Academic literature on the topic 'Snort'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Snort.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Snort"
Sabekti, Muhamad Agung. "Pembuatan Web Interface Snort untuk Managemen Firewall dengan Operasi CRUD (Create, Read, Update, Delete) pada File System Snort dan Pengujian Web dengan Serangan serta Notifikasi pada Email dan Telegram." Indonesian Journal of Applied Informatics 3, no. 2 (August 4, 2019): 74. http://dx.doi.org/10.20961/ijai.v3i2.27836.
Full textAcosta, Andres, and Leonardo Rodriguez. "Snort como herramienta administrativa." INVENTUM 3, no. 5 (July 7, 2008): 74–78. http://dx.doi.org/10.26620/uniminuto.inventum.3.5.2008.74-78.
Full textSaganowski, Łukasz, and Tomasz Andrysiak. "Snort IDS Hybrid ADS Preprocessor." Image Processing & Communications 17, no. 4 (December 1, 2012): 17–22. http://dx.doi.org/10.2478/v10248-012-0024-0.
Full textDewi Paramitha, Ida Ayu Shinta, Gusti Made Arya Sasmita, and I. Made Sunia Raharja. "Analisis Data Log IDS Snort dengan Algoritma Clustering Fuzzy C-Means." Majalah Ilmiah Teknologi Elektro 19, no. 1 (October 15, 2020): 95. http://dx.doi.org/10.24843/mite.2020.v19i01.p14.
Full textGunawan, Agus Riki, Nyoman Putra Sastra, and Dewa Made Wiharta. "Penerapan Keamanan Jaringan Menggunakan Sistem Snort dan Honeypot Sebagai Pendeteksi dan Pencegah Malware." Majalah Ilmiah Teknologi Elektro 20, no. 1 (March 1, 2021): 81. http://dx.doi.org/10.24843/mite.2021.v20i01.p09.
Full textDasmen, Rahmat Novrianda, Cendri Ariyanto, Muhammad Haris Surya, and Hafiizh Ramadhan. "Penerapan Snort Sebagai Sistem Pendeteksi Serangan Keamanan Jaringan." Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) 7, no. 1 (February 28, 2022): 8. http://dx.doi.org/10.30645/jurasik.v7i1.409.
Full textSalah, K., and A. Kahtani. "Improving Snort performance under Linux." IET Communications 3, no. 12 (2009): 1883. http://dx.doi.org/10.1049/iet-com.2009.0114.
Full textJaw, Ebrima, and Xueming Wang. "A novel hybrid-based approach of snort automatic rule generator and security event correlation (SARG-SEC)." PeerJ Computer Science 8 (March 2, 2022): e900. http://dx.doi.org/10.7717/peerj-cs.900.
Full textSaputra, Ferry Astika, Muhammad Salman, Jauari Akhmad Nur Hasim, Isbat Uzzin Nadhori, and Kalamullah Ramli. "The Next-Generation NIDS Platform: Cloud-Based Snort NIDS Using Containers and Big Data." Big Data and Cognitive Computing 6, no. 1 (February 7, 2022): 19. http://dx.doi.org/10.3390/bdcc6010019.
Full textTasneem, Aaliya, Abhishek Kumar, and Shabnam Sharma. "Intrusion Detection Prevention System using SNORT." International Journal of Computer Applications 181, no. 32 (December 17, 2018): 21–24. http://dx.doi.org/10.5120/ijca2018918280.
Full textDissertations / Theses on the topic "Snort"
Ringström, Saltin Markus. "Intrusion Detection Systems : utvärdering av Snort." Thesis, University of Skövde, School of Humanities and Informatics, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-3081.
Full textDet här examensarbetet undersöker effektiviteten hos ett Intrusion Detection System(IDS). Ett IDS är ett system som skall upptäcka om klienter på ett nätverk attackerasav en ”hacker” eller om någon obehörig försöker inkräkta, ungefär som en vakthund.Det IDS som testats är Snort, ett mycket populärt IDS skrivet med öppen källkod.Syftet med studien är att kunna påvisa huruvida ett IDS är ett bra komplement till ettsystems säkerhet eller inte, då det gjorts väldigt få metodiska undersökningar avSnort, och IDS i allmänhet.Den studie som gjorts utfördes med hjälp av ett antal experiment i enlaborationsmiljö, där effektiviteten hos Snort sattes på prov med hjälp av olika typerav attacker.Utifrån det resultat som uppkom så går det att konstatera att ett IDS absolut är ettkomplement värt att överväga för en organisation som är villig att ägna de resursersom systemet kräver, då ett högt antal av de utförda attackerna upptäcktes – attackersom anti-virus eller brandväggar inte är skapade för att reagera på.
Steinvall, Daniel. "Utvärdering av signaturdatabaser i systemet Snort." Thesis, Karlstads universitet, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72581.
Full textFor many people all over the world being constantly connected to the Internet is taken for granted. The Internet connects people globally in a way that has never been possible before, which in many ways is a fantastic thing. Unfortunately, this global connection can be abused for malicious purposes which have led to the need for security solutions such as network intrusion detection systems. One prominent example of such a system is Snort which is the subject of evaluation in this thesis. This study investigates the ability of signature databases for Snort to detect cyberattacks. In total, we executed 1143 attacks released between 2008-2019 and recorded the network traffic. We then analyzed the network traffic using three versions of Snort released 2012, 2016, and 2018. For each version, we used 18 different signature databases dated 2011-2019 from three different publishers. Our results show that there are a significant difference between the different publishers’ signature databases, where the best signature database detected around 70% of the attacks and the worst only detected around 1%. The configuration of Snort also had a significant impact on the results, where Snort with the pre-processor detected about 15% more attacks than without it.
Magnusson, Jonas. "Intrångsdetekteringssystem : En jämförelse mellan Snort och Suricata." Thesis, University of Skövde, School of Humanities and Informatics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-4401.
Full textArbetets syfte är att jämföra intrångsdetekteringssystemen Snort och Suricata för att ge en uppfattning om vilken av applikationerna som lämpar sig att implementeras hos en internetleverantör för att upptäcka attacker och öka säkerheten på nätverket. Jämförelsen utförs med hänseende till antal upptäckta attacker, prestanda, implementeringstid, antal konfigurationsfiler samt vilka operativsystem de finns tillgängliga på.
Resultatet visar att Suricata med sitt stöd för att använda signaturer skapade för Snort upptäcker fler attacker än Snort. Snort däremot går både smidigare och snabbare att implementera. Prestandamässigt så visar Suricata bäst resultat, genom att använda sig av flera kärnor och mindre minne.
Fleming, Theodor, and Hjalmar Wilander. "Network Intrusion and Detection : An evaluation of SNORT." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-144335.
Full textZhang, Huan. "Parallelization of a software based intrusion detection system - Snort." Thesis, University of Canterbury. Electrical and Computer Engineering, 2011. http://hdl.handle.net/10092/5988.
Full textAlbin, Eugene. "A comparative analysis of the Snort and Suricata intrusion-detection systems." Thesis, Monterey, California. Naval Postgraduate School, 2011. http://hdl.handle.net/10945/5480.
Full textOur research focuses on comparing the performance of two open-source intrusion-detection systems, Snort and Suricata, for detecting malicious activity on computer networks. Snort, the de-facto industry standard open-source solution, is a mature product that has been available for over a decade. Suricata, released two years ago, offers a new approach to signature-based intrusion detection and takes advantage of current technology such as process multithreading to improve processing speed. We ran each product on a multi-core computer and evaluated several hours of network traffic on the NPS backbone. We evaluated the speed, memory requirements, and accuracy of the detection engines in a variety of experiments. We conclude that Suricata will be able to handle larger volumes of traffic than Snort with similar accuracy, and thus recommend it for future needs at NPS since the Snort installation is approaching its bandwidth limits.
Kurukkankunnel, Joy Cyril, and Sherjin Dan Thomas. "A Study of Intrusion detection on PROFINET Network by Improving SNORT." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43350.
Full textMeyer, Steven J. "GPS Receiver Testing on the Supersonic Naval Ordnance Research Track (SNORT)." International Foundation for Telemetering, 1997. http://hdl.handle.net/10150/609808.
Full textThere is an interest in using Global Positioning System (GPS) receivers to find: Time Space Position Information (TSPI), miss distances between a missile and target, and using the data real time as an independent tracking aid for range safety. Ashtech, Inc. has several standalone GPS receivers they believe can work at high g levels. This paper investigates how the Ashtech GPS receivers work under high g loading in one axis. The telemetry system used to collect data from the receivers and the reconstruction of the data will also be discussed. The test was done at SNORT (Supersonic Naval Ordnance Research Track) located at NAWS, China Lake, CA. The g level obtained was about +23 g’s with a deceleration of -15 g’s. The velocity reached was about Mach 2.0. A summary of the errors is included.
Thorarensen, Christian. "A Performance Analysis of Intrusion Detection with Snort and Security Information Management." Thesis, Linköpings universitet, Databas och informationsteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177602.
Full textUtimura, Luan Nunes. "Aplicação em tempo real de técnicas de aprendizado de máquina no Snort IDS /." São José do Rio Preto, 2020. http://hdl.handle.net/11449/192443.
Full textResumo: À medida que a Internet cresce com o passar dos anos, é possível observar um aumento na quantidade de dados que trafegam nas redes de computadores do mundo todo. Em um contexto onde o volume de dados encontra-se em constante renovação, sob a perspectiva da área de Segurança de Redes de Computadores torna-se um grande desafio assegurar, em termos de eficácia e eficiência, os sistemas computacionais da atualidade. Dentre os principais mecanismos de segurança empregados nestes ambientes, destacam-se os Sistemas de Detecção de Intrusão em Rede. Muito embora a abordagem de detecção por assinatura seja suficiente no combate de ataques conhecidos nessas ferramentas, com a eventual descoberta de novas vulnerabilidades, faz-se necessário a utilização de abordagens de detecção por anomalia para amenizar o dano de ataques desconhecidos. No campo acadêmico, diversos trabalhos têm explorado o desenvolvimento de abordagens híbridas com o intuito de melhorar a acurácia dessas ferramentas, com o auxílio de técnicas de Aprendizado de Máquina. Nesta mesma linha de pesquisa, o presente trabalho propõe a aplicação destas técnicas para a detecção de intrusão em um ambiente tempo real mediante uma ferramenta popular e amplamente utilizada, o Snort. Os resultados obtidos mostram que em determinados cenários de ataque, a abordagem de detecção baseada em anomalia pode se sobressair em relação à abordagem de detecção baseada em assinatura, com destaque às técnicas AdaBoost, Florestas Aleatórias, Árvor... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: As the Internet grows over the years, it is possible to observe an increase in the amount of data that travels on computer networks around the world. In a context where data volume is constantly being renewed, from the perspective of the Network Security area it becomes a great challenge to ensure, in terms of effectiveness and efficiency, today’s computer systems. Among the main security mechanisms employed in these environments, stand out the Network Intrusion Detection Systems. Although the signature-based detection approach is sufficient to combat known attacks in these tools, with the eventual discovery of new vulnerabilities, it is necessary to use anomaly-based detection approaches to mitigate the damage of unknown attacks. In the academic field, several works have explored the development of hybrid approaches in order to improve the accuracy of these tools, with the aid of Machine Learning techniques. In this same line of research, the present work proposes the application of these techniques for intrusion detection in a real time environment using a popular and widely used tool, the Snort. The obtained results shows that in certain attack scenarios, the anomaly-based detection approach may outperform the signature-based detection approach, with emphasis on the techniques AdaBoost, Random Forests, Decision Tree and Linear Support Vector Machine.
Mestre
Books on the topic "Snort"
C, Foster James, ed. Snort 2.0 intrusion detection. Rockland, Mass: Syngress, 2003.
Find full textIntrusion detection systems with Snort: Advanced IDS techniques using Snort, Apache, MySQL, PHP, and ACID. Upper Saddle River, N.J: Prentice Hall PTR, 2003.
Find full textChristopher, Gerg, ed. Managing Security with Snort and IDS Tools. Beijing: O'Reilly, 2004.
Find full texter, Ke qi ao, and Xu cheng. Snort ru qin jian ce shi yong jie jue fang an. Bei jing: Ji xie gong ye chu ban she, 2005.
Find full textJ, Noonan Wesley, ed. Secure your network for free: Using Nmap, Wireshark, Snort, Nessus, and MRGT. Rockland, Mass: Syngress, 2007.
Find full textSeagren, Eric. Secure your network for free: Using Nmap, Wireshark, Snort, Nessus, and MRTG. Edited by Noonan Wesley J. Rockland, Mass: Syngress, 2006.
Find full textBook chapters on the topic "Snort"
O’Leary, Mike. "Snort." In Cyber Operations, 947–82. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-4294-0_19.
Full textO’Leary, Mike. "Snort." In Cyber Operations, 605–41. Berkeley, CA: Apress, 2015. http://dx.doi.org/10.1007/978-1-4842-0457-3_16.
Full textChi, Ruinan. "Intrusion Detection System Based on Snort." In Lecture Notes in Electrical Engineering, 657–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40633-1_82.
Full textSaganowski, Łukasz, Marcin Goncerzewicz, and Tomasz Andrysiak. "Anomaly Detection Preprocessor for SNORT IDS System." In Advances in Intelligent Systems and Computing, 225–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32384-3_28.
Full textMohanta, Abhijit, and Anoop Saldanha. "IDS/IPS and Snort/Suricata Rule Writing." In Malware Analysis and Detection Engineering, 819–50. Berkeley, CA: Apress, 2020. http://dx.doi.org/10.1007/978-1-4842-6193-4_23.
Full textAlicea, Michael, and Izzat Alsmadi. "Towards Automatic Rule Conflict Detection in Snort." In Advances in Information, Communication and Cybersecurity, 506–16. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91738-8_46.
Full textSharma, Shubham, Parma Nand, and Pankaj Sharma. "Intrusion Detection and Prevention Systems Using Snort." In Advances in Data Science and Management, 473–86. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5685-9_46.
Full textBaker, Andrew R., Brian Caswell, Mike Poor, Stephen Northcutt, Raven Alder, Jacob Babbin, Jay Beale, et al. "Installing Snort." In Snort 2.1 Intrusion Detection, 99–164. Elsevier, 2004. http://dx.doi.org/10.1016/b978-193183604-3/50008-4.
Full textBaker, Andrew R., Brian Caswell, Mike Poor, Stephen Northcutt, Raven Alder, Jacob Babbin, Jay Beale, et al. "Optimizing Snort." In Snort 2.1 Intrusion Detection, 471–527. Elsevier, 2004. http://dx.doi.org/10.1016/b978-193183604-3/50015-1.
Full textBaker, Andrew R., Brian Caswell, Mike Poor, Stephen Northcutt, Raven Alder, Jacob Babbin, Jay Beale, et al. "Advanced Snort." In Snort 2.1 Intrusion Detection, 671–99. Elsevier, 2004. http://dx.doi.org/10.1016/b978-193183604-3/50018-7.
Full textConference papers on the topic "Snort"
Khurat, Assadarat, and Wudhichart Sawangphol. "An Ontology for SNORT Rule." In 2019 16th International Joint Conference on Computer Science and Software Engineering (JCSSE). IEEE, 2019. http://dx.doi.org/10.1109/jcsse.2019.8864190.
Full textChakrabarti, S., M. Chakraborty, and I. Mukhopadhyay. "Study of snort-based IDS." In ICWET '10: International Conference and Workshop on Emerging Trends in Technology. New York, NY, USA: ACM, 2010. http://dx.doi.org/10.1145/1741906.1741914.
Full textFang, Xianjin, and Lingbing Liu. "Integrating Artificial Intelligence into Snort IDS." In 2011 3rd International Workshop on Intelligent Systems and Applications (ISA). IEEE, 2011. http://dx.doi.org/10.1109/isa.2011.5873435.
Full textTung Tran, I. Aib, E. Al-Shaer, and R. Boutaba. "An evasive attack on SNORT flowbits." In 2012 IEEE/IFIP Network Operations and Management Symposium (NOMS 2012). IEEE, 2012. http://dx.doi.org/10.1109/noms.2012.6211918.
Full textAl-Mamory, S. O., A. Hamid, A. Abdul-Razak, and Z. Falah. "String matching enhancement for snort IDS." In 2010 5th International Conference on Computer Sciences and Convergence Information Technology (ICCIT 2010). IEEE, 2010. http://dx.doi.org/10.1109/iccit.2010.5711211.
Full textHong, Xiaojin, Changzhen Hu, Zhigang Wang, Guoqiang Wang, and Ying Wan. "VisSRA: Visualizing Snort Rules and Alerts." In 2012 4th International Conference on Computational Intelligence and Communication Networks (CICN). IEEE, 2012. http://dx.doi.org/10.1109/cicn.2012.207.
Full textSun, Xibin, Du Zhang, Mingzhe Liu, Zhuoxin He, Haijie Li, and Jiwei Li. "Detecting and Resolving Inconsistencies in Snort." In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC). IEEE, 2018. http://dx.doi.org/10.1109/icci-cc.2018.8482026.
Full textSilva, Rui, Raul Barbosa, and Jorge Bernardino. "Testing Snort with SQL Injection Attacks." In the Ninth International C* Conference. New York, New York, USA: ACM Press, 2016. http://dx.doi.org/10.1145/2948992.2949001.
Full textUlltveit-Moe, Nils, and Vladimir Oleshchuk. "Privacy Violation Classification of Snort Ruleset." In 2010 18th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP). IEEE, 2010. http://dx.doi.org/10.1109/pdp.2010.87.
Full textMeng, Qingduan, Xiaoling Zhang, and Dongwei Lv. "Research on Detection Speed Improvement of Snort." In 2010 International Conference on Internet Technology and Applications (iTAP). IEEE, 2010. http://dx.doi.org/10.1109/itapp.2010.5566613.
Full textReports on the topic "Snort"
Ahmed, M., R. Hibbard, A. Moore, J. Benstead, K. Baker, R. Soufli, T. Pardini, et al. NIF S600D Snout Final Design Review (FDR) Report. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1182239.
Full textGertz, E. M., P. E. Gill, and J. Muetherig. Users guide for SnadiOpt : a package adding automatic differentiation to Snopt. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/822566.
Full textMukherjee, S., J. Emig, L. Griffith, R. Heeter, F. House, D. James, M. Schneider, and C. Sorce. Variable Spaced Grating (VSG) Snout, Rotator and Rails for use at LLE. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/992295.
Full textWeimar, Shawna, Anna K. Johnson, Kenneth J. Stalder, Locke A. Karriker, and Thomas Fangman. Distance of Nursery Pig Snout and Tails from a Human Observer during an Approachability Test. Ames (Iowa): Iowa State University, January 2015. http://dx.doi.org/10.31274/ans_air-180814-1328.
Full textMackinnon, A., B. Copsey, and J. Celeste. The Effectiveness of the Compton Radiography Snout Electron Deflection Yoke and its Application as an Electron Spectrometer. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/1057222.
Full textAirborne gamma ray spectrometric survey, Peter Snout, southwestern Newfoundland. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/122772.
Full text