Journal articles on the topic 'Smoothing Newton method'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Smoothing Newton method.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhu, Jianguang, and Binbin Hao. "A new smoothing method for solving nonlinear complementarity problems." Open Mathematics 17, no. 1 (March 10, 2019): 104–19. http://dx.doi.org/10.1515/math-2019-0011.
Full textWU, CAIYING, and GUOQING CHEN. "PREDICTOR–CORRECTOR SMOOTHING NEWTON METHOD FOR SOLVING SEMIDEFINITE PROGRAMMING." Bulletin of the Australian Mathematical Society 79, no. 3 (April 17, 2009): 367–76. http://dx.doi.org/10.1017/s0004972708001214.
Full textFeng, Ning, Zhi Yuan Tian, and Xin Lei Qu. "A Smoothing Newton Method for Nonlinear Complementarity Problems." Applied Mechanics and Materials 475-476 (December 2013): 1090–93. http://dx.doi.org/10.4028/www.scientific.net/amm.475-476.1090.
Full textYong, Longquan. "A Smoothing Newton Method for Absolute Value Equation." International Journal of Control and Automation 9, no. 2 (February 28, 2016): 119–32. http://dx.doi.org/10.14257/ijca.2016.9.2.12.
Full textLi, Dong-Hui, Liqun Qi, Judy Tam, and Soon-Yi Wu. "A Smoothing Newton Method for Semi-Infinite Programming." Journal of Global Optimization 30, no. 2-3 (November 2004): 169–94. http://dx.doi.org/10.1007/s10898-004-8266-z.
Full textTang, Jingyong, Li Dong, Jinchuan Zhou, and Liang Fang. "A smoothing Newton method for nonlinear complementarity problems." Computational and Applied Mathematics 32, no. 1 (March 26, 2013): 107–18. http://dx.doi.org/10.1007/s40314-013-0015-9.
Full textLi, Meixia, and Haitao Che. "A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem." Mathematical Problems in Engineering 2012 (2012): 1–17. http://dx.doi.org/10.1155/2012/401835.
Full textQi, L., and D. Sun. "Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems." Journal of Optimization Theory and Applications 113, no. 1 (April 2002): 121–47. http://dx.doi.org/10.1023/a:1014861331301.
Full textYin, Hongxia. "An Adaptive Smoothing Method for Continuous Minimax Problems." Asia-Pacific Journal of Operational Research 32, no. 01 (February 2015): 1540001. http://dx.doi.org/10.1142/s0217595915400011.
Full textMeng, Wei, Zhi Yuan Tian, and Xin Lei Qu. "A Smoothing Method for Solving the NCP Based on a New Smoothing Approximate Function." Applied Mechanics and Materials 462-463 (November 2013): 294–97. http://dx.doi.org/10.4028/www.scientific.net/amm.462-463.294.
Full textZheng, Xiuyun, and Jiarong Shi. "Smoothing Newton method for generalized complementarity problems based on a new smoothing function." Applied Mathematics and Computation 231 (March 2014): 160–68. http://dx.doi.org/10.1016/j.amc.2013.12.170.
Full textDong, Li, Bo Yu, and Yu Xiao. "A Spline Smoothing Newton Method for Semi-Infinite Minimax Problems." Journal of Applied Mathematics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/852074.
Full textMavriplis, Dimitri J. "A residual smoothing strategy for accelerating Newton method continuation." Computers & Fluids 220 (April 2021): 104859. http://dx.doi.org/10.1016/j.compfluid.2021.104859.
Full textJiang, Xiao Qin. "A Smoothing Newton Method for Solving Absolute Value Equations." Advanced Materials Research 765-767 (September 2013): 703–8. http://dx.doi.org/10.4028/www.scientific.net/amr.765-767.703.
Full textZheng, Xiuyun, and Hongwei Liu. "A smoothing inexact Newton method for variational inequality problems." International Journal of Computer Mathematics 88, no. 6 (April 2011): 1283–93. http://dx.doi.org/10.1080/00207160.2010.500663.
Full textChi, Xiaoni, Zhongping Wan, Zhibin Zhu, and Liuyang Yuan. "A nonmonotone smoothing Newton method for circular cone programming." Optimization 65, no. 12 (August 7, 2016): 2227–50. http://dx.doi.org/10.1080/02331934.2016.1217861.
Full textWan, Zhong, HuanHuan Li, and Shuai Huang. "A Smoothing Inexact Newton Method for Nonlinear Complementarity Problems." Abstract and Applied Analysis 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/731026.
Full textXiu, Naihua, and Jianzhong Zhang. "A smoothing Gauss–Newton method for the generalized HLCP." Journal of Computational and Applied Mathematics 129, no. 1-2 (April 2001): 195–208. http://dx.doi.org/10.1016/s0377-0427(00)00550-1.
Full textRui, Shao-Ping, and Cheng-Xian Xu. "A smoothing inexact Newton method for nonlinear complementarity problems." Journal of Computational and Applied Mathematics 233, no. 9 (March 2010): 2332–38. http://dx.doi.org/10.1016/j.cam.2009.10.018.
Full text吴, 振. "A Uniformly Smoothing Newton Method for Support Vector Machine." Operations Research and Fuzziology 10, no. 01 (2020): 86–99. http://dx.doi.org/10.12677/orf.2020.101010.
Full textLiu, Jing, and Yan Gao. "Smoothing Newton method for operator equations in Banach spaces." Journal of Applied Mathematics and Computing 28, no. 1-2 (June 17, 2008): 447–60. http://dx.doi.org/10.1007/s12190-008-0118-4.
Full textLiu, Lixia, Sanyang Liu, and Yan Wu. "A smoothing Newton method for symmetric cone complementarity problem." Journal of Applied Mathematics and Computing 47, no. 1-2 (March 25, 2014): 175–91. http://dx.doi.org/10.1007/s12190-014-0768-3.
Full textTang, Jia, and Changfeng Ma. "A smoothing Newton method for symmetric cone complementarity problems." Optimization Letters 9, no. 2 (November 7, 2013): 225–44. http://dx.doi.org/10.1007/s11590-013-0704-8.
Full textDong, Li, and Bo Yu. "A spline smoothing Newton method for finite minimax problems." Journal of Engineering Mathematics 93, no. 1 (December 13, 2014): 145–58. http://dx.doi.org/10.1007/s10665-014-9733-2.
Full textXiao, Yu, and Bo Yu. "A truncated aggregate smoothing Newton method for minimax problems." Applied Mathematics and Computation 216, no. 6 (May 2010): 1868–79. http://dx.doi.org/10.1016/j.amc.2009.11.034.
Full textRapajić, Sanja, and Zoltan Papp. "A nonmonotone Jacobian smoothing inexact Newton method for NCP." Computational Optimization and Applications 66, no. 3 (October 11, 2016): 507–32. http://dx.doi.org/10.1007/s10589-016-9881-6.
Full textXu, H. "Adaptive Smoothing Method, Deterministically Computable Generalized Jacobians, and the Newton Method." Journal of Optimization Theory and Applications 109, no. 1 (April 2001): 215–24. http://dx.doi.org/10.1023/a:1017526207997.
Full textZhu, Jianguang, and Binbin Hao. "A SMOOTHING NEWTON METHOD FOR NCP BASED ON A NEW CLASS OF SMOOTHING FUNCTIONS." Journal of applied mathematics & informatics 32, no. 1_2 (January 30, 2014): 211–25. http://dx.doi.org/10.14317/jami.2014.211.
Full textZhang, Jian, and Ke-Cun Zhang. "A variant smoothing Newton method for P0-NCP based on a new smoothing function." Journal of Computational and Applied Mathematics 225, no. 1 (March 2009): 1–8. http://dx.doi.org/10.1016/j.cam.2008.06.012.
Full textZhu, Jianguang, and Binbin Hao. "A new class of smoothing functions and a smoothing Newton method for complementarity problems." Optimization Letters 7, no. 3 (January 4, 2012): 481–97. http://dx.doi.org/10.1007/s11590-011-0432-x.
Full text董, 丽. "Smoothing Inexact Newton Method for the Second Order Cone Programming." Advances in Applied Mathematics 04, no. 03 (2015): 271–76. http://dx.doi.org/10.12677/aam.2015.43033.
Full textChen, Xiaohong, and Changfeng Ma. "A regularization smoothing Newton method for solving nonlinear complementarity problem." Nonlinear Analysis: Real World Applications 10, no. 3 (June 2009): 1702–11. http://dx.doi.org/10.1016/j.nonrwa.2008.02.010.
Full textYu, Zhensheng, and Yi Qin. "A cosh-based smoothing Newton method for nonlinear complementarity problem." Nonlinear Analysis: Real World Applications 12, no. 2 (April 2011): 875–84. http://dx.doi.org/10.1016/j.nonrwa.2010.08.012.
Full textKong, Lingchen, Jie Sun, and Naihua Xiu. "A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems." SIAM Journal on Optimization 19, no. 3 (January 2008): 1028–47. http://dx.doi.org/10.1137/060676775.
Full textPan, S. H., and Y. X. Jiang. "Smoothing Newton Method for Minimizing the Sum of p-Norms." Journal of Optimization Theory and Applications 137, no. 2 (April 12, 2008): 255–75. http://dx.doi.org/10.1007/s10957-008-9364-8.
Full textZhang, Xinzhen, Hefeng Jiang, and Yiju Wang. "A smoothing Newton-type method for generalized nonlinear complementarity problem." Journal of Computational and Applied Mathematics 212, no. 1 (February 2008): 75–85. http://dx.doi.org/10.1016/j.cam.2006.03.042.
Full textBuhmiler, Sandra, and Nataša Krejić. "A new smoothing quasi-Newton method for nonlinear complementarity problems." Journal of Computational and Applied Mathematics 211, no. 2 (February 2008): 141–55. http://dx.doi.org/10.1016/j.cam.2006.11.007.
Full textQi, Hou-Duo, and Li-Zhi Liao. "A Smoothing Newton Method for Extended Vertical Linear Complementarity Problems." SIAM Journal on Matrix Analysis and Applications 21, no. 1 (January 1999): 45–66. http://dx.doi.org/10.1137/s0895479897329837.
Full textXie, Weisong, and Caiying Wu. "Smoothing inexact Newton method for solving P 0-NCP problems." Transactions of Tianjin University 19, no. 5 (October 2013): 385–90. http://dx.doi.org/10.1007/s12209-013-1909-8.
Full textLi, Yuan Min, Xing Tao Wang, and De Yun Wei. "A smoothing Newton method for NCPs with the P0-property." Applied Mathematics and Computation 217, no. 16 (April 2011): 6917–25. http://dx.doi.org/10.1016/j.amc.2011.01.099.
Full textYang, Liu, Yanping Chen, Xiaojiao Tong, and Chunlin Deng. "A new smoothing Newton method for solving constrained nonlinear equations." Applied Mathematics and Computation 217, no. 24 (August 2011): 9855–63. http://dx.doi.org/10.1016/j.amc.2011.04.045.
Full textLiu, Ruijuan, and Li Dong. "Nonmonotone smoothing inexact Newton method for the nonlinear complementarity problem." Journal of Applied Mathematics and Computing 51, no. 1-2 (August 29, 2015): 659–74. http://dx.doi.org/10.1007/s12190-015-0925-3.
Full textFeng, Ye, Liu Hongwei, Zhou Shuisheng, and Liu Sanyang. "A smoothing trust-region Newton-CG method for minimax problem." Applied Mathematics and Computation 199, no. 2 (June 2008): 581–89. http://dx.doi.org/10.1016/j.amc.2007.10.070.
Full textMa, Changfeng. "A new smoothing quasi-Newton method for nonlinear complementarity problems." Applied Mathematics and Computation 171, no. 2 (December 2005): 807–23. http://dx.doi.org/10.1016/j.amc.2005.01.088.
Full textRapajić, Sanja, Nataša Krejić, and Zorana Lužanin. "On a Smoothing Quasi-Newton Method for Nonlinear Complementarity Problems." PAMM 3, no. 1 (December 2003): 523–24. http://dx.doi.org/10.1002/pamm.200310531.
Full textTang, Jingyong, Guoping He, Li Dong, and Liang Fang. "A smoothing Newton method for second-order cone optimization based on a new smoothing function." Applied Mathematics and Computation 218, no. 4 (October 2011): 1317–29. http://dx.doi.org/10.1016/j.amc.2011.06.015.
Full textHuang, Na, and Changfeng Ma. "A regularized smoothing Newton method for solving SOCCPs based on a new smoothing C-function." Applied Mathematics and Computation 230 (March 2014): 315–29. http://dx.doi.org/10.1016/j.amc.2013.12.116.
Full textLiu, Lixia, and Sanyang Liu. "A smoothing Newton method based on a one-parametric class of smoothing function for SOCCP." Journal of Applied Mathematics and Computing 36, no. 1-2 (June 11, 2010): 473–87. http://dx.doi.org/10.1007/s12190-010-0414-7.
Full textArenas, Favian E., Héctor Jairo Martínez, and Rosana Pérez. "A local Jacobian smoothing method for solving Nonlinear Complementarity Problems." Universitas Scientiarum 25, no. 1 (May 4, 2020): 149–74. http://dx.doi.org/10.11144/javeriana.sc25-1.aljs.
Full textZeng, You Fang, Jin Bao Jian, and Chun Ming Tang. "A New Smoothing Method Based on Nonsmooth FB Function for Second-Order Cone Programming." Advanced Materials Research 532-533 (June 2012): 1000–1005. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.1000.
Full text