To see the other types of publications on this topic, follow the link: Smart Structures - Vibration Control.

Dissertations / Theses on the topic 'Smart Structures - Vibration Control'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Smart Structures - Vibration Control.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Ulker, Fatma Demet. "Active Vibration Control Of Smart Structures." Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/4/1098409/index.pdf.

Full text
Abstract:
The purpose of this thesis was to design controllers by using H1 and ¹
control strategies in order to suppress the free and forced vibrations of smart structures. The smart structures analyzed in this study were the smart beam and the smart ¯
n. They were aluminum passive structures with surface bonded PZT (Lead-Zirconate-Titanate) patches. The structures were considered in clamped-free con¯
guration. The ¯
rst part of this study focused on the identi¯
cation of nominal system models of the smart structures from the experimental data. For the experimentally identi¯
ed models the robust controllers were designed by using H1 and ¹
-synthesis strategies. In the second part, the controller implementation was carried out for the suppression of free and forced vibrations of the smart structures. Within the framework of this study, a Smart Structures Laboratory was established in the Aerospace Engineering Department of METU. The controller implementations were carried out by considering two di®
erent experimental set-ups. In the ¯
rst set-up the controller designs were based on the strain measurements. In the second approach, the displacement measurements, which were acquired through laser displacement sensor, were considered in the controller design. The ¯
rst two °
exural modes of the smart beam were successfully controlled by using H1 method. The vibrations of the ¯
rst two °
exural and ¯
rst torsional modes of the smart ¯
n were suppressed through the ¹
-synthesis. Satisfactory attenuation levels were achieved for both strain measurement and displacement measurement applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Yousefi-Koma, Aghil. "Active vibration control of smart structures using piezoelements." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq26875.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bravo, Rafael. "Vibration control of flexible structures using smart materials." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0034/NQ66256.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Miller, Scott E. (Scott Edward). "Distributed parameter active vibration control of smart structures." Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/33473.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yousefi-Koma, Aghil Carleton University Dissertation Engineering Mechanical and Aerospace. "Active vibration control of smart structures using piezoelements." Ottawa, 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dennerlein, Jürgen. "Broadband vibration control of spatially distributed smart structures." Düsseldorf VDI-Verl, 2008. http://d-nb.info/993722431/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Qishan. "Active vibration and buckling control of piezoelectric smart structures." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114328.

Full text
Abstract:
The objective of this dissertation is the vibration and buckling control of piezo-laminated composite structures with surface bonded or embedded piezoelectric sensors and actuators by using the finite element analysis and LQR/LQG feedback control techniques. The focus is mainly on two aspects: the finite element part and the active control part. (1) The finite element part:Two finite element formulations for the piezo-laminated beams based on the classical Bernoulli-Euler and the Timoshenko beam theories are developed using the coupled linear piezoelectric constitutive equations, and the Hamilton variation principle. A C0 continuous, shear flexible, eight-node serendipity doubly curved shell element for the piezo-laminated composite plates and shells is also developed based on the layer-wise shear deformation theory, linear piezoelectric coupled constitutive relations, and Hamilton variation principle. The developed elements can handle the transverse shear strains, composite materials, and piezoelectric-mechanical coupling. Higher modes of vibration can then be predicted more precisely for thin to medium-thick multi-layered composite structures. They are evaluated both for the vibration and buckling of beam, plate, and shell structures. (2) The active control part: The suppression of vibration of a cantilever piezo-laminated beam and the control of the first two buckling modes of a simply supported piezo-laminated beam are studied first. Then, the vibration and buckling control of a cantileverpiezo-laminated composite plate are studied. Furthermore, the vibration control of a piezolaminated semicircular cylindrical shell is also studied. The results of the finite element analysis are used to design a linear quadratic regulator (LQR) controller and a linear quadratic Gaussian (LQG) compensator with a dynamic state observer to achieve all the controls. The control design begins with an approximate reduced modal model which can represent the system dynamics with the least system modes. A state space modal model of the smart structure which integrates the host structure with bonded piezoelectric sensors and actuators, is then used to design the control system. The designed LQR/LQG feedback controls are shown to be successful in suppressing the vibration and stabilizing the buckling modes of structures. Both the finite element analysis and the active control simulation results are consistent with the existing theoretical analysis results and the experimental data in the literature. Some important conclusions and interesting observations are obtained.
L'objectif de cette thése est le contrôle de la vibration et de flambage à l'aide de l'analyse par éléments finis et LQR/LQG technologies de contrôle de rétroaction pour les structures composites stratifiées piézo-électriques qui sont liés ou incorporés de surface de capteurs et d'actionneurs piézoélectriques. Il ya principalement deux parties ciblées. La partie des éléments finis : Deux formulations éléments finis pour les poutres laminées piézo-basé sur le classique d'Euler-Bernoulli et la théorie des poutres de Timoshenko, respectivement, linéaires couplées piézoélectriques équations constitutives, et le principe de variation de Hamilton sont développés. Un C0 continue, cisaillement flexible, à huit nuds élément de coque à double courbure sérendipité pour les plaques piézocomposites stratifiés et de coquillages est également dérivée basée sur la théorie de la couche-sage déformation de cisaillement, linéaires piézo-électriques couplés relations constitutives mécaniques, et le principe de variation de Hamilton. Toute la poutre, plaque, et des éléments de coque développés ont considéré la rigidité, de masse et les effets de couplage électromécanique du capteur piézo-électrique et les couches de l'actionneur. Les éléments de structure développéssont capables de traiter les effets non linéaires de déformation en cisaillementtransversal et la non-linéarité des matériaux composites, piézoélectrique-mécanique d'accouplement, et peut prévoir plus précisément les modes supérieurs de vibration, et peut être appliquée à partir de minces d'épaisseur moyenne structures composites multicouches. Ils sont évalués à la fois les vibrations et analyse de flambage de la poutre, plaque, et structures en coque. La partie de commande actif : La vibration de supprimer d'un porte à faux piézo-collé poutre, les deux premiers modes de flambement contrôle d'un appui simple piézo-collé poutre, et la vibration et le flambage contrôle de la charge d'un cantilever piézoélectrique stratifié plaque composite sont étudiés. Les résultats de l'analyse par éléments finis sont utilisés pour concevoir un régulateur linéaire quadratique (LQR) contrôleur et un linéaire quadratique gaussienne (LQG) compensateur avec un observateur d'état dynamique pour atteindre toutes les commandes. Les conceptions de commandes commencent par une méthode modale modle pour déterminer un modle modal réduit approximative qui peut représenter la dynamique du systme avec les modes les moins systme inclus. Un modle modal espace d'état de la structure intelligente qui a intégré la structure d'accueil d'colléscapteurs et d'actionneurs piézoélectriques, est ensuite utilisé pour concevoir le systme de contrôle. Les contrôles visant commentaires LQR/LQG sont avérés succs dans la suppression de la vibration et de stabiliser les modes de flambement des structures. Tant l'analyse par éléments finis et les résultats de simulation de contrôle actives sont compatibles avec les résultats existants d'analyse théoriques et les données expérimentales de la littérature. Quelques conclusions importantes et des observations intéressantes sont obtenues.
APA, Harvard, Vancouver, ISO, and other styles
8

Wang, Peng. "Active vibration control in a specific zone of smart structures." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEC007/document.

Full text
Abstract:
Cette recherche vise à résoudre un problème particulier du contrôle de vibration des structures intelligentes. Notre objectif est de réduire les vibrations dans une zone spécifique de la structure intelligente avec une perturbation qui couvre une large gamme de fréquences. De plus, dans cette zone spécifique, ni l'actionnement ni la détection ne sont possibles.Ici, nous faisons face à plusieurs défis principaux. Premièrement, nous devons contrôler les vibrations d’une zone spécifique de la structure, alors que nous n’avons accès aux mesures que dans d’autres zones. Deuxièmement, la large bande passante de la perturbation implique que nombreux modes doivent être contrôlés au même temps, ce qui nécessite l'utilisation de plusieurs actionneurs et capteurs. Cela conduit à un contrôleur MIMO difficile à obtenir avec les méthodes classiques de conception de contrôleur. Troisièmement, il faut éviter le problème de propagation, qui consiste à garantir la stabilité en boucle fermée lorsque le contrôleur basé sur un modèle est appliqué à la configuration réelle. Pour relever ces défis, nous étudions deux stratégies de contrôle: le contrôle centralisé et le contrôle distribué.Pour le contrôle centralisé, nous proposons une méthodologie qui nous permet d’obtenir un contrôleur MIMO simple permettant de relever ces défis. Tout d'abord, plusieurs techniques de modélisation et d’identification sont appliquées pour obtenir un modèle précis d'ordre faible de la structure intelligente. Ensuite, une méthode de synthèse basée sur le contrôle H_∞ avec un critère H_∞ particulièrement proposé est appliquée. Ce critère H_∞ intègre plusieurs objectifs de contrôle, y compris les défis principaux. En particulier, le problème de débordement se transforme en un problème de stabilité robuste et sera garanti en utilisant ce critère. Le contrôleur H_∞ obtenu est une solution standard du problème H_∞. Le contrôleur final est obtenu en simplifiant ce contrôleur H_∞ sans perdre la stabilité en boucle fermée ni dégrader les performances. Cette méthodologie est validée sur une structure de poutre avec des transducteurs piézoélectriques et la zone centrale est celle où les vibrations devraient être réduites. L'efficacité du contrôleur obtenu est validée par des simulations et des expériences.Pour le contrôle distribué, on considère la même structure de poutre et les mêmes objectifs de contrôle. Il existe des méthodes visant à concevoir des contrôleurs distribués pour les systèmes spatialement interconnectés. Cette recherche propose une méthode basée sur la FEM, associée à plusieurs techniques de réduction de modèle, permettant de discrétiser spatialement la structure de poutre et d'en déduire les modèles d’espace d'état des sous-systèmes interconnectés. La conception des contrôleurs distribués ne sera pas abordée dans cette recherche
This research aims at solving a particular vibration control problem of smart structures. We aim at reducing the vibration in a specific zone of the smart structure under the disturbance that covers a wide frequency band. Moreover, at this specific zone, neither actuation nor sensing is possible.Here we face several main challenges. First, we need to control the vibration of a specific zone of the structure while we only have access to measurements at other zones. Second, the wide bandwidth of the disturbance implies that numerous modes should be controlled at the same time which requires the use of multiple actuators and sensors. This leads to a MIMO controller which is difficult to obtain using classical controller design methods. Third, the so-called spillover problem must be avoided which is to guarantee the closed-loop stability when the model-based controller is applied on the actual setup. To tackle these challenges, we investigate two control strategies: the centralized control and the distributed control.For centralized control, we propose a methodology that allows us to obtain a simple MIMO controller that accomplishes these challenges. First, several modeling and identification techniques are applied to obtain an accurate low-order model of the smart structure. Then, an H_∞ control based synthesis method with a particularly proposed H_∞ criterion is applied. This H_∞ criterion integrates multiple control objectives, including the main challenges. In particular, the spillover problem is transformed into a robust stability problem and will be guaranteed using this criterion. The obtained H_∞ controller is a standard solution of the H_∞ problem. The final controller is obtained by further simplifying this H_∞ controller without losing the closed-loop stability and degrading the performance. This methodology is validated on a beam structure with piezoelectric transducers and the central zone is where the vibration should be reduced. The effectiveness of the obtained controller is validated by simulations and experiments.For distributed control, we consider the same beam structure and the same control objectives. There exist methods aiming at designing distributed controllers of spatially interconnected system. This research proposes a FEM based method, combined with several model reduction techniques, that allows to spatially discretize the beam structure and deduce the state-space models of interconnected subsystems. The design of distributed controllers will not be tackled in this research
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Yong Keat. "Active vibration control of a piezoelectric laminate plate using spatial control approach." Title page, abstract and table of contents only, 2005. http://hdl.handle.net/2440/37711.

Full text
Abstract:
This thesis represents the work that has been done by the author during his Master of Engineering Science candidature in the area of vibration control of flexible structures at the School of Mechanical Engineering, The University of Adelaide, between March 2003 and June 2004. The aim of this research is to further extend the application of the Spatial Control Approach for two-dimensional flexible structures for attenuating global structural vibration with the possible implication of reduction in noise radiation. The research was concentrated on a simply supported thin flexible plate, using piezoelectric ceramic materials as actuators and sensors. In this work, active controllers were designed for the purpose of controlling only the first five vibration modes (0-500Hz) of the plate. A spatial controller was designed to minimize the total energy of the spatially distributed signal, which is reflected by the spatial H2 norm of the transfer function from the disturbance signal to the vibration output at every point over the plate. This approach ensures the vibration contributed by all the in bandwidth (0-500 Hz) vibration modes is minimized, and hence is capable of minimizing vibration throughout the entire plate. Within the control framework, two cases were considered here; the case when the prior knowledge of the incoming disturbance in terms of reference signal is vailable and the case when it is not available. For the case when the reference signal is available, spatial feedforward controller was designed; whereas for the case when the reference signal is not available, spatial feedback controller was designed to attenuate the global disturbance. The effectiveness of spatial controllers was then compared with that of the standard point-wise controllers numerically and experimentally. The experimental results were found to reflect the numerical results, and the results demonstrated that spatial controllers are able to reduce the energy transfer from the disturbance to the structural output across the plate in a more uniform way than the point-wise controllers. The research work has demonstrated that spatial controller managed to minimize the global plate vibrations and noise radiation that were due to the first five modes.
Thesis (M.Eng.Sc.)--School of Mechanical Engineering, 2005.
APA, Harvard, Vancouver, ISO, and other styles
10

Janda, Oliver. "Modeling and Control of Sound and Vibration for Smart Structures." Phd thesis, Sierke-Verlag, 2014. https://tuprints.ulb.tu-darmstadt.de/4154/1/Diss_Janda_Final.pdf.

Full text
Abstract:
This thesis presents a contribution to the improvement of modeling and control methodologies for smart structures. It is focused on comfort-compromising, sound- and vibration-related problems, which can be successfully handled by the concepts developed within the interdisciplinary field of adaptronics. As far as modeling of smart structures is concerned, it is advocated in this thesis to employ theoretical modeling to gather an understanding of the fundamental system properties and of the characteristics that are relevant for control design. Theoretical modeling of a generic smart structure with electromechanical as well as mechanical-acoustical coupling is illustrated at the beginning of this thesis. However, pure theoretical modeling of complex systems generally lacks sufficient accuracy for subsequent control design. For that reason, data-driven modeling is one of the key aspects of this work. A modeling procedure is developed that is capable of identifying models for linear time-invariant systems with many resonances from measurement data along with their associated model uncertainty. A minimum of prior assumptions is needed. Based on these models and their uncertainty descriptions, a straightforward yet powerful design methodology for multi-input multi-output active vibration control is presented. The resulting control design employs the well-developed machinery of H2 optimal control, and the resulting control loops are robustly stable with respect to the a-priori identified model uncertainty. This robust optimal design methodology for multi-input multi-output controllers offers both better performance and more degrees of freedom compared to the dominating design of single-input single-output controllers for active vibration control. These additional degrees of freedom especially pay off when not only vibration amplitudes but also vibration mode shapes in closed-loop are relevant. This is for example the case when acoustic radiation shall be controlled. Active acoustic control with structural measurements and control inputs is known as active structural acoustic control, which is the second key aspect of this work. A powerful tool for describing structure-borne sound radiation is the so-called power transfer matrix. This frequency-dependent matrix allows for the computation of structure-borne sound power from knowledge of structural motion. Here, a novel experimental modeling procedure for power transfer matrices is introduced which does not impose any restrictions on the geometry of the radiating structure or the acoustic environment whatsoever. With the help of this matrix, the robust optimal control design scheme for active vibration control can be extended to the control of structure-borne sound power in a straightforward manner. It is also shown that sound radiation into enclosed spaces can be handled with minor modifications of the control scheme for free-field radiation. All modeling and control design methods presented in this thesis are validated by simulation as well as experimental results.
APA, Harvard, Vancouver, ISO, and other styles
11

Wang, Zhen. "Enhanced self-powered vibration damping of smart structures by modal energy transfer." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0067/document.

Full text
Abstract:
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée
In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy
APA, Harvard, Vancouver, ISO, and other styles
12

Ruggiero, Eric John. "Active Dynamic Analysis and Vibration Control of Gossamer Structures Using Smart Materials." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/32299.

Full text
Abstract:
Increasing costs for space shuttle missions translate to smaller, lighter, and more flexible satellites that maintain or improve current dynamic requirements. This is especially true for optical systems and surfaces. Lightweight, inflatable structures, otherwise known as gossamer structures, are smaller, lighter, and more flexible than current satellite technology. Unfortunately, little research has been performed investigating cost effective and feasible methods of dynamic analysis and control of these structures due to their inherent, non-linear dynamic properties. Gossamer spacecraft have the potential of introducing lenses and membrane arrays in orbit on the order of 25 m in diameter. With such huge structures in space, imaging resolution and communication transmissibility will correspondingly increase in orders of magnitude. A daunting problem facing gossamer spacecraft is their highly flexible nature. Previous attempts at ground testing have produced only localized deformation of the structureâ s skin rather than excitation of the global (entire structureâ s) modes. Unfortunately, the global modes are necessary for model parameter verification. The motivation of this research is to find an effective and repeatable methodology for obtaining the dynamic response characteristics of a flexible, inflatable structure. By obtaining the dynamic response characteristics, a suitable control technique may be developed to effectively control the structureâ s vibration. Smart materials can be used for both active dynamic analysis as well as active control. In particular, piezoelectric materials, which demonstrate electro-mechanical coupling, are able to sense vibration and consequently can be integrated into a control scheme to reduce such vibration. Using smart materials to develop a vibration analysis and control algorithm for a gossamer space structure will fulfill the current requirements of space satellite systems. Smart materials will help spawn the next generation of space satellite technology.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
13

Huang, Da. "Approximate analytical solutions for vibration control of smart composite beams." Thesis, Peninsula Technikon, 1999. http://hdl.handle.net/20.500.11838/1262.

Full text
Abstract:
Thesis (MTech (Mechanical Engineering))--Peninsula Technikon, Cape Town,1999
Smart structures technology featuring a network of sensors and actuators, real-time control capabilities, computational capabilities and host material will have tremendous impact upon the design, development and manufacture of the next generation of products in diverse industries. The idea of applying smart materials to mechanical and structural systems has been studied by researchers in various disciplines. Among the promising materials with adaptable properties such as piezoelectric polymers and ceramics, shape memory alloys, electrorheological fluids and optical fibers, piezoelectric materials can be used both as sensors and actuators because of their high direct and converse piezoelectric effects. The advantage of incorporating these special types of material into the structure is that the sensing and actuating mechanism becomes part of the structure by sensing and actuating strains directly. This advantage is especially apparent for structures that are deployed in aerospace and civil engineering. Active control systems that rely on piezoelectric materials are effective in controlling the vibrations of structural elements such as beams, plates and shells. The beam as a fundamental structural element is widely used in all construction. The purpose of the present project is to derive a set of approximate governing equations of smart composite beams. The approximate analytical solution for laminated beams with piezoelectric laminae and its control effect will be also presented. According to the review of the related literature, active vibration control analysis of smart beams subjected to an impulsive loading and a periodic excitation are simulated numerically and tested experimentally.
APA, Harvard, Vancouver, ISO, and other styles
14

Zheng, Xiang. "Active vibration control of flexible bodied railway vehicles via smart structures." Thesis, Loughborough University, 2011. https://dspace.lboro.ac.uk/2134/9110.

Full text
Abstract:
Future railway vehicles are going to be designed lighter in order to achieve higher speed. Suppressing the flexible modes becomes a crucial issue for improving the ride quality of the light-weight high speed railway vehicles. The concept of smart structure brings structural damping to flexible structures by integrating smart actuators and sensors onto the structure. Smart structure eliminates the need for extensive heavy mechanical actuation systems and achieves higher performance levels through their functionality for suppressing the flexible modes. Active secondary suspension is the effective conventional approach for vibration control of the railway vehicle to improve the ride quality. But its ability in suppressing the flexible modes is limited. So it is motivated to combine active structural damping for suppressing the flexible modes and the vibration control through active secondary suspension which has an effect on both rigid and flexible modes. The side-view model of the flexible-bodied railway vehicle integrated with piezoelectric actuators and sensors is derived. The procedure for selection of placement configurations of the piezoelectric actuators and sensors using structural norms is presented. Initial control studies show that the flexibility of the vehicle body will cause a considerable degradation in ride quality if it is neglected in the design model. Centralized and decentralized control strategies with various control approaches (e.g. modal control with skyhook damping, LQG/H2 control, H_infinity control and model predictive control (MPC))are applied for the combined control of active structural damping and active suspension control. The active structural damping effectively suppresses the flexible modes as a complement to the work of the active suspension control.
APA, Harvard, Vancouver, ISO, and other styles
15

Griffin, Steven F. "Acoustic replication in smart structure using active structural/acoustic control." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/13085.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Gutierrez, Soto Mariantonieta. "MULTI-AGENT REPLICATOR CONTROL METHODOLOGIES FOR SUSTAINABLE VIBRATION CONTROL OF SMART BUILDING AND BRIDGE STRUCTURES." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1494249419696286.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Paknejad, Seyedahmadian Ahmad. "Passive and Active Strategies for Vibration Control of Lightly Damped Structures." Doctoral thesis, Universite Libre de Bruxelles, 2021. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/325768.

Full text
Abstract:
Lightweight designs in engineering applications give rise to flexible structures with extremely low internal damping. Vibrations of these flexible structures due to an unwanted excitation of system resonances may lead to high cycle fatigue failure and noise propagation. A common method to suppress the vibrations is to increase the damping of the system using one of the classical control techniques i.e. passive, active, and/or hybrid. Passive techniques are those control systems that are simply integrated into the structures with no need of external power source for their operations, like viscoelastic damping, piezoelectric and electromagnetic shunt damping, tuned mass damper, etc. However, the control performance of these systems, in terms of the damping ratio and the robustness to uncertainties, is highly limited to the system properties. For example, viscoelastic damping may not perform well at low frequencies and the performance of shunt damping is dependent on the electromechanical coupling between the structure and the transducer. To overcome the limitations associated with passive controls, it has been proposed to use active control systems, which are less sensitive to the system's parameters, to improve the control performance. It requires an integration of sensors and actuators with a feedback loop containing control laws. However, the high requirement of the external power source is not favorable for engineering applications where energy efficiency is the key parameter. The combination of active and passive strategies, known as hybrid control systems, can provide a fail-safe configuration with a high control performance and low power consumption. The price to pay for such configurations is the complexity of the design. This doctoral thesis first investigates the conceptual designs of all kinds of classical control systems for a simplified mechanical system. They include 1) the passive shunt using an electromagnetic transducer, 2) the active control system using positive and negative feedback, and 3) the hybrid electromagnetic shunt damper using both an active voltage source as well as an active current source. The next part of this thesis is focused on bladed structures as real-life applications which highly require vibration control due to their low internal damping. Because of practical reasons, piezoelectric transducers are used for the application of control systems. The finite element model of the structure is made first without piezoelectric patches to optimize the best locations of piezoelectric patches. Then, the model is updated with the piezoelectric patches to numerically simulate different control strategies. The experiments are performed to validate the numerical designs.
Doctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Shunqi [Verfasser]. "Nonlinear FE simulation and active vibration control of piezoelectric laminated thin-walled smart structures / Shunqi Zhang." Aachen : Hochschulbibliothek der Rheinisch-Westfälischen Technischen Hochschule Aachen, 2014. http://d-nb.info/1058405977/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Na, Sungsoo. "Control of Dynamic Response of Thin-Walled Composite Beams Using Structural Tailoring and Piezoelectric Actuation." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29828.

Full text
Abstract:
A dual approach integrating structural tailoring and adaptive materials technology and designed to control the dynamic response of cantilever beams subjected to external excitations is addressed. The cantilevered structure is modeled as a thin-walled beam of arbitrary cross-section and incorporates a number of non-classical effects such as transverse shear, warping restraint, anisotropy of constituent materials and heterogeneity of the construction. Whereas structural tailoring uses the anisotropy properties of advanced composite materials, adaptive materials technology exploits the actuating/sensing capabilities of piezoelectric materials bonded or embedded into the host structure. Various control laws relating the piezoelectrically-induced bending moment with combined kinematical variables characterizing the response at given points of the structure are implemented and their effects on the closed-loop frequencies and dynamic response to external excitations are investigated. The combination of structural tailoring and control by means of adaptive materials proves very effective in damping out vibration. In addition, the influence of a number of non-classical effects characterizing the structural model on the open and closed-loop dynamic responses have been considered and their roles assessed.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
20

Nader, Manfred. "Compensation of vibrations in smart structures : shape control, experimental realization and feedback control /." Linz : Trauner, 2008. http://opac.nebis.ch/cgi-bin/showAbstract.pl?u20=9783854993865.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pratt, Jon Robert Jr. "Vibration Control for Chatter Suppression with Application to Boring Bars." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/29344.

Full text
Abstract:
A mechatronic system of actuators, sensors, and analog circuits is demonstrated to control the self-excited oscillations known as chatter that occur when single-point turning a rigid workpiece with a flexible tool. The nature of this manufacturing process, its complex geometry, harsh operating environment, and poorly understood physics, present considerable challenges to the control system designer. The actuators and sensors must be rugged and of exceptionally high bandwidth and the control must be robust in the presence of unmodeled dynamics. In this regard, the qualitative characterization of the chatter instability itself becomes important. Chatter vibrations are finite and recognized as limit cycles, yet modeling and control efforts have routinely focused only on the linearized problem. The question naturally arises as to whether the nonlinear stability is characterized by a jump phenomenon. If so, what does this imply for the "robustness" of linear control solutions? To answer our question, we present an advanced hardware and control system design for a boring bar application. Initially, we treat the cutting forces merely as an unknown disturbance to the structure which is essentially a cantilevered beam. We then approximate the structure as a linear single-degree-of-freedom damped oscillator in each of the two principal modal coordinates and seek a control strategy that reduces the system response to general disturbances. Modal-based control strategies originally developed for the control of large flexible space structures are employed; they use second-order compensators to enhance selectively the damping of the modes identified for control. To attack the problem of the nonlinear stability, we seek a model that captures some of the behavior observed in experiments. We design this model based on observations and intuition because theoretical expressions for the complex dynamic forces generated during cutting are lacking. We begin by assuming a regenerative chatter mechanism, as is common practice, and presume that it has a nonlinear form, which is approximated using a cubic polynomial. Experiments demonstrate that the cutting forces couple the two principal modal coordinates. To obtain the jump phenomena observed experimentally, we find it necessary to account for structural nonlinearies. Gradually, using experimental observation as a guide, we arrive at a two-degree-of-freedom chatter model for the boring process. We analyze the stability of this model using the modern methods of nonlinear dynamics. We apply the method of multiple scales to determine the local nonlinear normal form of the bifurcation from static to dynamic cutting. We then find the subsequent periodic motions by employing the method of harmonic balance. The stability of these periodic motions is analysed using Floquet theory. Working from a model that captures the essential nonlinear behavior, we develop a new post-bifurcation control strategy based on quench control. We observe that nonlinear state feedback can be used to control the amplitude of post-bifurcation limit cycles. Judicious selection of this nonlinear state feedback makes a supplementary open-loop control strategy possible. By injecting a harmonic force with a frequency incommensurate with the chatter frequency, we find that the self-excited chatter can be exchanged for a forced vibratory response, thereby reducing tool motions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
22

Janda, Oliver [Verfasser], Ulrich [Akademischer Betreuer] Konigorski, and Thilo [Akademischer Betreuer] Bein. "Modeling and Control of Sound and Vibration for Smart Structures / Oliver Janda. Betreuer: Ulrich Konigorski ; Thilo Bein." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2014. http://d-nb.info/1112268634/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Deneufve, Florence L. "Simultaneous active passive/control of extensional and flexural power flows in infinite thin beams." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-02132009-172054/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kim, Byeongil. "Design and Analysis of Model Based Nonlinear and Multi-Spectral Controllers with Focus on Motion Control of Continuous Smart Structures." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1286308206.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kim, Myung-Hyun. "Nonlinear Control and Robust Observer Design for Marine Vehicles." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/29910.

Full text
Abstract:
A robust nonlinear observer, utilizing the sliding mode concept, is developed for the dynamic positioning of ships. The observer provides the estimates of linear velocities of the ship and bias from the slowly varying environmental loads. It also filters out wave frequency motion to avoid wear of actuators and excessive fuel consumption. Especially, the observer structure with a saturation function makes the proposed observer robust against neglected nonlinearties, disturbances and uncertainties. A direct adaptive neural network controller is developed for a model of an underwater vehicle. Radial basis neural network and multilayer neural network are used in the closed-loop to approximate the nonlinear vehicle dynamics. No prior off-line training phase and no explicit knowledge of the structure of the plant are required, and this scheme exploits the advantages of both neural network control and adaptive control. A control law and a stable on-line adaptive law are derived using the Lyapunov theory, and the convergence of the tracking error to zero and the boundedness of signals are guaranteed. Comparison of the results with different neural network architectures is made, and performance of the controller is demonstrated by computer simulations. The sliding mode observer is used to eliminate observation spillovers in the vibration control of flexible structures. It is common to build a state feedback controller and a state estimator based on the mathematical model of the system with a finite number of vibration modes, but this may cause control and observation spillover due to the residual (uncontrolled) modes. The performance of a sliding mode observer is compared with that of a conventional Kalman filter in order to demonstrate robustness and disturbance decoupling characteristics. Simulation and experimental results using the sliding mode observer are presented for the active vibration control of a cantilever beam using smart materials.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
26

Genari, Helói Francico Gentil. "Damage-Tolerant Modal Control Methods for Flexible Structures." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0032/document.

Full text
Abstract:
Les structures intelligentes sont de plus en plus présentes dans différentes industries et notamment dans les domaines de l'aéronautique et du génie civil. Ces structures sont dotées de fonctions qui leur permettent d'interagir avec leur environnement, d'adapter leurs caractéristiques structurelles (raideur, amortissement, viscosité, etc.) selon les besoins ou de surveiller leur état de santé ou « SHM » (Structural Health Monitoring). Aujourd’hui, les performances des méthodes de contrôle actif peuvent être considérablement dégradées lors de l’apparition d’endommagement. Le contrôle actif tolérant aux dommages ou « DTAC » (Damage Tolerant Active Control) est un champ de recherche récent qui s'intéresse à l'élaboration d'approches intégrées pour réduire les vibrations tout en surveillant l'intégrité de la structure, en identifiant les éventuels dommages, et en reconfigurant la loi de commande.Cette thèse apporte une contribution au DTAC en proposant une approche originale basée sur la norme H∞ modale . Les méthodes proposées se focalisent principalement sur le cas où plusieurs actionneurs et capteurs piézoélectriques non-collocalisés sont utilisés pour atténuer les vibrations des structures endommagées. Le manuscrit comprend quatre parties principales. Le chapitre 2 présente des rappels sur la commande H∞ et sur sa solution sous optimale obtenue par une approche par inégalité matricielle ou « LMI » (Linear Matrix Inequality), sur lesquels s’appuient les développements proposés dans ce travail. Le chapitre 3 décrit la norme H∞ modale introduite pour le contrôle actif des vibrations. Cette commande présente une sélectivité modale élevée, permettant ainsi de se concentrer sur les effets du dommage tout en bénéficiant des propriétés de robustesse qu'offre la commande H∞ vis-à-vis du spillover et des variations de paramètres. Une nouvelle stratégie de rejet des vibrations est proposée au chapitre 4. C'est une approche dite préventive où une prise en compte lors de l'élaboration de la commande H∞ modale, des zones fortement contraintes de la structure, où le risque d’endommagement est élevé est réalisée. Un algorithme SHM est proposé afin d'évaluer la sévérité du dommage pour chaque mode. Le chapitre 5 propose une nouvelle approche modale à double boucle de commande pour faire face à des endommagements imprévisibles. Un premier correcteur est conçu dans ce but pour satisfaire les contraintes de performance et de robustesse sur la structure saine, tandis que le second a pour objectif de conserver un contrôle satisfaisant quand un dommage survient. La loi de commande s'appuie sur un observateur d’état et d'un algorithme SHM pour reconfigurer en ligne le correcteur. Toutes les approches DTAC proposées sont testées en utilisant des simulations (analytiques et éléments finis) et/ou des expérimentations sur des structures intelligentes
Smart structures have increasingly become present in different industry applications and particularly in the fields of aeronautics and civil engineering. These structures have features that allow interactions with the environment, adapting their characteristics according to the needs (stiffness, damping, viscosity, etc.), monitoring their health or controlling their vibrations. Today smart structure active control methods do not respond appropriately to damage, despite the capacity of external disturbances good rejection. Damage-tolerant active control (DTAC) is a recent research area that aims to develop integrated approaches to reduce the vibrations while monitoring the integrity of the structure, identifying damage occurrence and reconfiguring the control law of the adopted active vibration control method.This thesis contributes to DTAC area, proposing a novel modal control framework and some applying strategies. Developed methods focus in non-collocated flexible structures, where multiples piezoelectric sensors and actuators are used to attenuate damaged structure vibration. The chapters present four main topics and the conclusions. Chapter 2 reviews the regular suboptimal H∞ problem and its respective solution based on the linear matrix inequality (LMI) approach, which is a fundamental tool for the development of subsequent topics. Chapter 3 introduces the modal H∞-norm based method for vibration control, which reveals high modal selectivity, allowing control energy concentration on damage effects and presenting robustness to spillover and parameter variation. A new control strategy is developed in Chapter 4, taking into account existing knowledge about the structure stressed regions with high probability of damage occurrence, leading to specific requirements in the modal H∞ controller design. A structural health monitoring (SHM) technique assesses each damaged mode behavior, which is used to design a preventive controller. Chapter 5 presents a novel modal double-loop control methodology to deal with the unpredictability of damage, nevertheless ensuring a good compromise between robustness and performance to both healthy and damaged structures. For this purpose, the first loop modal controller is designed to comply with regular requirements for the healthy structure behavior, and the second loop controller is reconfigured aiming to ensure satisfactory performance and robustness when and if damage occurs, based on a state-tracking observer and an SHM technique to adapt the controller online. In all these chapters, simulated (analytical and finite elements based) and/or experimental aluminum structures are used to examine the proposed methodology under the respective control strategies. The last chapter subsumes the achieved results for each different approach described in the previous chapters
APA, Harvard, Vancouver, ISO, and other styles
27

Vigilante, Domenico. "Numerical study of two-dimensional smart structures." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/42706.

Full text
Abstract:
In this thesis we use a new numerical code, based upon a mixed FEM-Runge-Kutta method, for the analysis and the design of plane 2-dimensional smart structures. We applied the developed code to the study of arbitrarily shaped piezo-electromechanical (PEM) plates. This code is based on a weak formulation of their governing equations as found in [18]. The optimal parameters needed to synthesize the appropriate electric networks are computed, and the overall performances of such plates are investigated. In particular, two examples are studied: firstly, a simple case is used to test the main features of the code; secondly, a more complex PEM plate is designed and analyzed by means of the proposed numerical approach.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
28

Oueini, Shafic Sami. "Techniques for Controlling Structural Vibrations." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/27176.

Full text
Abstract:
We tackle the problem of suppressing high-amplitude vibrations of cantilever beams when subjected to either primary external or principal parametric resonances. Guided by results of previous investigations into the nonlinear dynamics of single- and multi-degree-of-freedom structures, we design mechatronic systems of sensors, actuators, and electronic devices and implement nonlinear active feedback control. In the case of external excitation, we devise two vibration absorbers based on either quadratic or cubic feedback. We conduct theoretical analyses and demonstrate that when a two-to-one (one-to-one) internal resonance condition is imposed between the plant and the quadratic (cubic) absorber, there exists a saturation phenomenon. When the plant is forced near its resonant frequency and the forcing amplitude exceeds a certain small threshold, the nonlinear coupling creates an energy-transfer mechanism that limits (saturates) the response of the plant. Our theoretical studies reveal that the cubic absorber creates regimes of high-amplitude quasiperiodic and chaotic responses, thereby limiting its utility. However, we show that superior results can be achieved when the natural frequency of the quadratic absorber is set equal to one-half the excitation frequency. Consequently, we apply the quadratic technique through a variety of linear and nonlinear actuators, sensors, and electronic devices. We design and build second-order analog circuits that emulate the quadratic absorber. Using a DC motor, piezoelectric ceramics, and Terfenol-D struts as actuators and potentiometers, strain gages, and accelerometers as sensors, we demonstrate successful single- and multi-mode vibration control. In order to realize a more versatile implementation of the control strategy, we resort to a digital signal processing (DSP) board. We compose a code in C and design a digital absorber by developing algorithms that, in addition to replacing the analog circuit, automatically detect the amplitude and frequency of oscillation of the plant and fine-tune the absorber parameters. We take advantage of the digital realization, implement a linear absorber, and compare the performance of the quadratic absorber with that of its linear counterpart. In the case of parametric excitation, we investigate two techniques. First, we explore application of the quadratic absorber. We prove theoretically and demonstrate experimentally that this control scheme is not reliable. Then, we propose an alternate approach. We devise a control law based on cubic velocity feedback. We conduct theoretical and experimental investigations and show that the latter strategy leads to effective vibration suppression and bifurcation control.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
29

Urek, Halime. "Control Of A Satellite With Flexible Smart Beam During Slew Maneuver." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613597/index.pdf.

Full text
Abstract:
In this thesis, an attitude control system based on Linear Quadratic Regulator (LQR) technique is developed for a hypothetical Earth observation satellite with a long flexible boom. To improve pointing performance of the satellite, the piezoelectric actuators are used as well. The boom is rectangular made of aluminum with the surface bonded piezoelectric layers on all four surfaces. The boom is modeled using finite elements. The pointing performance of the satellite using various metrics is evaluated through simulations. Effectiveness of the piezoelectric actuators is demonstrated.
APA, Harvard, Vancouver, ISO, and other styles
30

Azimi, Mohsen. "Design of Structural Vibration Control Using Smart Materials and Devices for Earthquake-Resistant and Resilient Buildings." Thesis, North Dakota State University, 2017. https://hdl.handle.net/10365/28588.

Full text
Abstract:
Major earthquakes in recent years have highlighted the big concern of modern seismic design concept for the resilience of buildings. The overall goals of this thesis aim to design structural vibration control using smart materials and devices and to elucidate the factors determining their robustness, feasibility, and adaptability for earthquake-resistant and resilient buildings. The study mainly includes a) integrated wavelet-based vibration control with damage detection; b) shape memory alloy to eliminate the residual deformations; c) a mass damper for highly irregular tall buildings; and d) soil-structure interaction effects on the buildings. The robustness, feasibility, and adaptability of these proposed studies for earthquake-resistant and resilient buildings are evaluated using various performance measures. The findings of the study reveal that the structural vibration control strategies could advance the current-of-art knowledge in seismic risk mitigation as well as high system adaptability.
APA, Harvard, Vancouver, ISO, and other styles
31

Koo, Jeong-Hoi, Björn Kiefer, and Uwe Marschner. "Special Issue: ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS), Symposium on Modeling, Simulation and Control." Sage, 2016. https://tud.qucosa.de/id/qucosa%3A35626.

Full text
Abstract:
The ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS) was held from 8-10 September 2014 in Newport, Rhode Island. The scope of the Conference covers intelligent, flexible, adaptive materials and systems that respond to changes in the environment to perform in the most profitable way. Scientific strides and technological maturity in the field are linked to the interdisciplinary efforts at universities, government and industry. SMASIS aims at assembling world experts across engineering and scientific disciplines such as mechanical, aerospace, electrical, materials, and civil engineering, as well as biology, physics and chemistry, to discuss the latest findings and trends in this fruitful area of research.
APA, Harvard, Vancouver, ISO, and other styles
32

Silva, Samuel da. "Projeto de controladores robustos para aplicações em estruturas inteligentes utilizando desigualdades matriciais lineares /." Ilha Solteira : [s.n.], 2005. http://hdl.handle.net/11449/94551.

Full text
Abstract:
Resumo: Este trabalho tem como propósito utilizar técnicas de controle robusto para atenuação ativa de vibração mecânica em estruturas acopladas a atuadores e sensores piezelétricos. Os controladores são projetados segundo o enfoque de otimização convexa, com os requisitos envolvendo desigualdades matriciais lineares (LMIs). A proposta é ilustrar duas sínteses diferentes de realimentação via LMIs. A primeira é o projeto de controladores por realimentação de estados, estimados por um observador, considerando incertezas paramétricas do tipo politópicas. A segunda metodologia é baseada no controle H8 via realimentação do sinal de saída, considerando incertezas dinâmicas limitadas por norma. Os sensores/atuadores são posicionados em pontos ótimos utilizando-se a norma H8 como índice de desempenho. Os modelos matemáticos utilizados na síntese dos controladores foram obtidos a partir do método dos elementos finitos considerando o acoplamento eletromecânico entre os atuadores/sensores e a estrutura base ou a partir de métodos de identificação. Neste contexto, este trabalho também discute e exemplifica o algoritmo de realização de autosistemas (ERA). Três exemplos são solucionados para exemplificar a metodologia implementada: uma estrutura tipo placa, uma viga engastada-livre e a supressão ativa de flutter em um aerofólio 2-D, problema de grande interesse na indústria aeronáutica. Os resultados mostraram uma significante atenuação da vibração estrutural na faixa de freqüência de interesse e o atendimento dos requisitos impostos na fase de projeto.
Abstract: The proposal of this work is to use robust control techniques in order to suppress mechanical vibration in structures with pieozoelectric sensors and actuators coupled. The controllers are designed by convex optimization and the constraints are dealt through linear matrix inequalities (LMIs) frameworks. Two different methodologies to feedback the system by using LMIs are explained. The first one is the observer-based state-feedback considering polytopic uncertainties. The second one is the H output feedback control considering norm-bound uncertainties. The sensors/actuators are located in optimal placements by using H norm as performance index. The mathematical models used in the controller design were obtained by finite element methods considering eletromechanical effects between the host structure and piezoelectric sensors/actuators patches or by using identification methods. In this sense, it is also discussed the eigensystem realization algorithm (ERA). Three different applications are proposed and solved in order to illustrate the applicability of the methodology: a cantilever plate; a cantilever beam; and an active flutter suppression in a 2-D airfoil, a problem of considered interest in the aeronautic industry. The results showed the vibration suppression in the bandwidth of interest when submited to the requirements imposed by practical situations.
Orientador: Vicente Lopes Junior
Coorientador: Edvaldo Assunção
Banca: Vicente Lopes Junior
Banca: Marcelo Carvalho Minhoto Teixeira
Banca: Edilson Hiroshi Tamai
Mestre
APA, Harvard, Vancouver, ISO, and other styles
33

Silva, Samuel da [UNESP]. "Projeto de controladores robustos para aplicações em estruturas inteligentes utilizando desigualdades matriciais lineares." Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/94551.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2005-02-21Bitstream added on 2014-06-13T19:55:35Z : No. of bitstreams: 1 silva_s_me_ilha.pdf: 1382147 bytes, checksum: 3fda6ad8742fdeab5c8e0db680440cbe (MD5)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Este trabalho tem como propósito utilizar técnicas de controle robusto para atenuação ativa de vibração mecânica em estruturas acopladas a atuadores e sensores piezelétricos. Os controladores são projetados segundo o enfoque de otimização convexa, com os requisitos envolvendo desigualdades matriciais lineares (LMIs). A proposta é ilustrar duas sínteses diferentes de realimentação via LMIs. A primeira é o projeto de controladores por realimentação de estados, estimados por um observador, considerando incertezas paramétricas do tipo politópicas. A segunda metodologia é baseada no controle H8 via realimentação do sinal de saída, considerando incertezas dinâmicas limitadas por norma. Os sensores/atuadores são posicionados em pontos ótimos utilizando-se a norma H8 como índice de desempenho. Os modelos matemáticos utilizados na síntese dos controladores foram obtidos a partir do método dos elementos finitos considerando o acoplamento eletromecânico entre os atuadores/sensores e a estrutura base ou a partir de métodos de identificação. Neste contexto, este trabalho também discute e exemplifica o algoritmo de realização de autosistemas (ERA). Três exemplos são solucionados para exemplificar a metodologia implementada: uma estrutura tipo placa, uma viga engastada-livre e a supressão ativa de flutter em um aerofólio 2-D, problema de grande interesse na indústria aeronáutica. Os resultados mostraram uma significante atenuação da vibração estrutural na faixa de freqüência de interesse e o atendimento dos requisitos impostos na fase de projeto.
The proposal of this work is to use robust control techniques in order to suppress mechanical vibration in structures with pieozoelectric sensors and actuators coupled. The controllers are designed by convex optimization and the constraints are dealt through linear matrix inequalities (LMIs) frameworks. Two different methodologies to feedback the system by using LMIs are explained. The first one is the observer-based state-feedback considering polytopic uncertainties. The second one is the H output feedback control considering norm-bound uncertainties. The sensors/actuators are located in optimal placements by using H norm as performance index. The mathematical models used in the controller design were obtained by finite element methods considering eletromechanical effects between the host structure and piezoelectric sensors/actuators patches or by using identification methods. In this sense, it is also discussed the eigensystem realization algorithm (ERA). Three different applications are proposed and solved in order to illustrate the applicability of the methodology: a cantilever plate; a cantilever beam; and an active flutter suppression in a 2-D airfoil, a problem of considered interest in the aeronautic industry. The results showed the vibration suppression in the bandwidth of interest when submited to the requirements imposed by practical situations.
APA, Harvard, Vancouver, ISO, and other styles
34

Bueno, Douglas Domingues. "Controle ativo de vibrações e localização ótima de sensores e atuadores piezelétricos /." Ilha Solteira : [s.n.], 2007. http://hdl.handle.net/11449/94556.

Full text
Abstract:
Orientador: Vicente Lopes Júnior
Banca: Walter Katsumi Sakamoto
Banca: Alberto Luiz Serpa
Resumo: Este trabalho apresenta o projeto do regulador linear quadrático (LQR - do inglês Linear Quadratic Regulator) para atenuar vibrações em estruturas mecânicas. Estas estruturas, com atuadores e sensores acoplados, são denominadas estruturas inteligentes. Os projetos de controladores ativos são resolvidos utilizando desigualdades matriciais lineares (LMIs - do inglês Linear Matrix Inequalities). Assim, é possível projetar controladores robustos considerando incertezas paramétricas na planta a ser controlada. São utilizados atuadores e sensores piezelétricos (PZTs) para aplicações em estruturas flexíveis dos tipos vigas e placas e, também, atuadores de pilha para aplicações em estruturas do tipo treliça. O problema do posicionamento ótimo dos atuadores e sensores piezelétricos também é resolvido utilizando as normas de sistemas H2, H , Hankel e as matrizes grammianas de observabilidade e controlabilidade. O modelo matemático da estrutura inteligente é obtido a partir do Método dos Elementos Finitos e, também, utilizando o Método de Identificação de Subespaços através de dados experimentais. O problema de posicionamento ótimo dos atuadores e sensores e o controle ativo de vibração são apresentados em simulações numéricas e experimentais. Os resultados mostram que os controladores robustos aumentam o amortecimento estrutural minimizando as amplitudes de vibração.
Abstract: This work presents the Linear Quadratic Regulator design to vibration attenuation in mechanical structures. These structures are named Smart Structures because they use actuators and sensors electromechanically coupled. Active controller designs are solved using Linear Matrix Inequalities. So, it is possible to consider polytopic uncertainties. Piezoelectric actuators and sensors are used for applications in flexible structures as beams and plates and, also, stack actuators for applications in truss structures. Optimal placement problem of piezoelectric actuators and sensors also solved using H2, H , Hankel system norms and controllability and observability grammian matrices. The mathematical model of the smart structure is obtained through Finite Element Method and, also, through Numerical State Space of Subspace System Identification (Subspace Method) by experimental data. The optimal placement of actuator and sensor and the active vibration control is numerically and experimentally implemented. Results show that the robust controllers increase the structural damping minimizing magnitude of vibrations.
Mestre
APA, Harvard, Vancouver, ISO, and other styles
35

FONSECA, JÚNIOR Armando Wilmans Nunes da. "Modelagem e análise de protótipo de ponte estaiada sob cargas dinâmicas incorporando molas de nitinol superelásticas para supressão de vibrações." Universidade Federal de Campina Grande, 2018. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1924.

Full text
Abstract:
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-10-09T14:06:57Z No. of bitstreams: 1 ARMANDO WILMANS NUNES DA FONSECA JÚNIOR - DISSERTAÇÃO (PPGEM) 2018.pdf: 5713433 bytes, checksum: aba957d62b27260ecd8141ce8547fa05 (MD5)
Made available in DSpace on 2018-10-09T14:06:57Z (GMT). No. of bitstreams: 1 ARMANDO WILMANS NUNES DA FONSECA JÚNIOR - DISSERTAÇÃO (PPGEM) 2018.pdf: 5713433 bytes, checksum: aba957d62b27260ecd8141ce8547fa05 (MD5) Previous issue date: 2018-08-31
Capes
No decorrer dos anos, com a construção de pontes cada vez mais longas e leves, o comportamento dinâmico passa a ser um fator limitante no projeto dessas estruturas. Portanto, é de grande interesse que sistemas de controle de vibrações estruturais sejam desenvolvidos. Entre os vários materiais utilizados atualmente para supressão de vibrações, estão as ligas com memória de forma (LMF). Estas vêm ganhando popularidade graças a sua capacidade de sofrer grandes deformações reversíveis, aliadas às suas propriedades de dissipação de energia. Neste contexto, este trabalho tem como objetivo realizar o controle passivo de vibrações num protótipo de ponte estaiada, em escala reduzida, utilizando molas superelásticas de uma LMF Ni-Ti (Nitinol). Foram realizadas análises dinâmicas na estrutura utilizando ferramentas analíticas, numéricas e experimentais. Nos resultados experimentais, obteve-se uma redução de até 75% de transmissibilidade de força em vibração livre, em comparação com a estrutura com molas equivalentes, de aço. Em vibração forçada, o valor de redução de transmissibilidade de força chegou a um máximo de 85,5%. Os resultados numéricos mostraram boa coerência na determinação dos parâmetros modais da estrutura e na resposta em vibração livre, com maior erro associado aos resultados em vibração forçada, mais especificamente no segundo modo de vibrar do sistema. Concluiu-se que as molas de LMF têm capacidade de dissipação de energia vibracional para a aplicação em estruturas de pontes e os modelos numéricos permitem uma boa previsão da resposta da estrutura.
Over the years, with the construction of increasingly longer and lighter bridges, dynamic behavior becomes a limiting factor in the design of these structures. Therefore, it is important that structural vibration control systems are developed. Among the various materials currently used for vibration suppression are the shape memory alloys (SMA). These have been gaining popularity as a result of their ability to undergo large reversible deformations, coupled with their energy dissipating properties. In this context, the objective of this dissertation is to perform the passive vibration control of a cable-stayed bridge prototype, in small scale, using SMA Ni-Ti (Nitinol) superelastic springs. Dynamic analyses were performed using analytical, numerical and experimental tools. In the experimental results, a reduction of 75% of force transmissibility in free vibration was obtained, compared to the structure with equivalent steel springs. In forced vibration, the value of reduction of force transmissibility reached a maximum of 85.5%. The numerical results showed good coherence in the determination of the modal parameters of the structure and the response of the latter in free vibration, with the largest error associated to the second mode of vibration of the structure, in forced vibration. It was concluded that the SMA springs have the capacity to dissipate vibrational energy, for the application in bridges structures, and the numerical models allow a good prediction of the structure response.
APA, Harvard, Vancouver, ISO, and other styles
36

Gasparini, José Nilson. "Controle de vibração em uma pá inteligente de helicóptero." Universidade de São Paulo, 2004. http://www.teses.usp.br/teses/disponiveis/18/18135/tde-12022016-170415/.

Full text
Abstract:
O objetivo deste trabalho é investigar o controle ativo de vibração em uma pá inteligente de helicóptero. O desenvolvimento de materiais inteligentes para trabalharem como sensores e atuadores apresentam uma nova alternativa no controle de vibração. A pá de helicóptero é modelada pelo método dos elementos finitos, considerando os movimentos de batimento, flexão no plano de rotação, estiramento axial e torção. O modelo da pá considera também ângulo de torção geométrica, não coincidência entre os eixos, elástico e do centro de gravidade das seções transversais e material isotrópico. O modelo matemático é desenvolvido, e nele é incorporado atuadores piezelétricos distribuídos ao longo da envergadura da pá. O controle ativo de vibração é baseado no controle individual da pá na condição de vôo pairado. As matrizes de elementos finitos são obtidas pelo método de energia e um procedimento de linearização é aplicado às equações resultantes. O carregamento aerodinâmico linearizado é calculado para a condição de vôo pairado e a representação no espaço de estados é usada para o projeto de um controlador. Usou-se a técnica de atribuição da autoestrutura por realimentação de saída no modelo de ordem reduzida, resultado da aplicação do método da expansão por frações parciais. As simulações do modelo em malha aberta e fechada, exibiu boas qualidades de resposta, o que mostra que o controle ativo é uma boa alternativa para a redução de vibrações em helicópteros.
The objective of this work is to investigate the performance of a smart helicopter blade. Developments on smart materials for both sensing and/or actuation have provided a novel alternative in vibration control. The helicopter blade is modeled by the finite element method, considering the motions of flapping, lead-lagging, axial stretching, and torsion. The blade model also considers a pretwist angle, offset between mass and elastic axes, and isotropic material. The helicopter blade mathematical model allows the incorporation of piezoelectric actuators distributed along the blade span. The active vibration control is based on the premise of individual blade control and the investigation is carried out for hovering flight condition the finite element matrices are obtained by energy methods and a linearization procedure is applied to the resulting expressions. The linearized aerodynamic loading is calculated for hover and the state-space approach is used to design the control law. The eigenstructure assignment by output feedback is used in the blade-reduced model resulting from the application of the expansion method by partial fractions. The simulations for open and closed-loop systems are presented, having exhibited good response qualities, which shows that output feedback is a good alternative for smart helicopter blade vibration attenuation.
APA, Harvard, Vancouver, ISO, and other styles
37

Bueno, Douglas Domingues [UNESP]. "Controle ativo de vibrações e localização ótima de sensores e atuadores piezelétricos." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/94556.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:27:14Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-09-24Bitstream added on 2014-06-13T20:55:55Z : No. of bitstreams: 1 bueno_dd_me_ilha.pdf: 2346457 bytes, checksum: 53a7ababeeced81edd91bb8ef04b1c0f (MD5)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Este trabalho apresenta o projeto do regulador linear quadrático (LQR – do inglês Linear Quadratic Regulator) para atenuar vibrações em estruturas mecânicas. Estas estruturas, com atuadores e sensores acoplados, são denominadas estruturas inteligentes. Os projetos de controladores ativos são resolvidos utilizando desigualdades matriciais lineares (LMIs – do inglês Linear Matrix Inequalities). Assim, é possível projetar controladores robustos considerando incertezas paramétricas na planta a ser controlada. São utilizados atuadores e sensores piezelétricos (PZTs) para aplicações em estruturas flexíveis dos tipos vigas e placas e, também, atuadores de pilha para aplicações em estruturas do tipo treliça. O problema do posicionamento ótimo dos atuadores e sensores piezelétricos também é resolvido utilizando as normas de sistemas H2, H , Hankel e as matrizes grammianas de observabilidade e controlabilidade. O modelo matemático da estrutura inteligente é obtido a partir do Método dos Elementos Finitos e, também, utilizando o Método de Identificação de Subespaços através de dados experimentais. O problema de posicionamento ótimo dos atuadores e sensores e o controle ativo de vibração são apresentados em simulações numéricas e experimentais. Os resultados mostram que os controladores robustos aumentam o amortecimento estrutural minimizando as amplitudes de vibração.
This work presents the Linear Quadratic Regulator design to vibration attenuation in mechanical structures. These structures are named Smart Structures because they use actuators and sensors electromechanically coupled. Active controller designs are solved using Linear Matrix Inequalities. So, it is possible to consider polytopic uncertainties. Piezoelectric actuators and sensors are used for applications in flexible structures as beams and plates and, also, stack actuators for applications in truss structures. Optimal placement problem of piezoelectric actuators and sensors also solved using H2, H , Hankel system norms and controllability and observability grammian matrices. The mathematical model of the smart structure is obtained through Finite Element Method and, also, through Numerical State Space of Subspace System Identification (Subspace Method) by experimental data. The optimal placement of actuator and sensor and the active vibration control is numerically and experimentally implemented. Results show that the robust controllers increase the structural damping minimizing magnitude of vibrations.
APA, Harvard, Vancouver, ISO, and other styles
38

Tateo, Flaviano. "Distributed shunted piezoelectric cells for vibroacoustic interface optimization." Phd thesis, Université de Franche-Comté, 2013. http://tel.archives-ouvertes.fr/tel-01068815.

Full text
Abstract:
Smart materials is an active research area devoted to the design of structured materials showingphysical properties that can be modified in response to an external stimulus.This study focuses on the analysis and design of adaptive system for vibroacoustic control. Theresearch investigates the design of a active interface made of piezoelectric transducers arranged ina two-dimensional lattice. Each transducer is individually shunted to an external electric circuitsynthesizing a negative capacitance effect. It allows to control waves propagating inside a structuretaking advantage of the multi-field coupling between the structural plate and the electrical circuitsshunting the piezoelectric patches.The performance of the metacomposite has been evaluated through numerous numerical andexperimental tests. The smart wave-guide has been analyzed by using the Bloch theorem appliedto two-dimensional piezo-elastic systems. Subsequently an optimization procedure has been usedwith the purpose to select the most appropriate set of circuit's parameters.A prototype of the smart waveguide has been manufactured and tested. The results results clearlyshow the filtering and attenuating capabilities of this device.Finally a finite element model of the finite extent smart plate has been considered in order toasses the robustness of the proposed control strategy respect to a modification of the circuit'sparameters, the topology of the active interface and the properties of the controlled plate.A brief review conclude the work delineating which aspects of the design should be modified inorder to obtain a device suitable for industrial applications.
APA, Harvard, Vancouver, ISO, and other styles
39

Schulz, Sergio Luiz. "Metodologia para a alocação ótima discreta de sensores e atuadores piezoelétricos na simulação do controle de vibrações em estruturas de materiais compósitos laminados." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2012. http://hdl.handle.net/10183/62047.

Full text
Abstract:
O principal objetivo do controle de vibrações é a sua redução ou minimização, através da modificação automática da resposta estrutural. Em muitas situações isto é necessário para promover a estabilidade estrutural, e para alcançar o alto desempenho mecânico necessário em diversas áreas técnicas, tais como a engenharia aeroespacial, civil e mecânica, bem como a biotecnologia, inclusive em escala micro e nano mecânica. Uma alternativa é o uso de estruturas inteligentes, que são o resultado da combinação de sensores e atuadores integrados em uma estrutura mecânica, e um método de controle adequado. O principal objetivo deste trabalho é o desenvolvimento de rotinas computacionais para a simulação, via método dos elementos finitos, do controle ativo de estruturas inteligentes de cascas, placas e vigas delgadas de material compósito laminado com camadas de material piezoelétrico como sensores e/ou atuadores. Caracterizam esta pesquisa a utilização do elemento GPL-T9 de três nós e seis graus de liberdade mecânicos por nó, mais um grau de liberdade elétrico por camada piezoelétrica, assim como a avaliação de dois métodos de controle, o Proporcional-Integral-Derivativo (PID) e o Regulador Quadrático Linear ou Linear Quadratic Regulator (LQR), incluindo o LQR Modal, e a otimização da localização de pastilhas piezoelétricas através de um Algoritmo Genético (AG). Várias aplicações são apresentadas e os resultados obtidos são comparados aos disponíveis na literatura especializada.
The main objective of vibration control is its reduction or even its minimization by the automatic modification of the structural response. Sometimes this is necessary to increase structural stability and to attain a high mechanical behavior in several areas such as aerospace, civil and mechanical engineering, biotechnology, including macro, micro and nanomechanical scales. An alternative is to use a smart structure, which results of the combinations of integrated sensors and actuators in a mechanical structure and a suitable control method. Development of a computational code to simulate, using finite elements, the active control in smart structures such as slender shells, plates and beams of composite materials with embedded piezoelectric layers acting as actuators and sensors is the main objective of this work. This research is characterized by the use of the GPL-T9 element with three nodes and six mechanical degrees of freedom and one electrical degree of freedom per piezoelectric layer, by the evaluation of two control methods, the Proportional Integral Derivative (PID) and the Linear Quadratic Regulator (LQR), including the Modal LQR, and, finally by the optimization of piezoelectric patches placement using a Genetic Algorithm (GA). Several examples are presented and compared with those obtained by other authors.
APA, Harvard, Vancouver, ISO, and other styles
40

Chang, Min-Yung. "Active vibration control of composite structures." Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-09162005-115021/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Akl, Wael Nabil. "Smart foam for active vibration and noise control." College Park, Md. : University of Maryland, 2004. http://hdl.handle.net/1903/222.

Full text
Abstract:
Thesis (Ph. D.) -- University of Maryland, College Park, 2004
Thesis research directed by: Mechanical Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
APA, Harvard, Vancouver, ISO, and other styles
42

Punhani, Amitesh. "Shape and Vibration Control of Smart Laminated Plates." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1205990432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhou, Li. "Vibration control of buildings using smart magnetorheological dampers /." View Abstract or Full-Text, 2002. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202002%20ZHOU.

Full text
Abstract:
Thesis (Ph. D.)--Hong Kong University of Science and Technology, 2002.
Includes bibliographical references (leaves 163-177). Also available in electronic version. Access restricted to campus users.
APA, Harvard, Vancouver, ISO, and other styles
44

Baillargeon, Brian P. "Active Vibration Suppression of Smart Structures Using Piezoelectric Shear Actuators." Fogler Library, University of Maine, 2003. http://www.library.umaine.edu/theses/pdf/BailargeonBP2003.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Rentzos, Panagiotis. "Active vibration control of civil engineering structures." Thesis, City University London, 2007. http://openaccess.city.ac.uk/8571/.

Full text
Abstract:
This thesis is in the area of active vibration control of Civil Engineering structures subject to earthquake loading. Existing structural control methods and technologies including passive, active, semi-active and hybrid control are first introduced. An extensive analysis of a frame-pendulum model is developed and analysed to investigate under what conditions effective energy dissipation is achieved in Tuned Mass Damper systems and the limitation of these devices under stiffness degradation when the structure enters the inelastic region. Linear Quadratic Gaussian and H-infinity active control schemes are designed, simulated and assessed for buildings, modelled as lumped parameter systems, including base and actuator dynamics. Various aspects of the designs are extensively evaluated using multiple criteria and loading conditions and validated in large-scale benchmark problems under practical limitations and implementation constraints. A novel design method is proposed for minimising peak responses of regulated signals via a deadbeat parametrisation of all stabilising controllers in discrete-time. The method incorporates constraints on the magnitude and rate of the control signal and is solved via efficient Linear Programming methods. It is argued that this type of optimisation is more relevant for structural control, as failure occurs when maximum member displacements are exceeded. The problem of stiffness matrix estimation from experimental data is formulated as an optimisation problem and solved under various conditions (positive definiteness, tridiagonal structure) via an alternating convex projection scheme. Both static and dynamic loading is considered. The method is finally incorporated in an adaptive control scheme involving the redesign in real-time of an LQR (Linear Quadratic Regulator) active vibration controller. It is shown that the method is successful in recovering the stability and performance properties of the nominal design under conditions of significant uncertainty in the stiffness parameters.
APA, Harvard, Vancouver, ISO, and other styles
46

Young, Andrew J. "Active control of vibration in stiffened structures." Title page, contents and abstract only, 1995. http://hdl.handle.net/2440/37722.

Full text
Abstract:
Active control of vibration in structures has been investigated by an increasing number of researchers in recent years. There has been a great deal of theoretical work and some experiment examining the use of point forces for vibration control, and more recently, the use of thin piezoelectric crystals laminated to the surfaces of structures. However, control by point forces is impractical, requiring large reaction masses, and the forces generated by laminated piezoelectric crystals are not sufficient to control vibration in large and heavy structures. The control of flexural vibrations in stiffened structures using piezoceramic stack actuators placed between stiffener flanges and the structure is examined theoretically and experimentally in this thesis. Used in this way, piezoceramic actuators are capable of developing much higher forces than laminated piezoelectric crystals, and no reaction mass is required. This thesis aims to show the feasibility of active vibration control using piezoceramic actuators and angle stiffeners in a variety of fundamental structures. The work is divided into three parts. In the first, the simple case of a single actuator used to control vibration in a beam is examined. In the second, vibration in stiffened plates is controlled using multiple actuators, and in the third, the control of vibration in a ring-stiffened cylinder is investigated. In each section, the classical equations of motion are used to develop theoretical models describing the vibration of the structures with and without active vibration control. The effects of the angle stiffener(s) are included in the analysis. The models are used to establish the quantitative effects of variation in frequency, the location of control source(s) and the location of the error sensor(s) on the achievable attenuation and the control forces required for optimal control. Comparison is also made between the results for the cases with multiple control sources driven by the same signal and with multiple independently driven control sources. Both finite and semi-finite structures are examined to enable comparison between the results for travelling waves and standing waves in each of the three structure types. This thesis attempts to provide physical explanations for all the observed variations in achievable attenuation and control force(s) with varied frequency, control source location and error sensor location. The analysis of the simpler cases aids in interpreting the results for the more complicated cases. Experimental results are given to demonstrate the accuracy of the theoretical models in each section. Trials are performed on a stiffened beam with a single control source and a single error sensor, a stiffened plate with three control sources and a line of error sensors and a ring-stiffened cylinder with six control sources and a ring of error sensors. The experimental results are compared with theory for each structure for the two cases with and without active vibration control.
Thesis (Ph.D.)--Mechanical Engineering, 1995.
APA, Harvard, Vancouver, ISO, and other styles
47

MURUGAN, JAYA MAHESH. "Vibration monitoring and control of industrial structures." Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2858351.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Beache, Kemrom Vidol Ariel. "Active vibration control of a smart beam under rotation." reponame:Repositório Institucional da UFABC, 2016.

Find full text
Abstract:
Orientador: Prof. Dr. Andre Fenili
Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Engenharia Mecânica, 2016.
Uma viga em rotação é equipada com sensores e atuadores piezoelétricos em conjunto com um controlador proporcional-derivativo (PD) ou um controlador do tipo regulador linear quadrático (LQR) para comparação. O objetivo dos controladores é a minimização da deflexão na extremidade livre da estrutura devido ao seu movimento em torno do eixo de rotação. Utilizando o efeito piezoelétrico ¿ a geração de uma voltagem quando a estrutura está sujeita a uma tensão mecânica ¿ e, inversamente, a geração de uma deformação quando sujeito a uma voltagem, a estrutura do tipo viga é considerada como um sistema inteligente, tendo a capacidade de detectar e corrigir deflexões ao longo de seu comprimento. Usando as equações de Lagrange, a equação governante do movimento é obtida para a viga. A força (momento) e a rigidez da cerâmica piezoelétrica são subsequentemente adicionadas à equação governante da viga. A função de Heaviside é usada para a localização do atuador piezoelétrico ao longo da viga. A posição do atuador piezoelétrico varia a partir da extremidade engastada até a extremidade livre da viga ocupando três diferentes posições. O comprimento do atuador piezoelétrico é de um terço do comprimento da viga. O melhor posicionamento do piezoelétrico dentre os investigados é determinado para os três primeiros modos de vibração. Duas técnicas de controle linear são investigadas com o objetivo de eliminar a vibração na estrutura flexível: PD e LQR. O grau de liberdade associado ao movimento de rotação da viga (e suas derivadas) é prescrito por meio de um perfil pré-definido.
A rotating beam is fitted with piezoelectric sensors and actuators in conjunction with a proportional-derivative (PD) controller and a linear quadratic regulator (LQR) controller in order to minimize the deflection of the tip due to the rotational motion of the structure. Utilizing the piezo effects, the generation of a voltage, when subjected to a strain, and conversely the generation of a strain when subjected to a voltage, the system is considered as smart, having the ability to sense and correct deflections of the tip of the beam. Using the equations of Lagrange, the governing equation of motion is derived for the beam. The force (moment) and the stiffness of the piezo ceramic are subsequently added to the governing equation of the beam. In a model of the system, a Heaviside function is used to manipulate the position of the piezo. The position of the piezo will be varied from the root of the beam (the clamped end) to the free end of the beam, occupying three different positions; the length of the piezo is a third of the beam¿s length. The best position of the piezo is determined for three modes of vibration. Two linear control techniques are investigated in order to eliminate vibration in the flexible structure. The degree of freedom associated with the rotational motion is obtained by a predefined profile.
APA, Harvard, Vancouver, ISO, and other styles
49

Nauclér, Peter. "Modeling and control of vibration in mechanical structures /." Uppsala : Univ. : Dept. of Information Technology, Univ, 2005. http://www.it.uu.se/research/publications/lic/2005-005/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Rodrigues, Cunha Leandro. "Robust bandgaps for vibration control in periodic structures." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD060.

Full text
Abstract:
Dans cette thèse, une méthodologie simple pour trouver des bandes interdites robustes est présentée. Quatre cellules unitaires différentes sont utilisées comme exemples numériques pour des modèles infinis et finis. Les deux premiers sont liés aux zones d'atténuation créées pour les ondes longitudinales en utilisant des cellules unitaires de masse et ressort et de barres. La méthode Matrice de Transfert est utilisée pour modéliser la cellule unitaire. Avec cette méthode, il est possible d'obtenir les réponses en fréquence, en utilisant une méthode spectrale, et des constantes de dispersion, en résolvant un problème a valeur propre. Les paramètres physiques et géométriques les plus influents sont déterminés en effectuant une analyse de sensibilité aux dérivées partielles et aux différences finies à travers un modèle infini. Dans ce cas, pour le deuxième exemple, la section de la demi-cellule est considérée comme une variable stochastique, représentée par une fonction densité de probabilité pour une analyse probabiliste. Le troisième exemple concerne les bandes interdites pour les ondes de flexion utilisant des cellules unitaires de poutres. Dans ce cas, la méthode habituelle de Matrice de Transfert ne peut pas être utilisée pour obtenir une réponse de structures finies en basse fréquence en raison de la présence de matrices mal conditionnées. Par conséquent, une méthode récursive est utilisée pour éviter la multiplication de matrices. Une analyse expérimentale est également réalisée pour ce cas, mais considérant que la longueur de la moitié des cellules unitaire comme incertaine. Le dernier exemple est un treillis périodique considérée avec et sans propriétés intelligentes. La cellule unitaire de cette structure en treillis peut avoir des membres passifs et actifs. À cause de la complexité de ce type de cellule, la méthode des éléments finis est utilisée. Cependant, ce type de structure ne présente pas de ruptures d'impédance suffisamment fortes pour ouvrir des bandes interdites même avec la présence de sous-structures répétitives. En vertu de cela, huit scénarios sont étudiés en considérant l'introduction de masse concentrée dans les articulations et les actionneurs piézoélectriques dans les circuits shunt résonants qui sont considérés comme stochastiques pour des cas spécifiques. À la fin, les résonances internes sont analysées à l'aide d'un modèle plus précis. Pour chaque modèle de structure, une simulation de Monte Carlo avec Latin Hypercube est effectuée, les distinctions entre les zones d'atténuation incertaines correspondantes pour les modèles finis et infinis sont exposées et la relation avec les modes localisés est clarifiée. Ces résultats suggèrent que les modèles finis ont une bande interdite plus large que les modèles infinis en considérant les incertitudes. En d'autres termes, les incertitudes entre les cellules voisines se compensent et les structures finies sont naturellement plus robustes. Enfin, l'effet de l'augmentation du niveau d'incertitude, en faisant varier un coefficient stochastique, est analysé et le concept de bande interdite robuste est présenté
In this thesis, a simple methodology to find robust bandgaps is presented. Four different periodic structures are used as numerical examples for infinite and finite models. The first two are related to attenuation zones created for longitudinal waves using spring-mass and stepped rod unit cells. The Transfer Matrix method is used to model the unit cell. With this method, it is possible to obtain the frequency responses, using a spectral method, and dispersion constants, solving an eigenvalue prob-lem. The most influential physical and geometrical parameters are determined by performing partial derivative and finite difference sensitivity analysis through an infinite model. Therein, for the second example, the cross-section area of half-cell is considered as a stochastic variable represented by a probability density function with specific deviation properties for a probabilistic analysis. The third example concerns the bandgaps for flexural waves using stepped beams unit cells. For this case, the classical Transfer Matrix method cannot be used to obtain finite structures response in low frequency because of the presence of ill-conditioned matrices. Therefore, a recursive method termed Translation Matrix, which avoid matrix multiplication, is used and the corresponding probabilistic analysis is per-formed using the half-cell thickness as a random variable. An experimental analysis is also performed for this case, but considering half-cell length as uncertain. The last example is a periodic truss that is considered with and without smart components. The unit cell of this lattice structure can present pas-sive and active members. As long as the type of unit cell is more complex, the finite element method is used. However, this kind of structure does not have impedance mismatches strong enough to open bandgaps although the presence of repetitive substructures. In virtue of this, eight scenarios are inves-tigated considering the introduction of concentrated mass on joints and piezoelectric actuators in reso-nant shunt circuit which are considered as stochastic for specific cases. For each structure model, a Monte Carlo Simulation with Latin Hypercube sampling is carried out, the distinctions between the corresponding uncertain attenuation zones for finite and infinite models are exposed and the relation with localized modes is clarified. These results lead to conclude that the finite models present a larger stop zone considering stochastic parameters than infinite models. In other words, the uncertainties be-tween neighbors’ cells compensate each other and the finite structures is naturally more robust. Final-ly, the effect of increasing the uncertainty level, by varying a stochastic coefficient, is analyzed and the concept of robust band gap is presented
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography