Academic literature on the topic 'Smart Structures - Vibration Control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Smart Structures - Vibration Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Smart Structures - Vibration Control"

1

Itoh, T., T. Shimomura, and H. Okubo. "2B15 Semi-active Vibration Control of Smart Structures with Sliding Mode Control." Proceedings of the Symposium on the Motion and Vibration Control 2010 (2010): _2B15–1_—_2B15–11_. http://dx.doi.org/10.1299/jsmemovic.2010._2b15-1_.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Ting, and Hongguang Li. "Adaptive modal vibration control for smart flexible beam with two piezoelectric actuators by multivariable self-tuning control." Journal of Vibration and Control 26, no. 7-8 (January 6, 2020): 490–504. http://dx.doi.org/10.1177/1077546319889842.

Full text
Abstract:
It has been popular for decades that the vibrations of space structures are suppressed with smart actuators. However, the higher mode vibrations are often motivated when a control strategy is applied to attenuate the vibration for the smart structures. Moreover, if the multi-mode vibration of a smart structure is suppressed with multi-actuators, a proper multivariable control law will be adopted to solve the coupling problem caused by the multi-actuators of the smart structure. Therefore, in the paper, a decoupling technique for two modal vibrations of a smart flexible beam with two piezoelectric patches is adopted by adaptive control. The proposed control law is designed with a multivariable minimum variance self-tuning control. Considering the first two orders of modal vibrations, two piezoelectric patches are configured on the flexible beam according to the strain of the first two orders of modal vibrations along the longitudinal direction of the beam. A dynamical model for the flexible beam with two piezoelectric actuators is constructed by the mode superposition method. With the dynamical model, simulations are implemented to suppress the free vibration of the flexible beam. Moreover, experiments are carried out to verify the effectiveness of the multivariable minimum variance self-tuning control for vibration suppression of the flexible structure. The control results clearly show that the free vibration amplitude of the cantilevered beam with two control voltages applied to the two piezoelectric patches is less than that with one control voltage applied to the first piezoelectric actuator. Thus, multivariable minimum variance self-tuning control is a more efficient approach for suppressing multimodal vibration for a smart flexible beam with two piezoelectric actuators compared with the conventional velocity feedback control.
APA, Harvard, Vancouver, ISO, and other styles
3

Garg, Devendra P., and Gary L. Anderson. "Structural Damping and Vibration Control via Smart Sensors and Actuators." Journal of Vibration and Control 9, no. 12 (December 2003): 1421–52. http://dx.doi.org/10.1177/1077546304031169.

Full text
Abstract:
In this paper we emphasize several advances recently made in the area of structural damping aimed towards reducing, and preferably eliminating, mechanical vibrations. First, a few commonly encountered undesirable effects of vibrations on structures are discussed. This is followed by an identification of research needs, and a discussion of typical research projects sponsored by the Structures and Dynamics Program of the United States Army Research Office towards meeting these needs. We include research projects in areas such as modeling of damping mechanisms, analysis and design of vibration absorbers, surface damping treatment of beams and similar other structures, and the use of magnetorheological and electrorheological fluids for vibration attenuation. Finally, we make recommendations for directions that are beneficial for future research in this area.
APA, Harvard, Vancouver, ISO, and other styles
4

Benjeddou, Ayech, Nazih Mechbal, and Jean-François Deü. "Smart structures and materials: Vibration and control." Journal of Vibration and Control 26, no. 13-14 (April 16, 2020): 1109. http://dx.doi.org/10.1177/1077546320923279.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Khond, Vaibhav V., and Santosh D. Dalvi. "A Comprehensive Review on Applicability of Shape Memory Alloy Hybrid Composite Beam in Vibration Control." International Journal of Current Engineering and Technology 10, no. 01 (October 31, 2021): 53–61. http://dx.doi.org/10.14741/ijcet/v.10.1.10.

Full text
Abstract:
Smart materials are used to construct smart structures, which can perform both sensing and actuation functions. Shape Memory Alloys are a kind of smart materials which can undergo solid-to-solid phase transformation and can recover completely when heated to a specific temperature. The Hybrid Composites that embedded with SMAs showing better results in vibration control. The trend in the aeronautical, mechanical and civil design requires lighter, stronger, and more flexible structures. However, light weight structures can be more easily influenced by unwanted vibrations, which may lead to the performance reduction, sometimes the system may even fail due to resonance, etc. This paper focuses on research work carried till now in the area of SMA hybrid composites and its applicability in vibration control.
APA, Harvard, Vancouver, ISO, and other styles
6

Choi, Seung Bok, and Jung Woo Sohn. "Vibration Control of Smart Structures Using Piezofilm Actuators." Key Engineering Materials 306-308 (March 2006): 1205–10. http://dx.doi.org/10.4028/www.scientific.net/kem.306-308.1205.

Full text
Abstract:
This paper presents vibration control of a flexible smart beam structure using a new discrete-time sliding mode controller. After formulating the dynamic model in the space representation, so called the separation principle for equivalent controller is established so that the sliding mode conditions are satisfied. By doing this, undesirable chattering of the flexible structures can be attenuated in the settled phase. In order to demonstrate some benefits of the proposed methodology, an experimental realization is undertaken. Both transient and forced vibration control responses are evaluated in time domain and compared between with and without the separation principle.
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, S. M., and G. S. Lee. "Vibration Control of Smart Structures by Using Neural Networks." Journal of Dynamic Systems, Measurement, and Control 119, no. 1 (March 1, 1997): 34–39. http://dx.doi.org/10.1115/1.2801211.

Full text
Abstract:
Smart structure with build-in sensor(s) and actuator(s) that can actively and adoptively change its physical geometry and properties has been considered one of the best candidates in vibration control applications. Implementation of neural networks to system identification and vibration suppression of a smart structure is conducted in this paper. Three neural networks are developed, one for system identification, the second for on-line state estimation, and the third for vibration suppression. It is shown both in analysis and in experiment that these neural networks can identify, estimate, and suppress the vibration of a composite structure by the embedded piezoelectric sensor and actuator. The controller is also shown to be robust to system parameter variations.
APA, Harvard, Vancouver, ISO, and other styles
8

Moutsopoulou, A. J., A. T. Pouliezos, and G. E. Stavroulakis. "Modeling of Active Vibration Control in Smart Structures." Journal of Civil Engineering and Science 2, no. 2 (June 28, 2013): 48–61. http://dx.doi.org/10.5963/jces0202002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Amezquita-Sanchez, Juan Pablo, Aurelio Dominguez-Gonzalez, Ramin Sedaghati, Rene de Jesus Romero-Troncoso, and Roque Alfredo Osornio-Rios. "Vibration Control on Smart Civil Structures: A Review." Mechanics of Advanced Materials and Structures 21, no. 1 (September 16, 2013): 23–38. http://dx.doi.org/10.1080/15376494.2012.677103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, In, Jin-Ho Roh, Seung-Man Yang, and Jae-Hung Han. "Shape and vibration control of smart composite structures." Advanced Composite Materials 14, no. 2 (January 2005): 121–30. http://dx.doi.org/10.1163/1568551053970690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Smart Structures - Vibration Control"

1

Ulker, Fatma Demet. "Active Vibration Control Of Smart Structures." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1098409/index.pdf.

Full text
Abstract:
The purpose of this thesis was to design controllers by using H1 and ¹
control strategies in order to suppress the free and forced vibrations of smart structures. The smart structures analyzed in this study were the smart beam and the smart ¯
n. They were aluminum passive structures with surface bonded PZT (Lead-Zirconate-Titanate) patches. The structures were considered in clamped-free con¯
guration. The ¯
rst part of this study focused on the identi¯
cation of nominal system models of the smart structures from the experimental data. For the experimentally identi¯
ed models the robust controllers were designed by using H1 and ¹
-synthesis strategies. In the second part, the controller implementation was carried out for the suppression of free and forced vibrations of the smart structures. Within the framework of this study, a Smart Structures Laboratory was established in the Aerospace Engineering Department of METU. The controller implementations were carried out by considering two di®
erent experimental set-ups. In the ¯
rst set-up the controller designs were based on the strain measurements. In the second approach, the displacement measurements, which were acquired through laser displacement sensor, were considered in the controller design. The ¯
rst two °
exural modes of the smart beam were successfully controlled by using H1 method. The vibrations of the ¯
rst two °
exural and ¯
rst torsional modes of the smart ¯
n were suppressed through the ¹
-synthesis. Satisfactory attenuation levels were achieved for both strain measurement and displacement measurement applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Yousefi-Koma, Aghil. "Active vibration control of smart structures using piezoelements." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26875.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bravo, Rafael. "Vibration control of flexible structures using smart materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0034/NQ66256.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, Scott E. (Scott Edward). "Distributed parameter active vibration control of smart structures." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/33473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yousefi-Koma, Aghil Carleton University Dissertation Engineering Mechanical and Aerospace. "Active vibration control of smart structures using piezoelements." Ottawa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dennerlein, Jürgen. "Broadband vibration control of spatially distributed smart structures." Düsseldorf VDI-Verl, 2008. http://d-nb.info/993722431/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Qishan. "Active vibration and buckling control of piezoelectric smart structures." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114328.

Full text
Abstract:
The objective of this dissertation is the vibration and buckling control of piezo-laminated composite structures with surface bonded or embedded piezoelectric sensors and actuators by using the finite element analysis and LQR/LQG feedback control techniques. The focus is mainly on two aspects: the finite element part and the active control part. (1) The finite element part:Two finite element formulations for the piezo-laminated beams based on the classical Bernoulli-Euler and the Timoshenko beam theories are developed using the coupled linear piezoelectric constitutive equations, and the Hamilton variation principle. A C0 continuous, shear flexible, eight-node serendipity doubly curved shell element for the piezo-laminated composite plates and shells is also developed based on the layer-wise shear deformation theory, linear piezoelectric coupled constitutive relations, and Hamilton variation principle. The developed elements can handle the transverse shear strains, composite materials, and piezoelectric-mechanical coupling. Higher modes of vibration can then be predicted more precisely for thin to medium-thick multi-layered composite structures. They are evaluated both for the vibration and buckling of beam, plate, and shell structures. (2) The active control part: The suppression of vibration of a cantilever piezo-laminated beam and the control of the first two buckling modes of a simply supported piezo-laminated beam are studied first. Then, the vibration and buckling control of a cantileverpiezo-laminated composite plate are studied. Furthermore, the vibration control of a piezolaminated semicircular cylindrical shell is also studied. The results of the finite element analysis are used to design a linear quadratic regulator (LQR) controller and a linear quadratic Gaussian (LQG) compensator with a dynamic state observer to achieve all the controls. The control design begins with an approximate reduced modal model which can represent the system dynamics with the least system modes. A state space modal model of the smart structure which integrates the host structure with bonded piezoelectric sensors and actuators, is then used to design the control system. The designed LQR/LQG feedback controls are shown to be successful in suppressing the vibration and stabilizing the buckling modes of structures. Both the finite element analysis and the active control simulation results are consistent with the existing theoretical analysis results and the experimental data in the literature. Some important conclusions and interesting observations are obtained.
L'objectif de cette thése est le contrôle de la vibration et de flambage à l'aide de l'analyse par éléments finis et LQR/LQG technologies de contrôle de rétroaction pour les structures composites stratifiées piézo-électriques qui sont liés ou incorporés de surface de capteurs et d'actionneurs piézoélectriques. Il ya principalement deux parties ciblées. La partie des éléments finis : Deux formulations éléments finis pour les poutres laminées piézo-basé sur le classique d'Euler-Bernoulli et la théorie des poutres de Timoshenko, respectivement, linéaires couplées piézoélectriques équations constitutives, et le principe de variation de Hamilton sont développés. Un C0 continue, cisaillement flexible, à huit nuds élément de coque à double courbure sérendipité pour les plaques piézocomposites stratifiés et de coquillages est également dérivée basée sur la théorie de la couche-sage déformation de cisaillement, linéaires piézo-électriques couplés relations constitutives mécaniques, et le principe de variation de Hamilton. Toute la poutre, plaque, et des éléments de coque développés ont considéré la rigidité, de masse et les effets de couplage électromécanique du capteur piézo-électrique et les couches de l'actionneur. Les éléments de structure développéssont capables de traiter les effets non linéaires de déformation en cisaillementtransversal et la non-linéarité des matériaux composites, piézoélectrique-mécanique d'accouplement, et peut prévoir plus précisément les modes supérieurs de vibration, et peut être appliquée à partir de minces d'épaisseur moyenne structures composites multicouches. Ils sont évalués à la fois les vibrations et analyse de flambage de la poutre, plaque, et structures en coque. La partie de commande actif : La vibration de supprimer d'un porte à faux piézo-collé poutre, les deux premiers modes de flambement contrôle d'un appui simple piézo-collé poutre, et la vibration et le flambage contrôle de la charge d'un cantilever piézoélectrique stratifié plaque composite sont étudiés. Les résultats de l'analyse par éléments finis sont utilisés pour concevoir un régulateur linéaire quadratique (LQR) contrôleur et un linéaire quadratique gaussienne (LQG) compensateur avec un observateur d'état dynamique pour atteindre toutes les commandes. Les conceptions de commandes commencent par une méthode modale modle pour déterminer un modle modal réduit approximative qui peut représenter la dynamique du systme avec les modes les moins systme inclus. Un modle modal espace d'état de la structure intelligente qui a intégré la structure d'accueil d'colléscapteurs et d'actionneurs piézoélectriques, est ensuite utilisé pour concevoir le systme de contrôle. Les contrôles visant commentaires LQR/LQG sont avérés succs dans la suppression de la vibration et de stabiliser les modes de flambement des structures. Tant l'analyse par éléments finis et les résultats de simulation de contrôle actives sont compatibles avec les résultats existants d'analyse théoriques et les données expérimentales de la littérature. Quelques conclusions importantes et des observations intéressantes sont obtenues.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Peng. "Active vibration control in a specific zone of smart structures." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC007/document.

Full text
Abstract:
Cette recherche vise à résoudre un problème particulier du contrôle de vibration des structures intelligentes. Notre objectif est de réduire les vibrations dans une zone spécifique de la structure intelligente avec une perturbation qui couvre une large gamme de fréquences. De plus, dans cette zone spécifique, ni l'actionnement ni la détection ne sont possibles.Ici, nous faisons face à plusieurs défis principaux. Premièrement, nous devons contrôler les vibrations d’une zone spécifique de la structure, alors que nous n’avons accès aux mesures que dans d’autres zones. Deuxièmement, la large bande passante de la perturbation implique que nombreux modes doivent être contrôlés au même temps, ce qui nécessite l'utilisation de plusieurs actionneurs et capteurs. Cela conduit à un contrôleur MIMO difficile à obtenir avec les méthodes classiques de conception de contrôleur. Troisièmement, il faut éviter le problème de propagation, qui consiste à garantir la stabilité en boucle fermée lorsque le contrôleur basé sur un modèle est appliqué à la configuration réelle. Pour relever ces défis, nous étudions deux stratégies de contrôle: le contrôle centralisé et le contrôle distribué.Pour le contrôle centralisé, nous proposons une méthodologie qui nous permet d’obtenir un contrôleur MIMO simple permettant de relever ces défis. Tout d'abord, plusieurs techniques de modélisation et d’identification sont appliquées pour obtenir un modèle précis d'ordre faible de la structure intelligente. Ensuite, une méthode de synthèse basée sur le contrôle H_∞ avec un critère H_∞ particulièrement proposé est appliquée. Ce critère H_∞ intègre plusieurs objectifs de contrôle, y compris les défis principaux. En particulier, le problème de débordement se transforme en un problème de stabilité robuste et sera garanti en utilisant ce critère. Le contrôleur H_∞ obtenu est une solution standard du problème H_∞. Le contrôleur final est obtenu en simplifiant ce contrôleur H_∞ sans perdre la stabilité en boucle fermée ni dégrader les performances. Cette méthodologie est validée sur une structure de poutre avec des transducteurs piézoélectriques et la zone centrale est celle où les vibrations devraient être réduites. L'efficacité du contrôleur obtenu est validée par des simulations et des expériences.Pour le contrôle distribué, on considère la même structure de poutre et les mêmes objectifs de contrôle. Il existe des méthodes visant à concevoir des contrôleurs distribués pour les systèmes spatialement interconnectés. Cette recherche propose une méthode basée sur la FEM, associée à plusieurs techniques de réduction de modèle, permettant de discrétiser spatialement la structure de poutre et d'en déduire les modèles d’espace d'état des sous-systèmes interconnectés. La conception des contrôleurs distribués ne sera pas abordée dans cette recherche
This research aims at solving a particular vibration control problem of smart structures. We aim at reducing the vibration in a specific zone of the smart structure under the disturbance that covers a wide frequency band. Moreover, at this specific zone, neither actuation nor sensing is possible.Here we face several main challenges. First, we need to control the vibration of a specific zone of the structure while we only have access to measurements at other zones. Second, the wide bandwidth of the disturbance implies that numerous modes should be controlled at the same time which requires the use of multiple actuators and sensors. This leads to a MIMO controller which is difficult to obtain using classical controller design methods. Third, the so-called spillover problem must be avoided which is to guarantee the closed-loop stability when the model-based controller is applied on the actual setup. To tackle these challenges, we investigate two control strategies: the centralized control and the distributed control.For centralized control, we propose a methodology that allows us to obtain a simple MIMO controller that accomplishes these challenges. First, several modeling and identification techniques are applied to obtain an accurate low-order model of the smart structure. Then, an H_∞ control based synthesis method with a particularly proposed H_∞ criterion is applied. This H_∞ criterion integrates multiple control objectives, including the main challenges. In particular, the spillover problem is transformed into a robust stability problem and will be guaranteed using this criterion. The obtained H_∞ controller is a standard solution of the H_∞ problem. The final controller is obtained by further simplifying this H_∞ controller without losing the closed-loop stability and degrading the performance. This methodology is validated on a beam structure with piezoelectric transducers and the central zone is where the vibration should be reduced. The effectiveness of the obtained controller is validated by simulations and experiments.For distributed control, we consider the same beam structure and the same control objectives. There exist methods aiming at designing distributed controllers of spatially interconnected system. This research proposes a FEM based method, combined with several model reduction techniques, that allows to spatially discretize the beam structure and deduce the state-space models of interconnected subsystems. The design of distributed controllers will not be tackled in this research
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Yong Keat. "Active vibration control of a piezoelectric laminate plate using spatial control approach." Title page, abstract and table of contents only, 2005. http://hdl.handle.net/2440/37711.

Full text
Abstract:
This thesis represents the work that has been done by the author during his Master of Engineering Science candidature in the area of vibration control of flexible structures at the School of Mechanical Engineering, The University of Adelaide, between March 2003 and June 2004. The aim of this research is to further extend the application of the Spatial Control Approach for two-dimensional flexible structures for attenuating global structural vibration with the possible implication of reduction in noise radiation. The research was concentrated on a simply supported thin flexible plate, using piezoelectric ceramic materials as actuators and sensors. In this work, active controllers were designed for the purpose of controlling only the first five vibration modes (0-500Hz) of the plate. A spatial controller was designed to minimize the total energy of the spatially distributed signal, which is reflected by the spatial H2 norm of the transfer function from the disturbance signal to the vibration output at every point over the plate. This approach ensures the vibration contributed by all the in bandwidth (0-500 Hz) vibration modes is minimized, and hence is capable of minimizing vibration throughout the entire plate. Within the control framework, two cases were considered here; the case when the prior knowledge of the incoming disturbance in terms of reference signal is vailable and the case when it is not available. For the case when the reference signal is available, spatial feedforward controller was designed; whereas for the case when the reference signal is not available, spatial feedback controller was designed to attenuate the global disturbance. The effectiveness of spatial controllers was then compared with that of the standard point-wise controllers numerically and experimentally. The experimental results were found to reflect the numerical results, and the results demonstrated that spatial controllers are able to reduce the energy transfer from the disturbance to the structural output across the plate in a more uniform way than the point-wise controllers. The research work has demonstrated that spatial controller managed to minimize the global plate vibrations and noise radiation that were due to the first five modes.
Thesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
APA, Harvard, Vancouver, ISO, and other styles
10

Janda, Oliver. "Modeling and Control of Sound and Vibration for Smart Structures." Phd thesis, Sierke-Verlag, 2014. https://tuprints.ulb.tu-darmstadt.de/4154/1/Diss_Janda_Final.pdf.

Full text
Abstract:
This thesis presents a contribution to the improvement of modeling and control methodologies for smart structures. It is focused on comfort-compromising, sound- and vibration-related problems, which can be successfully handled by the concepts developed within the interdisciplinary field of adaptronics. As far as modeling of smart structures is concerned, it is advocated in this thesis to employ theoretical modeling to gather an understanding of the fundamental system properties and of the characteristics that are relevant for control design. Theoretical modeling of a generic smart structure with electromechanical as well as mechanical-acoustical coupling is illustrated at the beginning of this thesis. However, pure theoretical modeling of complex systems generally lacks sufficient accuracy for subsequent control design. For that reason, data-driven modeling is one of the key aspects of this work. A modeling procedure is developed that is capable of identifying models for linear time-invariant systems with many resonances from measurement data along with their associated model uncertainty. A minimum of prior assumptions is needed. Based on these models and their uncertainty descriptions, a straightforward yet powerful design methodology for multi-input multi-output active vibration control is presented. The resulting control design employs the well-developed machinery of H2 optimal control, and the resulting control loops are robustly stable with respect to the a-priori identified model uncertainty. This robust optimal design methodology for multi-input multi-output controllers offers both better performance and more degrees of freedom compared to the dominating design of single-input single-output controllers for active vibration control. These additional degrees of freedom especially pay off when not only vibration amplitudes but also vibration mode shapes in closed-loop are relevant. This is for example the case when acoustic radiation shall be controlled. Active acoustic control with structural measurements and control inputs is known as active structural acoustic control, which is the second key aspect of this work. A powerful tool for describing structure-borne sound radiation is the so-called power transfer matrix. This frequency-dependent matrix allows for the computation of structure-borne sound power from knowledge of structural motion. Here, a novel experimental modeling procedure for power transfer matrices is introduced which does not impose any restrictions on the geometry of the radiating structure or the acoustic environment whatsoever. With the help of this matrix, the robust optimal control design scheme for active vibration control can be extended to the control of structure-borne sound power in a straightforward manner. It is also shown that sound radiation into enclosed spaces can be handled with minor modifications of the control scheme for free-field radiation. All modeling and control design methods presented in this thesis are validated by simulation as well as experimental results.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Smart Structures - Vibration Control"

1

Vibration control of active structures: An introduction. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Preumont, André. Vibration control of active structures: An introduction. Dordrecht: Kluwer Academic Publishers, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vibration control of active structures: An introduction. 3rd ed. Berlin: Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Preumont, André. Vibration control of active structures: An introduction. 2nd ed. Dordrecht: Kluwer Academic Publishers, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Preumont, André. Vibration Control of Active Structures: An Introduction. Dordrecht: Springer Netherlands, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

China) International Conference on Intelligent Structure and Vibrational Control (2011 Chongqing. Intelligent structure and vibration control: Selected, peer reviewed papers from the International Conference on Intelligent Structure and Vibration Control (ISVC) 2011, January 14-16, 2011, Chongqing, China. Stafa-Zurich: TTP Trans Tech Publications, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

China) International Conference on Intelligent Structure and Vibrational Control (2012 Chongqing. Advances in intelligent structure and vibration control: Selected, peer reviewed papers from the International Conference on Intelligent Structure and Vibration Control (ISVC 2012), March 16-18, 2012, Chongqing, China. Stafa-Zurich, Switzerland: Trans Tech Publications, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mohsen, Shahinpoor, Tzou H. S, American Society of Mechanical Engineers. Design Engineering Division., and Conference on Mechanical Vibration and Noise (14th : 1993 : Albuquerque, N.M.), eds. Intelligent structures, materials, and vibrations: Presented at the 1993 ASME design technical conferences, 14th Biennial Conference on Mechanical Vibration and Noise, Albuquerque, New Mexico, September 19-22, 1993. New York: American Society of Mechanical Engineers, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hubbard, James E. Spatial filtering for the control of smart structures: An Introduction. Heidelberg: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

1969-, Kim Hongjin, ed. Wavelet-based vibration control of smart buildings and bridges. Boca Raton: Taylor & Francis, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Smart Structures - Vibration Control"

1

Xu, You-Lin, and Jia He. "Structural vibration control." In Smart Civil Structures, 389–448. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Michael Sinapius, Johannes, Björn Timo Kletz, and Steffen Opitz. "Active Vibration Control." In Adaptronics – Smart Structures and Materials, 227–329. Berlin, Heidelberg: Springer Berlin Heidelberg, 2020. http://dx.doi.org/10.1007/978-3-662-61399-3_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Trindade, Marcelo A. "Piezoelectric Structural Vibration Control." In Dynamics of Smart Systems and Structures, 289–309. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Adeli, Hojjat, and Hongjin Kim. "Vibration Control of Structures." In Wavelet-Based Vibration Control of Smart Buildings and Bridges, 7–39. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9780367813451-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xu, You-Lin, and Jia He. "Energy harvesting for structural health monitoring and vibration control." In Smart Civil Structures, 535–83. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Albrecht, Hans, Uwe Stöbener, and Lothar Gaul. "Sensor and actuator design methods in active vibration control for distributed parameter structures." In Smart Structures, 98–108. Vienna: Springer Vienna, 2001. http://dx.doi.org/10.1007/978-3-7091-2686-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Librescu, Liviu, Ohseop Song, and Hyuck-Dong Kwon. "Vibration and Stability Control of Gyroelastic Thin-Walled Beams Via Smart Materials Technology." In Smart Structures, 163–72. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4611-1_19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jalili, Nader. "An Overview of Active Materials Utilized in Smart Structures." In Piezoelectric-Based Vibration Control, 115–28. Boston, MA: Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-0070-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Trindade, Marcelo A. "Passive and Active Structural Vibration Control." In Dynamics of Smart Systems and Structures, 65–92. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29982-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, You-Lin, and Jia He. "Synthesis of structural health monitoring and vibration control in the frequency domain." In Smart Civil Structures, 449–90. Boca Raton : Taylor & Francis, CRC Press, 2017.: CRC Press, 2017. http://dx.doi.org/10.1201/9781315368917-17.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Smart Structures - Vibration Control"

1

Clark, William W., Fangning Sun, and David J. Tarnowski. "Comparison of vibration control by confinement to conventional active vibration control methods." In Smart Structures and Materials '97, edited by Janet M. Sater. SPIE, 1997. http://dx.doi.org/10.1117/12.274689.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Guan, Xin chun, Xufeng Dong, Pengfei Guo, and Jin ping Ou. "Vibration control and magnetostrictive composite materials." In Smart Structures and Materials, edited by William W. Clark, Mehdi Ahmadian, and Arnold Lumsdaine. SPIE, 2006. http://dx.doi.org/10.1117/12.655865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tao, Tao, and Kenneth D. Frampton. "Distributed vibration control with sensor networks." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.657222.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kashani, Reza, and Eric Little. "Vibration control using intelligent Helmholtz resonators." In Smart Structures & Materials '95, edited by Inderjit Chopra. SPIE, 1995. http://dx.doi.org/10.1117/12.208322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guigou, C., P. R. Wagstaff, and C. R. Fuller. "Active Vibration Isolation using Smart Structures." In 1991 American Control Conference. IEEE, 1991. http://dx.doi.org/10.23919/acc.1991.4791604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Belloli, Alberto, Dominik Niederberger, Xavier Kornmann, Paolo Ermanni, Manfred Morari, and Stanislaw Pietrzko. "Vibration control via shunted embedded piezoelectric fibers." In Smart Structures and Materials, edited by Kon-Well Wang. SPIE, 2004. http://dx.doi.org/10.1117/12.539823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Unsal, Memet, Christopher Niezrecki, and Carl D. Crane III. "Six DOF vibration control using magnetorheological technology." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.657925.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Parsons, Matthew J., and Arnold Lumsdaine. "Active vibration control with optimized piezoelectric topologies." In Smart Structures and Materials, edited by Douglas K. Lindner. SPIE, 2006. http://dx.doi.org/10.1117/12.658781.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Washington, Gregory N., Matt Detrick, and Seung-Keon Kwak. "A broadband vibration control using passive circuits." In Smart Structures and Materials, edited by Amr M. Baz. SPIE, 2003. http://dx.doi.org/10.1117/12.483488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spangler, Jr., Ronald L., Farla M. Russo, and Daniel A. Palombo. "Compact integrated piezoelectric vibration control package." In Smart Structures and Materials '97, edited by Mark E. Regelbrugge. SPIE, 1997. http://dx.doi.org/10.1117/12.275697.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Smart Structures - Vibration Control"

1

Wang, Kon-Well. Simultaneous Vibration Isolation and Damping Control Via High Authority Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, January 2000. http://dx.doi.org/10.21236/ada424492.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Inman, Daniel J. Vibration Analysis and Control of an Inflatable Structure Using Smart Materials. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada425363.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Farrar, C., W. Baker, J. Fales, and D. Shevitz. Active vibration control of civil structures. Office of Scientific and Technical Information (OSTI), November 1996. http://dx.doi.org/10.2172/400183.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Smith, Ralph C. Smart Structures: Model Development and Control Applications. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada453831.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fuller, Chris R. Active Structural Acoustic Control and Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, September 1991. http://dx.doi.org/10.21236/ada248341.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Brockett, Roger W., P. S. Krishnaprasad, and John Baillieul. The Design and Control of Smart Structures. Fort Belvoir, VA: Defense Technical Information Center, January 2004. http://dx.doi.org/10.21236/ada419932.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mukherjee, Ranjan. A Hybrid Actuation Approach for Vibration Control of Space Structures. Fort Belvoir, VA: Defense Technical Information Center, August 2010. http://dx.doi.org/10.21236/ada590189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Smith, H. A. Adaptive Control of Smart Structures with Time Variant Stiffness and Damping. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada326843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Kon-Well. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada471779.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DESIGN OF THE DEPLOYABLE-FOLDABLE ACTUATOR AND VIBRATION CONTROL DEVICE BASED ON THE SHAPE MEMORY ALLOYS WITH A TWO-WAY EFFECT. The Hong Kong Institute of Steel Construction, August 2022. http://dx.doi.org/10.18057/icass2020.p.306.

Full text
Abstract:
The paper aims at the design method of the space deployable-foldable actuator and vibration control device, and the selected material is the shape memory alloy. These devices can repeatedly adjust the deploy and fold states by changing the temperature, and also present a large energy dissipation to keep the stability of the structures in the vibration control. It can be observed that the fabricated two-way shape memory alloy actuator can present steady fold-deploy procedures more than five times, in which the recoverable rate is higher than 95.83%, and the required time in the complete deploying process is 15 s. Meanwhile, the vibration control device based on the shape memory alloys also gives an excellent performance, the lightweight device is only 315 g, and the vibration in the vertical direction can be limited to the millimeter-level (0.917 mm), it can also endure the repeated loadings in the applications and keep a good operating condition.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography