Academic literature on the topic 'SNN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SNN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SNN"
Novy, Diane. "Effectiveness of Splanchnic Nerve Neurolysis for Targeting Location of Cancer Pain: Using the Pain Drawing as an Outcome Variable." July 2016 6;19, no. 6;7 (July 14, 2016): 397–403. http://dx.doi.org/10.36076/ppj/2016.19.397.
Full textAl-Hamid, Ali A., and HyungWon Kim. "Optimization of Spiking Neural Networks Based on Binary Streamed Rate Coding." Electronics 9, no. 10 (September 29, 2020): 1599. http://dx.doi.org/10.3390/electronics9101599.
Full textNeiva, Flávia Cristina Brisque, and Cléa Rodrigues Leone. "Sucção em recém-nascidos pré-termo e estimulação da sucção." Pró-Fono Revista de Atualização Científica 18, no. 2 (August 2006): 141–50. http://dx.doi.org/10.1590/s0104-56872006000200003.
Full textGalán-Prado, Fabio, Alejandro Morán, Joan Font, Miquel Roca, and Josep L. Rosselló. "Compact Hardware Synthesis of Stochastic Spiking Neural Networks." International Journal of Neural Systems 29, no. 08 (September 25, 2019): 1950004. http://dx.doi.org/10.1142/s0129065719500047.
Full textMa, Zansong, Xiangbing Shu, Jie Huang, Haiyan Zhang, Zhen Xiao, and Li Zhang. "Salvia-Nelumbinis Naturalis Formula Improved Inflammation in LPS Stressed Macrophages via Upregulating MicroRNA-152." Mediators of Inflammation 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/5842747.
Full textNICHOLS, ERIC, L. J. McDAID, and N. H. SIDDIQUE. "CASE STUDY ON A SELF-ORGANIZING SPIKING NEURAL NETWORK FOR ROBOT NAVIGATION." International Journal of Neural Systems 20, no. 06 (December 2010): 501–8. http://dx.doi.org/10.1142/s0129065710002577.
Full textAoun, Mario Antoine. "A STDP Rule that Favours Chaotic Spiking over Regular Spiking of Neurons." International Journal of Artificial Intelligence & Applications 12, no. 03 (May 31, 2021): 25–33. http://dx.doi.org/10.5121/ijaia.2021.12303.
Full textShang, Ying, Yongli Li, Feng You, and RuiLian Zhao. "Conversion-based Approach to Obtain an SNN Construction." International Journal of Software Engineering and Knowledge Engineering 30, no. 11n12 (November 2020): 1801–18. http://dx.doi.org/10.1142/s0218194020400318.
Full textLu, L., X. Wei, Y. H. Li, and W. B. Li. "Sentinel node necrosis is a negative prognostic factor in patients with nasopharyngeal carcinoma: a magnetic resonance imaging study of 252 patients." Current Oncology 24, no. 3 (June 28, 2017): 220. http://dx.doi.org/10.3747/co.24.3168.
Full textChiu, Chih-Chin, Chen-Ya Yang, Tsui-Fen Yang, Kon-Ping Lin, Shou-Hsien Huang, and Jia-Chi Wang. "Acute Sensory Neuronopathy following Enterovirus Infection in a 3-Year-Old Girl." Neuropediatrics 48, no. 03 (March 23, 2017): 190–93. http://dx.doi.org/10.1055/s-0037-1601323.
Full textDissertations / Theses on the topic "SNN"
Parana-Liyanage, Krishani. "Outlier detection in spatial data using the m-SNN algorithm." DigitalCommons@Robert W. Woodruff Library, Atlanta University Center, 2013. http://digitalcommons.auctr.edu/dissertations/1299.
Full textItani, Aashish. "COMPARISON OF ADVERSARIAL ROBUSTNESS OF ANN AND SNN TOWARDS BLACKBOX ATTACKS." OpenSIUC, 2021. https://opensiuc.lib.siu.edu/theses/2864.
Full textParker, William Chesluk. "CENTRALITY DEPENDENCE OF BULK FIREBALL PROPERTIES IN /Snn=62.4 and 200 GeV." Thesis, The University of Arizona, 2009. http://hdl.handle.net/10150/192559.
Full textZapata, Rodriguez Mireya. "Arquitectura escalable SIMD con conectividad jerárquica y reconfigurable para la emulación de SNN." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461085.
Full textUn sistema neuronal biológico consiste de millones de neuronas altamente integradas con múltiples funciones dinámicas operando en coordinación entre sí. Su organización estructural se caracteriza por contener agrupaciones altamente jerárquicas. Dichas agrupaciones se distinguen por conexiones localmente densas y globalmente dispersas comunicadas a través de pulsos transitorios (spikes) que viajan por el axón hasta la neurona destino. En el último siglo, aproximarse a la complejidad biológica del cortex mediante arquitecturas de hardware continúa siendo un desafío todavía inalcanzable. Esto se debe, no sólo al masivo procesamiento paralelo con soporte para la comunicación entre neuronas en redes de gran escala, sinó también a la necesidad de mecanismos que permitan la evolución de la red neuronal de forma eficiente. En este marco, esta tesis contribuye al desarrollo de una arquitectura denominada HEENS (Emulador de Hardware para Sistemas Neuronales Evolutivos, Hardware Emulator of Evolved Neural System) que soporta conectividad inter-chip con una topología de anillo entre un chip que actúa de master (MC) y uno o más Chips Neuromórficos (NCs). El MC está implementado en un dispositivo PSoC que integra un CPU ARM Dual Core junto con lógica programable. El ARM se encarga de configurar el anillo de comunicación y de ejecutar la aplicación de software que controla el envío de información de configuración del algoritmo y los parámetros neuronales a todos los NCs de la red. Además, el MC es el encargado de activar el modo de evolución de la red, así como de gestionar el envío de datos de reconfiguración a cualquiera de los nodos durante la ejecución. Cada NC a su vez, está compuesto por un arreglo 2D parametrizable de Elementos de Procesamiento (Processing Elements, PEs) con un esquema de procesamiento tipo SIMD implementado sobre una FPGA Kintex7. Los NCs son multiprocesadores SNN que soportan la ejecución de cualquier algoritmo neuronal basado en spikes. Se cuenta con un set de instrucciones personalizadas diseñadas específicamente para esta arquitectura. Imitando la configuración estructural del cerebro los NC soportan un esquema jerárquico con spikes locales y globales. Los spikes locales establecen la conectividad inter-neuronal dentro de un mismo chip, y los globales la comunicación inter-modular entre diferentes chips. Los NC cuentan con neuronas fijas tipo hub que procesan spikes locales y globales que permiten la conectividad inter e intra modulos. La definición de spikes locales y globales permite desarrollar arquitecturas jerárquicas multi-nivel que se inspiran en las topologías del cerebro y ofrecen una escalabilidad excelente. La propagación de spikes a través de la red multi-chip es soportada por una pila de protocolos Aurora/AER-SRT. El protocolo Aurora encapsula y desencapsula los paquetes transmitidos a través del enlace serial de alta velocidad que comunica la plataforma. Mientras que el protocolo Síncrono de Representación de Eventos de Dirección (AER-SRT) gestiona los datos (eventos de dirección) y los paquetes de control que permiten sincronizar la operación de la red neuronal. Cada evento encapsula la dirección de la neurona que genera un spike como resultado del procesamiento del algoritmo neuronal. La definición de topología sináptica local y global es implementada usando bloques de memoria RAM on-chip, lo que reduce los requerimientos de lógica combinacional y, además de facilitar la configuración del conexionado sin modificar el hardware, permite el desarrollo de aplicaciones evolutivas al soportar la reconfiguración on-line tanto del algoritmo neuronal como de los parámetros neuronales y sinápticos. HEENS también admite retardos programables de axón, lo cual incorpora características dinámicas a la red.
Johnson, Ian Jeffrey. "Photon and [pi]⁰ production in ¹⁹⁷Au+¹⁹⁷Au collisions at [square root]SNN=130GeV /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textQuintero, Amilkar. "MEASUREMENT OF CHARM MESON PRODUCTION IN Au+Au COLLISIONS ATsqrt(SNN) =200 GeV." Kent State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=kent1460734511.
Full textAppelt, Eric. "Measurements of Charged-Particle Transverse Momentum Spectra in PbPb Collisions at Square Root of SNN = 2|76 TeV and in pPb Collisions at Square Root of SNN = 5|02 TeV with the CMS Detector." Thesis, Vanderbilt University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3584408.
Full textAhmed, Samah. "Measurement of Neutral Mesons in p-Pb collisions at √sNN = 8.16TeV with the ALICE detector." Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31492.
Full textCastillo, Javier. "Production de particules doublement étranges dans les collisions d'ions lourds ultra-relativistes à √SNN = 130 GeV." Paris 7, 2002. http://www.theses.fr/2002PA077043.
Full textRaisig, Pascal [Verfasser], Harald [Gutachter] Appelshäuser, and Christoph [Gutachter] Blume. "J/ψ production in √sNN = 5.02 TeV Pb−Pb collisions / Pascal Raisig ; Gutachter: Harald Appelshäuser, Christoph Blume." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2020. http://d-nb.info/1212509749/34.
Full textBooks on the topic "SNN"
Schuchmann, Simone. Modification of K0s and Lambda(AntiLambda) Transverse Momentum Spectra in Pb-Pb Collisions at √sNN = 2.76 TeV with ALICE. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43458-2.
Full textKappen, Bert. Neural Networks: Artificial Intelligence and Industrial Applications: Proceedings of the Third Annual SNN Symposium on Neural Networks, Nijmegen, the Netherlands, 14-15 September 1995. London: Springer London, 1995.
Find full textSNN Symposium on Neural Networks (3rd 1995 Nijmegen, Netherlands). Neural networks: Artificial intelligence and industrial applications : proceedings of the Third Annual SNN Symposium on Neural Networks, Nijmegen, The Netherlands, 14-15 September 1995. Berlin: Springer, 1995.
Find full textAnna, Gralak, ed. Liczenie baranów: O naturze i przyjemnościach snu. Warszawa: Warszawskie Wydawnictwo Literackie "Muza", 2011.
Find full textyi, Duan Zhang qu, ed. Hu wa san jin sen lin. Guangzhou Shi: Xin shi ji chu ban she, 2016.
Find full textLian: Wang Shangzheng san sen ji. [Beijing]: Zhongguo you yi chu ban gong si, 1989.
Find full textXing, Heping. Jianpuzhai san chao zong li: Hong Sen. Jinbian: Jianpuzhai "Hua shang ri bao" she, 2001.
Find full textBook chapters on the topic "SNN"
Baumann, Norbert, Hans-Jürgen Fachmann, Reimund Jotter, and Alfons Kubny. "Dinitrogen Sulfide, SNN." In S Sulfur-Nitrogen Compounds, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06351-4_5.
Full textBaumann, Norbert, Hans-Jürgen Fachmann, Reimund Jotter, and Alfons Kubny. "Dinitrogen Sulfide, SNN." In Sulfur-Nitrogen Compounds, 51–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06354-5_5.
Full textAguilar, Jesús S., Roberto Ruiz, José C. Riquelme, and Raúl Giráldez. "SNN: A Supervised Clustering Algorithm." In Engineering of Intelligent Systems, 207–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45517-5_24.
Full textKasabov, Nikola K. "Brain-Computer Interfaces Using Brain-Inspired SNN." In Springer Series on Bio- and Neurosystems, 479–502. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57715-8_14.
Full textMeng, Minrui, Xingbo Wang, and Xiaotao Wang. "Adaptive SNN Torque Control for Tendon-Driven Fingers." In Communications in Computer and Information Science, 231–41. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6370-1_23.
Full textHuang, B. Q., and M. T. Kechadi. "An HMM-SNN Method for Online Handwriting Symbol Recognition." In Lecture Notes in Computer Science, 897–905. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11867661_81.
Full textShuwei, Wang, Wang Baosheng, Yong Tang, and Yu Bo. "Malware Clustering Based on SNN Density Using System Calls." In Cloud Computing and Security, 181–91. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-27051-7_16.
Full textKasabov, Nikola K. "Evolutionary- and Quantum-Inspired Computation. Applications for SNN Optimisation." In Springer Series on Bio- and Neurosystems, 245–87. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-57715-8_7.
Full textPandey, Sriniwas, Mamata Samal, and Sraban Kumar Mohanty. "An SNN-DBSCAN Based Clustering Algorithm for Big Data." In Advances in Intelligent Systems and Computing, 127–37. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1081-6_11.
Full textAntunes, Arménio, Maribel Yasmina Santos, and Adriano Moreira. "Fast SNN-Based Clustering Approach for Large Geospatial Data Sets." In Connecting a Digital Europe Through Location and Place, 179–95. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-03611-3_11.
Full textConference papers on the topic "SNN"
Guo, Lilu, Shugui Bu, Yongjin Gan, Jianbo Lu, and Xiaoshu Zhu. "SNN-Cliq++." In AICSconf '20: 2020 Artificial Intelligence and Complex Systems Conference. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3407703.3407731.
Full textDing, Jianhao, Zhaofei Yu, Yonghong Tian, and Tiejun Huang. "Optimal ANN-SNN Conversion for Fast and Accurate Inference in Deep Spiking Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/321.
Full textZeng-fang, Yang, and Tang He-wen. "SNN Neighbor and SNN Density-based co-location pattern discovery." In 2011 International Conference on E-Business and E-Government (ICEE). IEEE, 2011. http://dx.doi.org/10.1109/icebeg.2011.5885287.
Full textLiu, Qianhui, Dong Xing, Huajin Tang, De Ma, and Gang Pan. "Event-based Action Recognition Using Motion Information and Spiking Neural Networks." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/240.
Full textFang, Haowen, Amar Shrestha, Ziyi Zhao, and Qinru Qiu. "Exploiting Neuron and Synapse Filter Dynamics in Spatial Temporal Learning of Deep Spiking Neural Network." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/388.
Full textCheng, Xiang, Yunzhe Hao, Jiaming Xu, and Bo Xu. "LISNN: Improving Spiking Neural Networks with Lateral Interactions for Robust Object Recognition." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/211.
Full textHulea, Mircea, George-Iulian Uleru, Adrian Burlacu, and Constantin-Florin Caruntu. "Bioinspired SNN for robotic joint control." In 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR). IEEE, 2020. http://dx.doi.org/10.1109/aqtr49680.2020.9129887.
Full textMoreira, Guilherme, Maribel Yasmina Santos, and Joao Moura-Pires. "SNN Input Parameters: How Are They Related?" In 2013 International Conference on Parallel and Distributed Systems (ICPADS). IEEE, 2013. http://dx.doi.org/10.1109/icpads.2013.89.
Full textBautembach, Dennis, Iason Oikonomidis, Nikolaos Kyriazis, and Antonis Argyros. "Faster and Simpler SNN Simulation with Work Queues." In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206752.
Full textMenaka, R., Harathi Devi Nalla, V. Varsha, and M. ThangaAarthy. "SNN Based Brain Connectivity Analysis for ASD Children." In 2019 IEEE International Conference on Smart Instrumentation, Measurement and Application (ICSIMA). IEEE, 2019. http://dx.doi.org/10.1109/icsima47653.2019.9057348.
Full textReports on the topic "SNN"
KURIHARA, N., H. HAMAGAKI, K. OZAWA, T. SAKAGUCHI, T. CHUJO, and S. ESUMI. MEASUREMENT OF CHARGED HADRON SPECTRA IN AU+AU COLLISION AT SNN = 62.4 GEV AT RHIC-PHENIX. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/859893.
Full textLINDENBAUM, S. J., and R. S. LONGACRE. PARTON BUBBLE MODEL COMPARED WITH RHIC CENTRAL AU+AU DELTA PHI DELTA ETA CORRELATIONS AT SQRT SNN = 200 GEV. Office of Scientific and Technical Information (OSTI), July 2006. http://dx.doi.org/10.2172/890922.
Full textBryan, Charles R., and Eric John Schindelholz. FY18 Status Report: SNL Research into Stress Corrosion Cracking of SNF Interim Storage Canisters. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481507.
Full textSchaller, Rebecca, Andrew William Knight, Charles R. Bryan, and Eric John Schindelholz. FY19 Status Report: SNL Research into Stress Corrosion Cracking of SNF Dry Storage Canisters. Office of Scientific and Technical Information (OSTI), September 2019. http://dx.doi.org/10.2172/1569157.
Full textYen, Hung-Ju. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Sun Yat-sen University). Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1332217.
Full textDiaz, Aaron A., David L. Baldwin, Anthony D. Cinson, Anthony M. Jones, Michael R. Larche, Royce Mathews, Crystal A. Mullen, et al. Identify and Quantify the Mechanistic Sources of Sensor Performance Variation Between Individual Sensors SN1 and SN2. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1339935.
Full textStevens, Michael. SSN 774 Virginia Class Submarine (SSN 774). Fort Belvoir, VA: Defense Technical Information Center, November 2015. http://dx.doi.org/10.21236/ad1019531.
Full textNAVY PEO (SUBMARINES) WASHINGTON NAVY YARD DC. SSN 774 Virginia Class Submarine (SSN 774). Fort Belvoir, VA: Defense Technical Information Center, December 2013. http://dx.doi.org/10.21236/ada615033.
Full textSmith, Rhett. SDN Project. Office of Scientific and Technical Information (OSTI), December 2016. http://dx.doi.org/10.2172/1367558.
Full textBehl, W., B. Sterling, and W. Teskey. Advanced SNA/IP : A Simple SNA Transport Protocol. RFC Editor, October 1993. http://dx.doi.org/10.17487/rfc1538.
Full text