v.10.1.10.
Full textChoi, Seung Bok, and Jung Woo Sohn. "Vibration Control of Smart Structures Using Piezofilm Actuators." Key Engineering Materials 306-308 (March 2006): 1205–10. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.1205.
Full textYang, S. M., and G. S. Lee. "Vibration Control of Smart Structures by Using Neural Networks." Journal of Dynamic Systems, Measurement, and Control 119, no. 1 (March 1, 1997): 34–39. http://dx.doi.org/10.1115/1.2801211.
Full textMoutsopoulou, A. J., A. T. Pouliezos, and G. E. Stavroulakis. "Modeling of Active Vibration Control in Smart Structures." Journal of Civil Engineering and Science 2, no. 2 (June 28, 2013): 48–61. http://dx.doi.org/10.5963/jces0202002.
Full textAmezquita-Sanchez, Juan Pablo, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Rene de Jesus Romero-Troncoso, and Roque Alfredo Osornio-Rios. "Vibration Control on Smart Civil Structures: A Review." Mechanics of Advanced Materials and Structures 21, no. 1 (September 16, 2013): 23–38. http://dx.doi.org/10.1080/15376494.2012.677103.
Full textLee, In, Jin-Ho Roh, Seung-Man Yang, and Jae-Hung Han. "Shape and vibration control of smart composite structures." Advanced Composite Materials 14, no. 2 (January 2005): 121–30. http://dx.doi.org/10.1163/1568551053970690.
Full textDissertations / Theses on the topic "Smart Structures - Vibration Control"
Ulker, Fatma Demet. "Active Vibration Control Of Smart Structures." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1098409/index.pdf.
Full textcontrol strategies in order to suppress the free and forced vibrations of smart structures. The smart structures analyzed in this study were the smart beam and the smart ¯
n. They were aluminum passive structures with surface bonded PZT (Lead-Zirconate-Titanate) patches. The structures were considered in clamped-free con¯
guration. The ¯
rst part of this study focused on the identi¯
cation of nominal system models of the smart structures from the experimental data. For the experimentally identi¯
ed models the robust controllers were designed by using H1 and ¹
-synthesis strategies. In the second part, the controller implementation was carried out for the suppression of free and forced vibrations of the smart structures. Within the framework of this study, a Smart Structures Laboratory was established in the Aerospace Engineering Department of METU. The controller implementations were carried out by considering two di®
erent experimental set-ups. In the ¯
rst set-up the controller designs were based on the strain measurements. In the second approach, the displacement measurements, which were acquired through laser displacement sensor, were considered in the controller design. The ¯
rst two °
exural modes of the smart beam were successfully controlled by using H1 method. The vibrations of the ¯
rst two °
exural and ¯
rst torsional modes of the smart ¯
n were suppressed through the ¹
-synthesis. Satisfactory attenuation levels were achieved for both strain measurement and displacement measurement applications.
Yousefi-Koma, Aghil. "Active vibration control of smart structures using piezoelements." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26875.pdf.
Full textBravo, Rafael. "Vibration control of flexible structures using smart materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0034/NQ66256.pdf.
Full textMiller, Scott E. (Scott Edward). "Distributed parameter active vibration control of smart structures." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/33473.
Full textYousefi-Koma, Aghil Carleton University Dissertation Engineering Mechanical and Aerospace. "Active vibration control of smart structures using piezoelements." Ottawa, 1997.
Find full textDennerlein, Jürgen. "Broadband vibration control of spatially distributed smart structures." Düsseldorf VDI-Verl, 2008. http://d-nb.info/993722431/04.
Full textWang, Qishan. "Active vibration and buckling control of piezoelectric smart structures." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114328.
Full textL'objectif de cette thése est le contrôle de la vibration et de flambage à l'aide de l'analyse par éléments finis et LQR/LQG technologies de contrôle de rétroaction pour les structures composites stratifiées piézo-électriques qui sont liés ou incorporés de surface de capteurs et d'actionneurs piézoélectriques. Il ya principalement deux parties ciblées. La partie des éléments finis : Deux formulations éléments finis pour les poutres laminées piézo-basé sur le classique d'Euler-Bernoulli et la théorie des poutres de Timoshenko, respectivement, linéaires couplées piézoélectriques équations constitutives, et le principe de variation de Hamilton sont développés. Un C0 continue, cisaillement flexible, à huit nuds élément de coque à double courbure sérendipité pour les plaques piézocomposites stratifiés et de coquillages est également dérivée basée sur la théorie de la couche-sage déformation de cisaillement, linéaires piézo-électriques couplés relations constitutives mécaniques, et le principe de variation de Hamilton. Toute la poutre, plaque, et des éléments de coque développés ont considéré la rigidité, de masse et les effets de couplage électromécanique du capteur piézo-électrique et les couches de l'actionneur. Les éléments de structure développéssont capables de traiter les effets non linéaires de déformation en cisaillementtransversal et la non-linéarité des matériaux composites, piézoélectrique-mécanique d'accouplement, et peut prévoir plus précisément les modes supérieurs de vibration, et peut être appliquée à partir de minces d'épaisseur moyenne structures composites multicouches. Ils sont évalués à la fois les vibrations et analyse de flambage de la poutre, plaque, et structures en coque. La partie de commande actif : La vibration de supprimer d'un porte à faux piézo-collé poutre, les deux premiers modes de flambement contrôle d'un appui simple piézo-collé poutre, et la vibration et le flambage contrôle de la charge d'un cantilever piézoélectrique stratifié plaque composite sont étudiés. Les résultats de l'analyse par éléments finis sont utilisés pour concevoir un régulateur linéaire quadratique (LQR) contrôleur et un linéaire quadratique gaussienne (LQG) compensateur avec un observateur d'état dynamique pour atteindre toutes les commandes. Les conceptions de commandes commencent par une méthode modale modle pour déterminer un modle modal réduit approximative qui peut représenter la dynamique du systme avec les modes les moins systme inclus. Un modle modal espace d'état de la structure intelligente qui a intégré la structure d'accueil d'colléscapteurs et d'actionneurs piézoélectriques, est ensuite utilisé pour concevoir le systme de contrôle. Les contrôles visant commentaires LQR/LQG sont avérés succs dans la suppression de la vibration et de stabiliser les modes de flambement des structures. Tant l'analyse par éléments finis et les résultats de simulation de contrôle actives sont compatibles avec les résultats existants d'analyse théoriques et les données expérimentales de la littérature. Quelques conclusions importantes et des observations intéressantes sont obtenues.
Wang, Peng. "Active vibration control in a specific zone of smart structures." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC007/document.
Full textThis research aims at solving a particular vibration control problem of smart structures. We aim at reducing the vibration in a specific zone of the smart structure under the disturbance that covers a wide frequency band. Moreover, at this specific zone, neither actuation nor sensing is possible.Here we face several main challenges. First, we need to control the vibration of a specific zone of the structure while we only have access to measurements at other zones. Second, the wide bandwidth of the disturbance implies that numerous modes should be controlled at the same time which requires the use of multiple actuators and sensors. This leads to a MIMO controller which is difficult to obtain using classical controller design methods. Third, the so-called spillover problem must be avoided which is to guarantee the closed-loop stability when the model-based controller is applied on the actual setup. To tackle these challenges, we investigate two control strategies: the centralized control and the distributed control.For centralized control, we propose a methodology that allows us to obtain a simple MIMO controller that accomplishes these challenges. First, several modeling and identification techniques are applied to obtain an accurate low-order model of the smart structure. Then, an H_∞ control based synthesis method with a particularly proposed H_∞ criterion is applied. This H_∞ criterion integrates multiple control objectives, including the main challenges. In particular, the spillover problem is transformed into a robust stability problem and will be guaranteed using this criterion. The obtained H_∞ controller is a standard solution of the H_∞ problem. The final controller is obtained by further simplifying this H_∞ controller without losing the closed-loop stability and degrading the performance. This methodology is validated on a beam structure with piezoelectric transducers and the central zone is where the vibration should be reduced. The effectiveness of the obtained controller is validated by simulations and experiments.For distributed control, we consider the same beam structure and the same control objectives. There exist methods aiming at designing distributed controllers of spatially interconnected system. This research proposes a FEM based method, combined with several model reduction techniques, that allows to spatially discretize the beam structure and deduce the state-space models of interconnected subsystems. The design of distributed controllers will not be tackled in this research
Lee, Yong Keat. "Active vibration control of a piezoelectric laminate plate using spatial control approach." Title page, abstract and table of contents only, 2005. http://hdl.handle.net/2440/37711.
Full textThesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
Janda, Oliver. "Modeling and Control of Sound and Vibration for Smart Structures." Phd thesis, Sierke-Verlag, 2014. https://tuprints.ulb.tu-darmstadt.de/4154/1/Diss_Janda_Final.pdf.
Full textBooks on the topic "Smart Structures - Vibration Control"
Vibration control of active structures: An introduction. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textPreumont, André. Vibration control of active structures: An introduction. Dordrecht: Kluwer Academic Publishers, 1997.
Find full textVibration control of active structures: An introduction. 3rd ed. Berlin: Springer, 2011.
Find full textPreumont, André. Vibration control of active structures: An introduction. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.
Find full textPreumont, André. Vibration Control of Active Structures: An Introduction. Dordrecht: Springer Netherlands, 1997.
Find full textChina) International Conference on Intelligent Structure and Vibrational Control (2011 Chongqing. Intelligent structure and vibration control: Selected, peer reviewed papers from the International Conference on Intelligent Structure and Vibration Control (ISVC) 2011, January 14-16, 2011, Chongqing, China. Stafa-Zurich: TTP Trans Tech Publications, 2011.
Find full textChina) International Conference on Intelligent Structure and Vibrational Control (2012 Chongqing. Advances in intelligent structure and vibration control: Selected, peer reviewed papers from the International Conference on Intelligent Structure and Vibration Control (ISVC 2012), March 16-18, 2012, Chongqing, China. Stafa-Zurich, Switzerland: Trans Tech Publications, 2012.
Find full textMohsen, Shahinpoor, Tzou H. S, American Society of Mechanical Engineers. Design Engineering Division., and Conference on Mechanical Vibration and Noise (14th : 1993 : Albuquerque, N.M.), eds. Intelligent structures, materials, and vibrations: Presented at the 1993 ASME design technical conferences, 14th Biennial Conference on Mechanical Vibration and Noise, Albuquerque, New Mexico, September 19-22, 1993. New York: American Society of Mechanical Engineers, 1993.
Find full textHubbard, James E. Spatial filtering for the control of smart structures: An Introduction. Heidelberg: Springer, 2010.
Find full text1969-, Kim Hongjin, ed. Wavelet-based vibration control of smart buildings and bridges. Boca Raton: Taylor & Francis, 2009.
Find full textBook chapters on the topic "Smart Structures - Vibration Control"
Xu, You-Lin, and Jia He. "Structural vibration control." In Smart Civil Structures, 389–448. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-16.
Full textMichael Sinapius, Johannes, Björn Timo Kletz, and Steffen Opitz. "Active Vibration Control." In Adaptronics – Smart Structures and Materials, 227–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61399-3_6.
Full textTrindade, Marcelo A. "Piezoelectric Structural Vibration Control." In Dynamics of Smart Systems and Structures, 289–309. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_12.
Full textAdeli, Hojjat, and Hongjin Kim. "Vibration Control of Structures." In Wavelet-Based Vibration Control of Smart Buildings and Bridges, 7–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367813451-2.
Full textXu, You-Lin, and Jia He. "Energy harvesting for structural health monitoring and vibration control." In Smart Civil Structures, 535–83. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-19.
Full textAlbrecht, Hans, Uwe Stöbener, and Lothar Gaul. "Sensor and actuator design methods in active vibration control for distributed parameter structures." In Smart Structures, 98–108. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2686-8_9.
Full textLibrescu, Liviu, Ohseop Song, and Hyuck-Dong Kwon. "Vibration and Stability Control of Gyroelastic Thin-Walled Beams Via Smart Materials Technology." In Smart Structures, 163–72. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4611-1_19.
Full textJalili, Nader. "An Overview of Active Materials Utilized in Smart Structures." In Piezoelectric-Based Vibration Control, 115–28. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0070-8_5.
Full textTrindade, Marcelo A. "Passive and Active Structural Vibration Control." In Dynamics of Smart Systems and Structures, 65–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_4.
Full textXu, You-Lin, and Jia He. "Synthesis of structural health monitoring and vibration control in the frequency domain." In Smart Civil Structures, 449–90. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-17.
Full textConference papers on the topic "Smart Structures - Vibration Control"
Clark, William W., Fangning Sun, and David J. Tarnowski. "Comparison of vibration control by confinement to conventional active vibration control methods." In Smart Structures and Materials '97, edited by Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274689.
Full textGuan, Xin chun, Xufeng Dong, Pengfei Guo, and Jin ping Ou. "Vibration control and magnetostrictive composite materials." In Smart Structures and Materials, edited by William W. Clark, Mehdi Ahmadian, and Arnold Lumsdaine. SPIE, 2006. http://dx.doi.org/10.1117/12.655865.
Full textTao, Tao, and Kenneth D. Frampton. "Distributed vibration control with sensor networks." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.657222.
Full textKashani, Reza, and Eric Little. "Vibration control using intelligent Helmholtz resonators." In Smart Structures & Materials '95, edited by Inderjit Chopra. SPIE, 1995. http://dx.doi.org/10.1117/12.208322.
Full textGuigou, C., P. R. Wagstaff, and C. R. Fuller. "Active Vibration Isolation using Smart Structures." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791604.
Full textBelloli, Alberto, Dominik Niederberger, Xavier Kornmann, Paolo Ermanni, Manfred Morari, and Stanislaw Pietrzko. "Vibration control via shunted embedded piezoelectric fibers." In Smart Structures and Materials, edited by Kon-Well Wang. SPIE, 2004. http://dx.doi.org/10.1117/12.539823.
Full textUnsal, Memet, Christopher Niezrecki, and Carl D. Crane III. "Six DOF vibration control using magnetorheological technology." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.657925.
Full textParsons, Matthew J., and Arnold Lumsdaine. "Active vibration control with optimized piezoelectric topologies." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.658781.
Full textWashington, Gregory N., Matt Detrick, and Seung-Keon Kwak. "A broadband vibration control using passive circuits." In Smart Structures and Materials, edited by Amr M. Baz. SPIE, 2003. http://dx.doi.org/10.1117/12.483488.
Full textSpangler, Jr., Ronald L., Farla M. Russo, and Daniel A. Palombo. "Compact integrated piezoelectric vibration control package." In Smart Structures and Materials '97, edited by Mark E. Regelbrugge. SPIE, 1997. http://dx.doi.org/10.1117/12.275697.
Full textReports on the topic "Smart Structures - Vibration Control"
Wang, Kon-Well. Simultaneous Vibration Isolation and Damping Control Via High Authority Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada424492.
Full textInman, Daniel J. Vibration Analysis and Control of an Inflatable Structure Using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada425363.
Full textFarrar, C., W. Baker, J. Fales, and D. Shevitz. Active vibration control of civil structures. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/400183.
Full textSmith, Ralph C. Smart Structures: Model Development and Control Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada453831.
Full textFuller, Chris R. Active Structural Acoustic Control and Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada248341.
Full textBrockett, Roger W., P. S. Krishnaprasad, and John Baillieul. The Design and Control of Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada419932.
Full textMukherjee, Ranjan. A Hybrid Actuation Approach for Vibration Control of Space Structures. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada590189.
Full textSmith, H. A. Adaptive Control of Smart Structures with Time Variant Stiffness and Damping. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada326843.
Full textWang, Kon-Well. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada471779.
Full textDESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.306.
Full text