Dissertations / Theses on the topic 'Smartphone sensing'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 24 dissertations / theses for your research on the topic 'Smartphone sensing.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Yang, Zhenyu. "Smartphone-based Optical Sensing." University of Dayton / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1461863029.
Full textVecchiotti, Andrea. "Sensing della presenza di scale tramite smartphone." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/8232/.
Full textGhorpade, Ajinkya (Ajinkya Ranjeet). "Inferring travel activity pattern from smartphone sensing data using deep learning." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120642.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 77-85).
Understanding the travel routine of the individuals is important in many domains. In transport research understanding daily travel routine is crucial for modeling the travel behavior of the individuals. Such models help predict the travel demand and develop strategies for managing that demand. Understanding travel patterns of the individuals is also important to develop effective incentive mechanisms. Location-based services like personal digital assistants and journey planners use historical travel routine to build preferences of the user and make useful recommendations. In health sciences logging the routine travel behavior is important to monitor health of the patients and make recommendations wherever necessary. Several fitness tracking applications available on smartphones utilize the travel activity diary to evaluate the fitness of the individuals and make recommendations. The proliferation of sensing-enabled smartphone devices engendered the development of tools for logging travel routine of individuals. The research in this thesis uses the sensor data collected from smartphone devices to develop a travel activity inference algorithm. Presently, the research into travel activity inference has been focused on developing supervised learning algorithms. These algorithms require a large amount of labeled data for training algorithms that generalize well. Generalization in personalized travel activity inference is a challenging problem due to the concept drift. The problem of concept drift is magnified as the more personalized information is introduced in the input variables. Once the users start using the applications they are constantly generating new data. Expecting the users to label all the data generated by them is impractical. Instead, it would be useful to identify only those examples which would help most improve the algorithm and have the user label such instance. This reduces the burden on the user and does not discourage them from participating in the data collection process. In other words, we need a model that is identifies concept drift in data and adapts accordingly. There has been advances in the deep learning research in last few years. The deep learning algorithms provide a framework for learning feature representation from raw data. The convolutional neural networks have been particularly effective in learning feature representations on many datasets. These models have achieved significant improvement on many complex problems over other machine learning approaches. For the sequential classification problems like the travel activity inference, the recurrent neural network like long short term memory networks are particularly suitable. This thesis proposes to use the deep learning algorithms for travel activity inference. To develop an end-to-end deep learning algorithm that learns feature representations from raw sensor data and incorporates different sensors with differing frequencies. The research proposes using a combination of convolutional neural network for feature representation learning in both time and frequency domain and long short term memory network for sequential classification. In practical situations, the users of the smartphones cannot be asked to carry their smartphones in a fixed position every time. The proposed algorithm for travel activity inference need to be robust to changes in orientation of the smartphones. We compared the performance of the proposed deep learning algorithm against a baseline model based on the current supervised machine learning approaches. The deep learning algorithm achieved an overall average accuracy of 95.98% compared to the baseline method which achieved an overall average accuracy of 89%. We also show that the proposed deep learning algorithm is robust to changes in the orientation of the smartphone.
by Ajinkya Ghorpade.
S.M. in Transportation
Li, Dong. "Enabling Smart Driving through Sensing and Communication in Vehicular Networks." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1397760624.
Full textHossain, Md Arafat. "Lab-in-a-Phone for Smart Sensing." Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/16951.
Full textMehl, M. R. "The Electronically Activated Recorder or EAR: A Method for the Naturalistic Observation of Daily Social Behavior." SAGE PUBLICATIONS INC, 2017. http://hdl.handle.net/10150/623432.
Full textChoi, Daeyoung. "Participatory Air Quality Monitoring System." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1276047032.
Full textNieznanska, Marta. "Experimental evaluation of the smartphone as a remote game controller for PC racing games." Thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-4000.
Full textNguyen, Van Khang. "Détection et agrégation d'anomalies dans les données issues des capteurs placés dans des smartphones." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL021/document.
Full textMobile and wireless networks have developed enormously over the recent years. Far from being restricted to industrialized countries, these networks which require a limited fixed infrastructure, have also imposed in emerging countries and developing countries. Indeed, with a relatively low structural investment as compared to that required for the implementation of a wired network, these networks enable operators to offer a wide coverage of the territory with a network access cost (price of devices and communications) quite acceptable to users. Also, it is not surprising that today, in most countries, the number of wireless phones is much higher than landlines. This large number of terminals scattered across the planet is an invaluable reservoir of information that only a tiny fraction is exploited today. Indeed, by combining the mobile position and movement speed, it becomes possible to infer the quality of roads or road traffic. On another level, incorporating a thermometer and / or hygrometer in each terminal, which would involve a ridiculous large-scale unit cost, these terminals could serve as a relay for more reliable local weather. In this context, the objective of this thesis is to study and analyze the opportunities offered by the use of data from mobile devices to offer original solutions for the treatment of these big data, emphasizing on optimizations (fusion, aggregation, etc.) that can be performed as an intermediate when transferred to center(s) for storage and processing, and possibly identify data which are not available now on these terminals but could have a strong impact in the coming years. A prototype including a typical sample application will validate the different approaches
Rachuri, Kiran Kumar. "Smartphones based social sensing : adaptive sampling, sensing and computation offloading." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648104.
Full textNguyen, Van Khang. "Détection et agrégation d'anomalies dans les données issues des capteurs placés dans des smartphones." Electronic Thesis or Diss., Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLL021.
Full textMobile and wireless networks have developed enormously over the recent years. Far from being restricted to industrialized countries, these networks which require a limited fixed infrastructure, have also imposed in emerging countries and developing countries. Indeed, with a relatively low structural investment as compared to that required for the implementation of a wired network, these networks enable operators to offer a wide coverage of the territory with a network access cost (price of devices and communications) quite acceptable to users. Also, it is not surprising that today, in most countries, the number of wireless phones is much higher than landlines. This large number of terminals scattered across the planet is an invaluable reservoir of information that only a tiny fraction is exploited today. Indeed, by combining the mobile position and movement speed, it becomes possible to infer the quality of roads or road traffic. On another level, incorporating a thermometer and / or hygrometer in each terminal, which would involve a ridiculous large-scale unit cost, these terminals could serve as a relay for more reliable local weather. In this context, the objective of this thesis is to study and analyze the opportunities offered by the use of data from mobile devices to offer original solutions for the treatment of these big data, emphasizing on optimizations (fusion, aggregation, etc.) that can be performed as an intermediate when transferred to center(s) for storage and processing, and possibly identify data which are not available now on these terminals but could have a strong impact in the coming years. A prototype including a typical sample application will validate the different approaches
Schneider, Oliver Stirling. "Gait sensing on smartphones to support mobile exercise applications and games." Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/43129.
Full textBudde, Matthias [Verfasser], and M. [Akademischer Betreuer] Beigl. "Distributed, Low-Cost, Non-Expert Fine Dust Sensing with Smartphones / Matthias Budde ; Betreuer: M. Beigl." Karlsruhe : KIT-Bibliothek, 2019. http://d-nb.info/1182430740/34.
Full textZamora, Mero Willian Jesús. "Crowdsensing solutions for urban pollution monitoring using smartphones." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/115483.
Full textLa contaminació ambiental és un dels principals problemes que afecten el nostre planeta. El creixement industrial i els aglomerats urbans, entre altres, estan contribuint al fet que aquest problema es diversifique i es cronifique. La presència de contaminants ambientals en nivells elevats afecta la salut humana, sent la qualitat de l'aire i els nivells de soroll exemples de factors que poden causar efectes negatius en les persones, tant psicològicament com fisiològicament. No obstant això, la ubiqüitat de les microcomputadores i l'augment dels sensors incorporats als nostres telèfons intel·ligents han fet possible l'aparició de noves estratègies per a mesurar aquesta contaminació. Així, el mobile crowdsensing s'ha convertit en un nou paradigma mitjançant el qual els telèfons intel·ligents emergeixen com a tecnologia habilitadora, i l'adopció generalitzada d'aquest proporciona un enorme potencial per al seu creixement, ja que permet operar a gran escala i amb uns costos assumibles per a la societat. A través del crowdsensing, els telèfons intel·ligents poden convertir-se en unitats de detecció flexibles i multiús que, a través dels sensors integrats en els esmentats dispositius, o combinats amb nous sensors, permeten monitoritzar regions d'interès amb una bona granularitat, tant espacial com temporal. En aquesta tesi ens centrem en el disseny de solucions de crowdsensing usant telèfons intel·ligents, on abordem problemes de contaminació ambiental, específicament del soroll i de la contaminació de l'aire. Amb aquest objectiu, s'estudien, en primer lloc, les propostes de crowdsensing que han sorgit en els últims anys. Els resultats del nostre estudi demostren que encara hi ha molta heterogeneïtat en termes de tecnologies utilitzades i mètodes d'implementació, encara que els dissenys modulars en el client i en el servidor semblen ser dominants. Pel que fa a la contaminació de l'aire, proposem una arquitectura que permeta mesurar la contaminació d'aquest, concretament de l'ozó, dins d'entorns urbans. La nostra proposta utilitza telèfons intel·ligents com a centre de l'arquitectura, sent aquests dispositius els encarregats de llegir les dades d'un sensor mòbil extern, i d'enviar després aquestes dades a un servidor central per al seu processament i tractament. Els resultats obtinguts demostren que l'orientació del sensor i el període de mostratge, dins de certs límits, tenen molt poca influència en les dades capturades. Pel que fa a la contaminació acústica, proposem una arquitectura per a mesurar els nivells de soroll en entorns urbans basada en crowdsensing, i la característica principal de la qual és que no requereix intervenció de la persona usuària. En aquesta tesi detallem aspectes com ara el calibratge dels telèfons intel·ligents, la qualitat de les mesures obtingudes, l'instant de mostratge, el disseny del servidor i la interacció client-servidor. A més, hem validat la nostra solució en escenaris reals per a demostrar el potencial de la solució assolida. Els resultats experimentals mostren que, amb la nostra proposta, és possible mesurar nivells de soroll en diferents zones urbanes o rurals amb un grau de precisió comparable al dels dispositius professionals, tot això sense requerir intervenció de l'usuari o usuària, i amb un consum reduït quant a recursos del sistema. En general, les diferents contribucions d'aquesta tesi doctoral ofereixen un punt de partida per a nous desenvolupaments, i ofereixen estratègies de calibratge i algorismes eficients amb vista a realitzar mesures representatives. A més, un important avantatge de la nostra proposta és que pot ser implementada de forma directa tant en institucions públiques com no governamentals en poc de temps, ja que utilitza tecnologia accessible i solucions basades en el codi obert.
Environmental pollution is one of the main problems that affect our planet. Industrial growth and urban agglomerations, among others, are contributing to the diversification and chronification of this problem. The presence of environmental pollutants at high levels affect human health, with air quality and noise levels being examples of factors that can cause negative effects on people both psychologically and physiologically. Traditionally, environmental pollution is measured through monitoring centers, which are usually fixed and have a high cost. However, the ubiquity of microcomputers and the increase in the number of sensors embedded in our smartphones, have paved the way for the appearance of new strategies to measure such pollution. Thus, Mobile Crowdsensing has become a new paradigm through which smartphones emerge as an enabling technology, and whose widespread adoption provides enormous potential for growth, allowing large-scale operations, and with costs acceptable to our society. Through crowdsensing, smartphones can become flexible and multipurpose detection units that, through the sensors integrated into these devices, or combined with new sensors, allow monitoring regions of interest with good spatial and temporal granularity. In this thesis, we focus on the design of crowdsensing solutions using smartphones. We deal with environmental pollution problems, specifically noise and air pollution. With this objective, the crowdsensing proposals that have emerged in recent years are studied in the first place. The results of our study show that there is still a lot of heterogeneity in terms of technologies used and implementation methods, although modular designs at both client and server seem to be dominant. Concerning air pollution, we propose an architecture that allows measuring air pollution, specifically ozone, in urban environments. Our proposal uses smartphones as the center of the architecture, being these devices responsible for reading the data obtained by an external mobile sensor, and then sending such data to a central server for processing and analysis. In this proposal, several problems have been analyzed with regard to the orientation of the external sensor and the sampling time, and the proposed solution has been validated in real scenarios. The results obtained show that the orientation of the sensor and the sampling period, within certain limits, have very little influence on the captured data. Also, by comparing the heat maps generated by our solution with the data from the existing monitoring stations in the city of Valencia, we demonstrate that our approach is capable of providing greater data granularity. Concerning noise pollution, we propose an architecture to measure noise levels in urban environments based on crowdsensing, and whose main characteristic is that it does not require user intervention. In this thesis, we detail aspects such as the calibration of smartphones, the quality of the measurements obtained, the sampling instant, the server design, and the client-server interaction. Besides, we have validated our solution in real scenarios to demonstrate the potential of the proposed solution. Experimental results show that, with our proposal, it is possible to measure noise levels in different urban or rural areas with a degree of precision comparable to that of professional devices, all without requiring the intervention of the user, and with reduced consumption of system resources. In general, the different contributions of this doctoral thesis provide a starting point for new developments, offering efficient calibration strategies and algorithms to make representative measurements. Besides, a significant advantage of our proposal is that it can be implemented straightforwardly by both public and non-governmental institutions in a short time, as it relies on accessible technology and open source software
Zamora Mero, WJ. (2018). Crowdsensing solutions for urban pollution monitoring using smartphones [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/115483
TESIS
Visuri, A. (Aku). "Wear-IT:implications of mobile & wearable technologies to human attention and interruptibility." Doctoral thesis, Oulun yliopisto, 2019. http://urn.fi/urn:isbn:9789526222714.
Full textTiivistelmä Tässä väitöskirjassa tarkastellaan erilaisia tapoja hyödyntää mobiilikäytön tunnistamista ymmärtääkseen, miten loppukäyttäjät käyttävät ja ovat vuorovaikutuksessa älykkäiden teknologioidensa, esimerkiksi älypuhelimien ja älykellojen kanssa. Näitä aiheita tutkitaan laajasti muissa rinnakkaisissa tutkimuksissa, mutta kirjallisuudessa on vielä lukuisia aukkoja. Matkaviestinnän käytöstä kerätään kvantitatiiviset tiedot, jotka koskevat laitteen käyttöä luonnossa. Tämän tiedon kerääminen on kriittistä jotta voidaan kerätä puolueettomia kokemuksia ja käyttöjälkiä. Tässä työssä käsitellään kolmea pääteemaa; i) miten älypuhelinkäyttöömme vaikuttaa meidän mielialamme ja miten älypuhelinkäyttöämme voidaan analysoida käyttötapojen perusteella, ii) paljastaa älykellon käyttöominaisuuksien määrälliset tutkimukset ja miten nämä tulokset heijastuvat älypuhelimen käyttöön ja iii) uusia tapoja lieventää katkoksia älypuhelimen tai älykellon käytön aikana. Työ aloittaa selittämällä siihen liittyvää työtä ja mobiilin tunnistamisen yleistä teemaa ja sitä, miten laitteen käyttö vaikuttaa huomiokykyyn, ja jatkuu sitten yksityiskohtaisesti jokaisen mukana tulevan artikkelin osuuden yleiseen käsittelyyn. Työssä päädytään yhteenvetoon siitä, miten esitetyt artikkelit sitovat yhteen laajemman kokonaisuuden ja ottavat huomioon tämän alan tekijän ja muiden tutkijoiden tämän alan tutkimukset, ja miten tällaista työtä voitaisiin mahdollisesti parantaa edelleen tulevaisuudessa käyttämällä uusia tekniikoita. Työn päätyttyä lukijalla on laaja käsitys siitä, mitä mobiili-tunnistaminen on ja miten sitä voidaan soveltaa sekä teknologian käytön kattavaan paljastamiseen että mobiilidatan tunnistuksen hyödyntämiseen teknologian käytön tehostamiseksi
Lopes, Alexandre de Oliveira. "Activity recognition from smartphone sensing data." Master's thesis, 2012. http://hdl.handle.net/10216/68241.
Full textLopes, Alexandre de Oliveira. "Activity recognition from smartphone sensing data." Dissertação, 2012. http://hdl.handle.net/10216/68241.
Full textChen, Ji, and 陳驥. "Inference of Conversation Partners by Acoustic Sensing in Smartphone Networks." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/66vakd.
Full text國立交通大學
網路工程研究所
102
Recently, smartphones provide a promising platform for cooperative computation and inference among social groups. Microphone is a common sensor on a smartphone that can be used for acoustic sensing. A lot of personal daily contexts and activities may be inferred by analyzing the recorded acoustic data. In this work, we consider the inference of conversation partners, which is an important context of social interaction. We design an efficient smartphone-based conversation inference system, which can quickly derive the conversation partners of a phone user in a real-time manner. By considering the continuity and overlap of speeches, we propose two novel inference methods to distinguish the conversational relationship among co-located speakers. Via direct wireless communications, smartphones cooperatively conduct speaker turn recognition by processing acoustic data. The speaker turn recognition of a conversation consists of when a user speaks and how long he/she speaks. Furthermore, to improve inference accuracy, our system also derives speakers’ emotion of utterances and uses the consistency of emotions of a conversation group to make inference. To evaluate our system, we collect conversation data from movie clips and real life with the number of speakers ranging from 2 to 9. The result shows that our system achieves promising performance in both quiet indoor and noisy outdoor environments. In addition, we have also demonstrated a prototype on Android smartphones to verify the feasibility of our approach from off-the-shelf devices.
Yan, Tingxin. "Designing novel mobile systems by exploiting sensing, user context, and crowdsourcing." 2012. https://scholarworks.umass.edu/dissertations/AAI3546055.
Full text"Point of Care Detection of Iron Metabolism Parameters Through Colorimetric Sensing." Doctoral diss., 2020. http://hdl.handle.net/2286/R.I.62727.
Full textDissertation/Thesis
Doctoral Dissertation Chemical Engineering 2020
Jian, Qi-Ming, and 簡祺明. "Development of Gas Sensing Device that Integrates Smartphone-Based Spectrometer and Low-Cost Microplasma Generation Device." Thesis, 2018. http://ndltd.ncl.edu.tw/handle/z23u4f.
Full text國立臺灣大學
化學工程學研究所
106
This work presented the development of a smartphone-based spectrometer for acquisition of plasma optical emission to detect the ambient atmosphere. Through a combination of a low-cost microplasma generation device and a smartphone-based spectrometer, a portable gas detector will be designed. The smartphone-based spectrometer contains a slit, a grating, and utilizes the camera of a cellphone for spectra acquisition. The main structure of this device, a 5.0×2×7.8 cm3 cuboid, is constructed using a 3D-printer. Due to the limitation of the smartphone camera, this smartphone-based spectrometer is able to perform spectral analysis with the wavelengths from 400 to 700 nm. The full width at half maximum of this smartphone-based spectrometer is well below 10 nm, which is comparable with commercial spectrometers. The microplasma generation device used in this work is a type of dielectric barrier discharge. It is mainly made of a copper clad laminate through a toner transfer process and wet etching, and has the advantages of low cost, simple fabrication, and customization. Combining with the above device, the spectral image from smartphone can be efficiently converted into a useful spectrum by Matlab. This device not only distinguishes the background ambient, but also observes its most important emission bands in the atmosphere of volatile organic compounds: CH (431 nm, A2Δ–X2Π), C2 (469 nm, d3Πg–a3Πa) and C2 (516 nm, 563 nm and 605 nm, A3Πg–X''3Πu). The possibility of stability and quantification of plasma is also explored through smartphone camera recording mode and commercial spectrometers.
Barbosa, Ricardo Miguel Pires. "HappyStudent." Master's thesis, 2016. http://hdl.handle.net/10316/99244.
Full textIn the past few years, the idea of the “Internet of Things” has been developing rapidly, with sensors and machines communicating with each other through the Internet. These new technologies can be used to support new types of Cyber-Physical systems(CPS). Even though CPS consider humans as a part of itself, they still treat them as external element, with unpredictable behavior. In order to serve human needs better, they have to take into account all sorts of psychological and emotional states. Smartphones present an excellent opportunity to do so, seen as they contain several sensors that allow us to collect information about user movement, location, their environment, and interaction with other people. This type of mobile device usually accompanies the user anywhere he goes throughout the day. We have taken this opportunity and tried to create apps that can infer human emotions and help people by giving them suggestions that may improve their mood. These apps are HappySPEAK and WeDoCare. We also tested and analyzed the system on which these were built upon: HappyWalk. All of these apps are based on the Happy System architecture. HappySPEAK aims to further improve this platform by detecting if the user is isolated and give suggestions that may help him overcome it. Migrants are the perfect candidates to use this, seeing that it is common for them to come alone to a new country in order to provide for their families. WeDoCare aims to detect violent attacks against users, and aims to help them by alerting other people that an attack is happening, show danger zones and alternate paths to avoid them. The rest of the report will focus on the Software Engineering part, implementation of these apps and what we can do to further improve them. We will also present all of the performance and emotion detection test results and analyze them thoroughly to expose our findings. Everything described in this report reflects the work done in the 2015/2016 school year.
林俊霖. "An Energy/Accuracy-Optimized Framework for Context Sensing on Smartphones." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/05764663731090084701.
Full text國立清華大學
資訊系統與應用研究所
102
With the vast developments of microelectronics, a multitude of sensors can now be packed into a smart phone. This has enabled many context-aware applications that utilize the rich set of sensors to sense the environmental contexts, system status, and user activities. For a smart phone, it is common that different applications may request the same context, while a context may be inferred by different combinations of sensors. Current phone systems do not coordinate the use of sensors by the context-aware applications, leading to redundant sensors activated and unnecessary energy consumption. In this thesis, we propose an Energy/Accuracy-Optimized Framework (EAOF), which sits between the applications and the low-level sensors to provide a coordinated and optimized use of sensors to satisfy the context-sensing requirements of the applications. The use of sensors may be optimized based on two criteria: energy-optimized, which minimizes the total energy consumption while maintaining a target accuracy, and accuracy-optimized, which maximizes the overall accuracy under a given energy budget. Our experimental results show that the power consumption can be reduced by 30.45% in the energy-optimized mode and 19.91% in the accuracy-optimized mode, compared with the original, uncoordinated sensor management on Android.
Phadke, Aboli Manas. "Designing and experimenting with e-DTS 3.0." Thesis, 2014. http://hdl.handle.net/1805/4932.
Full textWith the advances in embedded technology and the omnipresence of smartphones, tracking systems do not need to be confined to a specific tracking environment. By introducing mobile devices into a tracking system, we can leverage their mobility and the availability of multiple sensors such as camera, Wi-Fi, Bluetooth and Inertial sensors. This thesis proposes to improve the existing tracking systems, enhanced Distributed Tracking System (e-DTS 2.0) [19] and enhanced Distributed Object Tracking System (eDOTS)[26], in the form of e-DTS 3.0 and provides an empirical analysis of these improvements. The enhancements proposed are to introduce Android-based mobile devices into the tracking system, to use multiple sensors on the mobile devices such as the camera, the Wi-Fi and Bluetooth sensors and inertial sensors and to utilize possible resources that may be available in the environment to make the tracking opportunistic. This thesis empirically validates the proposed enhancements through the experiments carried out on a prototype of e-DTS 3.0.