Journal articles on the topic 'SMOTE technique'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'SMOTE technique.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. "SMOTE: Synthetic Minority Over-sampling Technique." Journal of Artificial Intelligence Research 16 (June 1, 2002): 321–57. http://dx.doi.org/10.1613/jair.953.
Full textBansal, Ankita, Makul Saini, Rakshit Singh, and Jai Kumar Yadav. "Analysis of SMOTE." International Journal of Information Retrieval Research 11, no. 2 (2021): 15–37. http://dx.doi.org/10.4018/ijirr.2021040102.
Full textSantoso, Noviyanti, Wahyu Wibowo, and Hilda Hikmawati. "Integration of synthetic minority oversampling technique for imbalanced class." Indonesian Journal of Electrical Engineering and Computer Science 13, no. 1 (2019): 102. http://dx.doi.org/10.11591/ijeecs.v13.i1.pp102-108.
Full textShoohi, Liqaa M., and Jamila H. Saud. "Adaptation Proposed Methods for Handling Imbalanced Datasets based on Over-Sampling Technique." Al-Mustansiriyah Journal of Science 31, no. 2 (2020): 25. http://dx.doi.org/10.23851/mjs.v31i2.740.
Full textRachburee, Nachirat, and Wattana Punlumjeak. "Oversampling technique in student performance classification from engineering course." International Journal of Electrical and Computer Engineering (IJECE) 11, no. 4 (2021): 3567. http://dx.doi.org/10.11591/ijece.v11i4.pp3567-3574.
Full textKasanah, Anis Nikmatul, Muladi Muladi, and Utomo Pujianto. "Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 3, no. 2 (2019): 196–201. http://dx.doi.org/10.29207/resti.v3i2.945.
Full textRekha, Gillala, and V. Krishna Reddy. "A Novel Approach for Handling Outliers in Imbalanced Data." International Journal of Engineering & Technology 7, no. 3.1 (2018): 1. http://dx.doi.org/10.14419/ijet.v7i3.1.16783.
Full textLee, Taejun, Minju Kim, and Sung-Phil Kim. "Improvement of P300-Based Brain–Computer Interfaces for Home Appliances Control by Data Balancing Techniques." Sensors 20, no. 19 (2020): 5576. http://dx.doi.org/10.3390/s20195576.
Full textKurniawati, Yulia Ery. "Class Imbalanced Learning Menggunakan Algoritma Synthetic Minority Over-sampling Technique – Nominal (SMOTE-N) pada Dataset Tuberculosis Anak." Jurnal Buana Informatika 10, no. 2 (2019): 134. http://dx.doi.org/10.24002/jbi.v10i2.2441.
Full textde Carvalho, Alexandre M., and Ronaldo C. Prati. "DTO-SMOTE: Delaunay Tessellation Oversampling for Imbalanced Data Sets." Information 11, no. 12 (2020): 557. http://dx.doi.org/10.3390/info11120557.
Full textAkbar, Shahid, Maqsood Hayat, Muhammad Kabir, and Muhammad Iqbal. "iAFP-gap-SMOTE: An Efficient Feature Extraction Scheme Gapped Dipeptide Composition is Coupled with an Oversampling Technique for Identification of Antifreeze Proteins." Letters in Organic Chemistry 16, no. 4 (2019): 294–302. http://dx.doi.org/10.2174/1570178615666180816101653.
Full textWibowo, Prasetyo, and Chastine Fatichah. "An in-depth performance analysis of the oversampling techniques for high-class imbalanced dataset." Register: Jurnal Ilmiah Teknologi Sistem Informasi 7, no. 1 (2021): 63. http://dx.doi.org/10.26594/register.v7i1.2206.
Full textFernandez, Alberto, Salvador Garcia, Francisco Herrera, and Nitesh V. Chawla. "SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary." Journal of Artificial Intelligence Research 61 (April 20, 2018): 863–905. http://dx.doi.org/10.1613/jair.1.11192.
Full textSeo, Jae-Hyun, and Yong-Hyuk Kim. "Machine-Learning Approach to Optimize SMOTE Ratio in Class Imbalance Dataset for Intrusion Detection." Computational Intelligence and Neuroscience 2018 (November 1, 2018): 1–11. http://dx.doi.org/10.1155/2018/9704672.
Full textMukherjee, Mimi, and Matloob Khushi. "SMOTE-ENC: A Novel SMOTE-Based Method to Generate Synthetic Data for Nominal and Continuous Features." Applied System Innovation 4, no. 1 (2021): 18. http://dx.doi.org/10.3390/asi4010018.
Full textMustaqim, Mustaqim, Budi Warsito, and Bayu Surarso. "COMBINATION OF SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE (SMOTE) AND BACKPROPAGATION NEURAL NETWORK TO CONTRACEPTIVE IUD PREDICTION." MEDIA STATISTIKA 13, no. 1 (2020): 36–46. http://dx.doi.org/10.14710/medstat.13.1.36-46.
Full textBejjanki, Kiran Kumar, Jayadev Gyani, and Narsimha Gugulothu. "Class Imbalance Reduction (CIR): A Novel Approach to Software Defect Prediction in the Presence of Class Imbalance." Symmetry 12, no. 3 (2020): 407. http://dx.doi.org/10.3390/sym12030407.
Full textDavagdorj, Khishigsuren, Jong Seol Lee, Van Huy Pham, and Keun Ho Ryu. "A Comparative Analysis of Machine Learning Methods for Class Imbalance in a Smoking Cessation Intervention." Applied Sciences 10, no. 9 (2020): 3307. http://dx.doi.org/10.3390/app10093307.
Full textKhamsan, Muhammad Muhaimin, and Ruhaila Maskat. "HANDLING HIGHLY IMBALANCED OUTPUT CLASS LABEL." MALAYSIAN JOURNAL OF COMPUTING 4, no. 2 (2019): 304. http://dx.doi.org/10.24191/mjoc.v4i2.7021.
Full textWang, Xin, Yue Yang, Mingsong Chen, et al. "AGNES-SMOTE: An Oversampling Algorithm Based on Hierarchical Clustering and Improved SMOTE." Scientific Programming 2020 (September 23, 2020): 1–9. http://dx.doi.org/10.1155/2020/8837357.
Full textUmma, Fatiya Nur, Budi Warsito, and Di Asih I. Maruddani. "KLASIFIKASI STATUS KEMISKINAN RUMAH TANGGA DENGAN ALGORITMA C5.0 DI KABUPATEN PEMALANG." Jurnal Gaussian 10, no. 2 (2021): 221–29. http://dx.doi.org/10.14710/j.gauss.v10i2.29934.
Full textHeranova, Omer. "Synthetic Minority Oversampling Technique pada Averaged One Dependence Estimators untuk Klasifikasi Credit Scoring." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 3, no. 3 (2019): 443–50. http://dx.doi.org/10.29207/resti.v3i3.1275.
Full textZhao, Ziqi, Yonghong Xu, and Yong Zhao. "SXGBsite: Prediction of Protein–Ligand Binding Sites Using Sequence Information and Extreme Gradient Boosting." Genes 10, no. 12 (2019): 965. http://dx.doi.org/10.3390/genes10120965.
Full textThamrin, Sri Astuti, Dian Sidik, Hedi Kuswanto, Armin Lawi, and Ansariadi Ansariadi. "Exploration of Obesity Status of Indonesia Basic Health Research 2013 With Synthetic Minority Over-Sampling Techniques." Indonesian Journal of Statistics and Its Applications 5, no. 1 (2021): 75–91. http://dx.doi.org/10.29244/ijsa.v5i1p75-91.
Full textChin, F. Y., C. A. Lim, and K. H. Lem. "Handling leukaemia imbalanced data using synthetic minority oversampling technique (SMOTE)." Journal of Physics: Conference Series 1988, no. 1 (2021): 012042. http://dx.doi.org/10.1088/1742-6596/1988/1/012042.
Full textHidayati, Isti Samrotul, and I. Made Arcana. "PENERAPAN CHAID DENGAN PENDEKATAN SMOTE PADA KEMATIAN BALITA DI KAWASAN TIMUR INDONESIA TAHUN 2017." Seminar Nasional Official Statistics 2019, no. 1 (2020): 357–67. http://dx.doi.org/10.34123/semnasoffstat.v2019i1.97.
Full textGAO, KEHAN, TAGHI M. KHOSHGOFTAAR, and RANDALL WALD. "THE USE OF UNDER- AND OVERSAMPLING WITHIN ENSEMBLE FEATURE SELECTION AND CLASSIFICATION FOR SOFTWARE QUALITY PREDICTION." International Journal of Reliability, Quality and Safety Engineering 21, no. 01 (2014): 1450004. http://dx.doi.org/10.1142/s0218539314500041.
Full textHemalatha, Putta, and Geetha Mary Amalanathan. "FG-SMOTE: Fuzzy-based Gaussian synthetic minority oversampling with deep belief networks classifier for skewed class distribution." International Journal of Intelligent Computing and Cybernetics 14, no. 2 (2021): 270–87. http://dx.doi.org/10.1108/ijicc-12-2020-0202.
Full textGui, Chun. "Analysis of imbalanced data set problem: The case of churn prediction for telecommunication." Artificial Intelligence Research 6, no. 2 (2017): 93. http://dx.doi.org/10.5430/air.v6n2p93.
Full textQu, Zhengwei, Hongwen Li, Yunjing Wang, Jiaxi Zhang, Ahmed Abu-Siada, and Yunxiao Yao. "Detection of Electricity Theft Behavior Based on Improved Synthetic Minority Oversampling Technique and Random Forest Classifier." Energies 13, no. 8 (2020): 2039. http://dx.doi.org/10.3390/en13082039.
Full textHuang, Min-Wei, Chien-Hung Chiu, Chih-Fong Tsai, and Wei-Chao Lin. "On Combining Feature Selection and Over-Sampling Techniques for Breast Cancer Prediction." Applied Sciences 11, no. 14 (2021): 6574. http://dx.doi.org/10.3390/app11146574.
Full textIjaz, Muhammad Fazal, Muhammad Attique, and Youngdoo Son. "Data-Driven Cervical Cancer Prediction Model with Outlier Detection and Over-Sampling Methods." Sensors 20, no. 10 (2020): 2809. http://dx.doi.org/10.3390/s20102809.
Full textWijaya, Junjun, Agus M. Soleh, and Akbar Rizki. "Penanganan Data Tidak Seimbang pada Pemodelan Rotation Forest Keberhasilan Studi Mahasiswa Program Magister IPB." Xplore: Journal of Statistics 2, no. 2 (2018): 32–40. http://dx.doi.org/10.29244/xplore.v2i2.99.
Full textBao, Fuguang, Yongqiang Wu, Zhaogang Li, Yongzhao Li, Lili Liu, and Guanyu Chen. "Effect Improved for High-Dimensional and Unbalanced Data Anomaly Detection Model Based on KNN-SMOTE-LSTM." Complexity 2020 (September 17, 2020): 1–17. http://dx.doi.org/10.1155/2020/9084704.
Full textDentamaro, Vincenzo, Donato Impedovo, and Giuseppe Pirlo. "LICIC: Less Important Components for Imbalanced Multiclass Classification." Information 9, no. 12 (2018): 317. http://dx.doi.org/10.3390/info9120317.
Full textRendón, Eréndira, Roberto Alejo, Carlos Castorena, Frank J. Isidro-Ortega, and Everardo E. Granda-Gutiérrez. "Data Sampling Methods to Deal With the Big Data Multi-Class Imbalance Problem." Applied Sciences 10, no. 4 (2020): 1276. http://dx.doi.org/10.3390/app10041276.
Full textHamdy, Abeer, and Abdulrahman El-Laithy. "SMOTE and Feature Selection for More Effective Bug Severity Prediction." International Journal of Software Engineering and Knowledge Engineering 29, no. 06 (2019): 897–919. http://dx.doi.org/10.1142/s0218194019500311.
Full textLi, Yihong, Yunpeng Wang, Tao Li, Beibei Li, and Xiaolong Lan. "SP-SMOTE: A novel space partitioning based synthetic minority oversampling technique." Knowledge-Based Systems 228 (September 2021): 107269. http://dx.doi.org/10.1016/j.knosys.2021.107269.
Full textP V R N S S V Sai Leela, Bankapalli Jyothi, Pullagura Indira priyadarsini,. "Towards Intelligent Machine Learning Models for Intrusion Detection System." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, no. 5 (2021): 643–55. http://dx.doi.org/10.17762/turcomat.v12i5.1062.
Full textGul, Hira, Nadeem Javaid, Ibrar Ullah, Ali Mustafa Qamar, Muhammad Khalil Afzal, and Gyanendra Prasad Joshi. "Detection of Non-Technical Losses Using SOSTLink and Bidirectional Gated Recurrent Unit to Secure Smart Meters." Applied Sciences 10, no. 9 (2020): 3151. http://dx.doi.org/10.3390/app10093151.
Full textMustaqim, Mustaqim, Budi Warsito, and Bayu Surarso. "Kombinasi Synthetic Minority Oversampling Technique (SMOTE) dan Neural Network Backpropagation untuk menangani data tidak seimbang pada prediksi pemakaian alat kontrasepsi implan." Register: Jurnal Ilmiah Teknologi Sistem Informasi 5, no. 2 (2019): 128. http://dx.doi.org/10.26594/register.v5i2.1705.
Full textSulistiyowati, Nina, and Mohamad Jajuli. "INTEGRASI NAIVE BAYES DENGAN TEKNIK SAMPLING SMOTE UNTUK MENANGANI DATA TIDAK SEIMBANG." NUANSA INFORMATIKA 14, no. 1 (2020): 34. http://dx.doi.org/10.25134/nuansa.v14i1.2411.
Full textFan, Ziqi, Yuanbo Wu, Changwei Zhou, Xiaojun Zhang, and Zhi Tao. "Class-Imbalanced Voice Pathology Detection and Classification Using Fuzzy Cluster Oversampling Method." Applied Sciences 11, no. 8 (2021): 3450. http://dx.doi.org/10.3390/app11083450.
Full textPark, Kwang Ho, Erdenebileg Batbaatar, Yongjun Piao, Nipon Theera-Umpon, and Keun Ho Ryu. "Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification." International Journal of Environmental Research and Public Health 18, no. 4 (2021): 2197. http://dx.doi.org/10.3390/ijerph18042197.
Full textZhou, Kaibo, Jianyu Zhang, Yusong Ren, Zhen Huang, and Luanxiao Zhao. "A gradient boosting decision tree algorithm combining synthetic minority oversampling technique for lithology identification." GEOPHYSICS 85, no. 4 (2020): WA147—WA158. http://dx.doi.org/10.1190/geo2019-0429.1.
Full textDouzas, Georgios, Fernando Bacao, Joao Fonseca, and Manvel Khudinyan. "Imbalanced Learning in Land Cover Classification: Improving Minority Classes’ Prediction Accuracy Using the Geometric SMOTE Algorithm." Remote Sensing 11, no. 24 (2019): 3040. http://dx.doi.org/10.3390/rs11243040.
Full textRezki, Muhammad, Desiana Nur Kholifah, Muhammad Faisal, Priyono Priyono, and Rachmat Suryadithia. "Analisis Review Pengguna Google Meet dan Zoom Cloud Meeting Menggunakan Algoritma Naïve Bayes." Jurnal Infortech 2, no. 2 (2020): 264–70. http://dx.doi.org/10.31294/infortech.v2i2.9286.
Full textTurlapati, Venkata Pavan Kumar, and Manas Ranjan Prusty. "Outlier-SMOTE: A refined oversampling technique for improved detection of COVID-19." Intelligence-Based Medicine 3-4 (December 2020): 100023. http://dx.doi.org/10.1016/j.ibmed.2020.100023.
Full textFonseca, Joao, Georgios Douzas, and Fernando Bacao. "Improving Imbalanced Land Cover Classification with K-Means SMOTE: Detecting and Oversampling Distinctive Minority Spectral Signatures." Information 12, no. 7 (2021): 266. http://dx.doi.org/10.3390/info12070266.
Full textAhlawat, Khyati, Anuradha Chug, and Amit Prakash Singh. "Empirical Evaluation of Map Reduce Based Hybrid Approach for Problem of Imbalanced Classification in Big Data." International Journal of Grid and High Performance Computing 11, no. 3 (2019): 23–45. http://dx.doi.org/10.4018/ijghpc.2019070102.
Full text