Academic literature on the topic 'SOD1G85R mouse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SOD1G85R mouse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "SOD1G85R mouse"

1

Leyton-Jaimes, Marcel F., Clara Benaim, Salah Abu-Hamad, Joy Kahn, Amos Guetta, Richard Bucala, and Adrian Israelson. "Endogenous macrophage migration inhibitory factor reduces the accumulation and toxicity of misfolded SOD1 in a mouse model of ALS." Proceedings of the National Academy of Sciences 113, no. 36 (August 22, 2016): 10198–203. http://dx.doi.org/10.1073/pnas.1604600113.

Full text
Abstract:
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown. To elucidate this role, we bred MIF-deficient mice with SOD1G85R mice, which express a dismutase-inactive mutant of SOD1 and are considered a model of familial ALS. We found that the accumulation of misfolded SOD1, its association with mitochondrial and ER membranes, and the levels of sedimentable insoluble SOD1 aggregates were significantly higher in the spinal cords of SOD1G85R-MIF−/− mice than in their SOD1G85R-MIF+/+ littermates. Moreover, increasing MIF expression in neuronal cultures inhibited the accumulation of misfolded SOD1 and rescued from mutant SOD1-induced cell death. In contrast, the complete elimination of endogenous MIF accelerated disease onset and late disease progression and shortened the lifespan of the SOD1G85R mutant mice. These findings indicate that MIF plays a significant role in the folding and misfolding of SOD1 in vivo, and they have implications for the potential therapeutic role of up-regulating MIF within the nervous system to modulate the selective accumulation of misfolded SOD1.
APA, Harvard, Vancouver, ISO, and other styles
2

Pambo-Pambo, Arnaud, Jacques Durand, and Jean-Patrick Gueritaud. "Early Excitability Changes in Lumbar Motoneurons of Transgenic SOD1G85R and SOD1G93A-Low Mice." Journal of Neurophysiology 102, no. 6 (December 2009): 3627–42. http://dx.doi.org/10.1152/jn.00482.2009.

Full text
Abstract:
This work characterizes the properties of wild-type (WT) mouse motoneurons in the second postnatal week and compares these at the same age and in the same conditions to those of two different SOD1 mutant lines used as models of human amyotrophic lateral sclerosis (ALS), the SOD1G93A low expressor line and SOD1G85R line, to describe any changes in the functional properties of mutant motoneurons (Mns) that may be related to the pathogenesis of human ALS. We show that very early changes in excitability occur in SOD1 mutant Mns that have different properties from those of WT animals. The SOD1G93A-Low low expressor line displays specific differences that are not found in other mutant lines including a more depolarized membrane potential, larger spike width, and slower spike rise slope. With current pulses SOD1G93A-Low were hyperexcitable, but both mutants had a lower gain with current ramps stimulation. Changes in the threshold and intensities of Na+ and Ca2+ persistent inward currents were also observed. Low expressor mutants show reduced total persistant inward currents compared with WT motoneurons in the same recording conditions and give arguments toward modifications of the balance between Na+ and Ca2+ persistent inward currents. During the second week postnatal, SOD1G93A-Low lumbar motoneurons appear more immature than those of SOD1G85R compared with WT and we propose that different time course of the disease, possibly linked with different toxic properties of the mutated protein in each model, may explain the discrepancies between excitability changes described in the different models.
APA, Harvard, Vancouver, ISO, and other styles
3

BK, Binukumar, Susan Skuntz, Michaela Prochazkova, Sashi Kesavapany, Niranjana D. Amin, Varsha Shukla, Philip Grant, Ashok B. Kulkarni, and Harish C. Pant. "Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model." Human Molecular Genetics 28, no. 19 (May 9, 2019): 3175–87. http://dx.doi.org/10.1093/hmg/ddz118.

Full text
Abstract:
Abstract Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau. Here, we tested the hypothesis that inhibition of Cdk5/p25 hyperactivation in vivo is a neuroprotective factor during ALS pathogenesis by crossing the new transgenic mouse line that overexpresses Cdk5 inhibitory peptide (CIP) in motor neurons with the SOD1G37R, ALS mouse model (TriTg mouse line). The overexpression of CIP in the motor neurons significantly improves motor deficits, extends survival and delays pathology in brain and spinal cord of TriTg mice. In addition, overexpression of CIP in motor neurons significantly delays neuroinflammatory responses in TriTg mouse. Taken together, these data suggest that CIP may serve as a novel therapeutic agent for the treatment of neurodegenerative diseases.
APA, Harvard, Vancouver, ISO, and other styles
4

Robertson, Janice, Mohammad M. Doroudchi, Minh Dang Nguyen, Heather D. Durham, Michael J. Strong, Gerry Shaw, Jean-Pierre Julien, and Walter E. Mushynski. "A neurotoxic peripherin splice variant in a mouse model of ALS." Journal of Cell Biology 160, no. 6 (March 17, 2003): 939–49. http://dx.doi.org/10.1083/jcb.200205027.

Full text
Abstract:
Peripherin, a neuronal intermediate filament (nIF) protein found associated with pathological aggregates in motor neurons of patients with amyotrophic lateral sclerosis (ALS) and of transgenic mice overexpressing mutant superoxide dismutase-1 (SOD1G37R), induces the selective degeneration of motor neurons when overexpressed in transgenic mice. Mouse peripherin is unique compared with other nIF proteins in that three peripherin isoforms are generated by alternative splicing. Here, the properties of the peripherin splice variants Per 58, Per 56, and Per 61 have been investigated in transfected cell lines, in primary motor neurons, and in transgenic mice overexpressing peripherin or overexpressing SOD1G37R. Of the three isoforms, Per 61 proved to be distinctly neurotoxic, being assembly incompetent and inducing degeneration of motor neurons in culture. Using isoform-specific antibodies, Per 61 expression was detected in motor neurons of SOD1G37R transgenic mice but not of control or peripherin transgenic mice. The Per 61 antibody also selectively labeled motor neurons and axonal spheroids in two cases of familial ALS and immunoprecipitated a higher molecular mass peripherin species from disease tissue. This evidence suggests that expression of neurotoxic splice variants of peripherin may contribute to the neurodegenerative mechanism in ALS.
APA, Harvard, Vancouver, ISO, and other styles
5

Marques, Christine, Thibaut Burg, Jelena Scekic-Zahirovic, Mathieu Fischer, and Caroline Rouaux. "Upper and Lower Motor Neuron Degenerations Are Somatotopically Related and Temporally Ordered in the Sod1 Mouse Model of Amyotrophic Lateral Sclerosis." Brain Sciences 11, no. 3 (March 13, 2021): 369. http://dx.doi.org/10.3390/brainsci11030369.

Full text
Abstract:
Amyotrophic lateral sclerosis (ALS) is a devastating and fatal neurodegenerative disease arising from the combined degeneration of upper motor neurons (UMN) in the motor cortex, and lower motor neurons (LMN) in the brainstem and spinal cord. This dual impairment raises two major questions: (i) are the degenerations of these two neuronal populations somatotopically related? and if yes (ii), where does neurodegeneration start? If studies carried out on ALS patients clearly demonstrated the somatotopic relationship between UMN and LMN degenerations, their temporal relationship remained an unanswered question. In the present study, we took advantage of the well-described Sod1G86R model of ALS to interrogate the somatotopic and temporal relationships between UMN and LMN degenerations in ALS. Using retrograde labelling from the cervical or lumbar spinal cord of Sod1G86R mice and controls to identify UMN, along with electrophysiology and histology to assess LMN degeneration, we applied rigorous sampling, counting, and statistical analyses, and show that UMN and LMN degenerations are somatotopically related and that UMN depletion precedes LMN degeneration. Together, the data indicate that UMN degeneration is a particularly early and thus relevant event in ALS, in accordance with a possible cortical origin of the disease, and emphasize the need to further elucidate the molecular mechanisms behind UMN degeneration, towards new therapeutic avenues.
APA, Harvard, Vancouver, ISO, and other styles
6

Kang, Jihong, and Serge Rivest. "MyD88-deficient bone marrow cells accelerate onset and reduce survival in a mouse model of amyotrophic lateral sclerosis." Journal of Cell Biology 179, no. 6 (December 17, 2007): 1219–30. http://dx.doi.org/10.1083/jcb.200705046.

Full text
Abstract:
Increasing evidence suggests that neurotoxicity of secreted superoxide dismutase 1 (SOD1) mutants is associated with amyotrophic lateral sclerosis (ALS). We show here that mutant SOD1 protein activates microglia via a myeloid differentiation factor 88 (MyD88)–dependent pathway. This inflammatory response is also associated with a marked recruitment of bone marrow–derived microglia (BMDM) in the central nervous system. We then generated chimeric SOD1G37R and SOD1G93A mice by transplantation of bone marrow (BM) cells from MyD88-deficient or green fluorescent protein (GFP)–expressing mice. SOD1G37R mice receiving MyD88−/− BM cells exhibit a significantly earlier disease onset and shorter lifespan compared with mice transplanted with control GFP cells. This compelling beneficial effect of MyD88-competent BMDM is a previously unrecognized natural innate immune mechanism of neuroprotection in a mouse model of late-onset motor neuron disease.
APA, Harvard, Vancouver, ISO, and other styles
7

Filali, Mohammed, Robert Lalonde, and Serge Rivest. "Sensorimotor and cognitive functions in a SOD1G37R transgenic mouse model of amyotrophic lateral sclerosis." Behavioural Brain Research 225, no. 1 (November 2011): 215–21. http://dx.doi.org/10.1016/j.bbr.2011.07.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martineau, Éric, Danielle Arbour, Joanne Vallée, and Richard Robitaille. "Properties of Glial Cell at the Neuromuscular Junction Are Incompatible with Synaptic Repair in the SOD1G37R ALS Mouse Model." Journal of Neuroscience 40, no. 40 (August 28, 2020): 7759–77. http://dx.doi.org/10.1523/jneurosci.1748-18.2020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maier, Marcel, Tobias Welt, Fabian Wirth, Fabio Montrasio, Daniel Preisig, Jordan McAfoose, Fernando G. Vieira, et al. "A human-derived antibody targets misfolded SOD1 and ameliorates motor symptoms in mouse models of amyotrophic lateral sclerosis." Science Translational Medicine 10, no. 470 (December 5, 2018): eaah3924. http://dx.doi.org/10.1126/scitranslmed.aah3924.

Full text
Abstract:
Mutations in the gene encoding superoxide dismutase 1 (SOD1) lead to misfolding and aggregation of SOD1 and cause familial amyotrophic lateral sclerosis (FALS). However, the implications of wild-type SOD1 misfolding in sporadic forms of ALS (SALS) remain unclear. By screening human memory B cells from a large cohort of healthy elderly subjects, we generated a recombinant human monoclonal antibody (α-miSOD1) that selectively bound to misfolded SOD1, but not to physiological SOD1 dimers. On postmortem spinal cord sections from 121 patients with ALS, α-miSOD1 antibody identified misfolded SOD1 in a majority of cases, regardless of their SOD1 genotype. In contrast, the α-miSOD1 antibody did not bind to its epitope in most of the 41 postmortem spinal cord sections from non-neurological control (NNC) patients. In transgenic mice overexpressing disease-causing human SOD1G37R or SOD1G93A mutations, treatment with the α-miSOD1 antibody delayed the onset of motor symptoms, extended survival by up to 2 months, and reduced aggregation of misfolded SOD1 and motor neuron degeneration. These effects were obtained whether α-miSOD1 antibody treatment was administered by direct brain infusion or peripheral administration. These results support the further development of α-miSOD1 antibody as a candidate treatment for ALS involving misfolding of SOD1.
APA, Harvard, Vancouver, ISO, and other styles
10

Hilton, James B., Kai Kysenius, Anthony R. White, and Peter J. Crouch. "The accumulation of enzymatically inactive cuproenzymes is a CNS-specific phenomenon of the SOD1G37R mouse model of ALS and can be restored by overexpressing the human copper transporter hCTR1." Experimental Neurology 307 (September 2018): 118–28. http://dx.doi.org/10.1016/j.expneurol.2018.06.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "SOD1G85R mouse"

1

Pambo-Pambo, Arnaud Brice. "Etude du développement postnatal des motoneurones lombaires de deux souches de souris transgéniques, modèles de la sclérose latérale amyotrophique." Thesis, Aix-Marseille 2, 2010. http://www.theses.fr/2010AIX20716.

Full text
Abstract:
Les modèles murins de la Sclérose Latérale Amyotrophique (SLA) ont permis des avancées dans la compréhension des mécanismes pouvant conduire à la mort sélective et progressive des motoneurones (Mns) mais ils présentent des disparités dans la sévérité et le décours temporel de la maladie. Parmi les hypothèses avancées figurent des modifications des propriétés intrinsèques des motoneurones conduisant à des modifications de l’excitabilité et de l’homéostasie du calcium intracellulaire et à la mort du motoneurone.Nous avons donc étudié les propriétés électrophysiologiques des Mns lombaires de souris SOD1G85R et SOD1G93A, deux modèles à faible nombre de copies du gène humain muté, durant les deux premières semaines postnatales afin d’identifier d’éventuelles anomalies pré-symptomatiques précoces. Nos travaux ont été réalisés sur deux préparations in vitro de moelle entière isolée et de tranches de moelle épinière. Les Mns mutants présentent, sur les deux types de préparations, une altération des propriétés du potentiel d’action se traduisant par un allongement de la durée associée à une diminution des vitesses maximales de dépolarisation et repolarisation et une réduction d’amplitude. Ces altérations apparaissent entre P2-P5 dans les Mns SOD1G85R et entre P6-P10 dans les Mns SOD1G93A et suggèrent une diminution de la densité des canaux sodiques et potassiques associés au potentiel d’action. Nous avons aussi observé sur des tranches de moelle épinière entre P6-P10 que le gain de fréquence des Mns SOD1G85R diminue et celui des SOD1G93A augmente sans aucune modification des densités des courants entrants persistants sodiques et calciques. On note également que, sur tranches de moelle épinière, les Mns SOD1G93A présentent un potentiel de repos diminué. En présence d’une surcharge calcique extracellulaire, les propriétés membranaires des Mns SOD1G85R entre P6-P10 sont moins affectées que celles des Mns témoins. Les effets différentiels de cette surcharge peuvent être dus à des modifications différentes de la dépendance au voltage des canaux voltage-dépendants et/ou à la modulation de certains types de canaux activés par le calcium extracellulaire. Une arborisation dendritique plus ramifiée que celle de Mns témoins, comparable à celle précédemment décrite dans les Mns SOD1G85R, a été observée dans les Mns SOD1G93A à P8-P9 avec des altérations du potentiel d’action citées plus haut et une réduction de la rhéobase. Ces altérations morphologiques et électriques pourraient indiquer des modifications de cinétiques et/ou de densités de canaux sur des sites différents dans ces Mns. Nos travaux montrent donc, d’une part que les mutations SOD1G85R et SOD1G93A induisent dans ces deux modèles murins des altérations des propriétés des Mns lombaires comparables mais décalées dans le temps et d’autre part que certaines altérations semblent être spécifiques à une mutation SOD1 donnée
The SOD1 murine models of Amyotrophic Lateral Sclerosis (ALS) allowed major progress in the understanding of mechanisms which could lead to a selective loss of motoneurons (Mns), but these models display differences in the severity and time course of the disease. Changes in intrinsic properties of motoneurons may induce changes in excitability and intracellular calcium homeostasis leading to motoneuron death.Therefore, we studied electrophysiological properties of lumbar Mns from SOD1G85R and SOD1G93A mice, low expressor lines, during the first two postnatal weeks in order to identify possible early presymptomatic abnormalities. Our studies were carried out on two in vitro preparations: the whole isolated spinal cord and acute spinal cord slices. Mutant Mns display, in the two preparations, a modified action potential characterized by an increased duration due to a decrease of the maximal speeds of depolarisation and repolarisation and a reduction of the spike amplitude. These alterations appeared between P2-P5 in SOD1G85R Mns and between P6-P10 in SOD1G93A Mns and suggest a decrease of the density of sodium and potassium channels related to action potential. We also showed on spinal cord slices between P6-P10 that the gain of frequency decreases for SOD1G85R Mns and increases for SOD1G93A Mns without any change in the density of persistent inward sodium or calcium currents in these different mutant Mns. We observed also that the resting membrane potential of SOD1G93A Mns on spinal cord slices is decreased. The membrane properties of SOD1G85R Mns between P6-P10 were less susceptible to changes in presence of an extracellular calcium overload. Differential effects of this extracellular calcium overload on membrane properties of WT and SOD1G85R Mns could be due to different alterations of the potential dependence of voltage-gated channels and/or to the modulation of some types of channels sensitive to extracellular calcium. An over-branching of dendritic arborization, similar to that previously described in SOD1G85R Mns, was observed in SOD1G93A at P8-P9 with the above-mentioned action potential alterations and a weak rheobasic current. These morphogical and electrical changes could indicate together alterations of kinetics and/or density of channels on different sites on these Mns. In conclusion, our work shows on one hand that SOD1G85R and SOD1G93A mutations induce similar alterations of lumbar Mns properties but time-shifted in these two murine models and on the other hand that some alterations seem to be specific to a given SOD1 mutation
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography