Academic literature on the topic 'SODAR'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'SODAR.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "SODAR"
Anandan, V. K., M. Shravan Kumar, and I. Srinivasa Rao. "First Results of Experimental Tests of the Newly Developed NARL Phased-Array Doppler Sodar." Journal of Atmospheric and Oceanic Technology 25, no. 10 (October 1, 2008): 1778–84. http://dx.doi.org/10.1175/2008jtecha1050.1.
Full textBradley, Stuart, and Sabine von Hünerbein. "Beam Geometry Calibration of Sodars without Use of a Mast." Journal of Atmospheric and Oceanic Technology 30, no. 9 (September 1, 2013): 2161–67. http://dx.doi.org/10.1175/jtech-d-12-00112.1.
Full textPiringer, Martin. "Ausgewählte Ergebnisse eines Sodar-Vergleichsexperiments." Meteorologische Zeitschrift 3, no. 3 (July 11, 1994): 132–37. http://dx.doi.org/10.1127/metz/3/1994/132.
Full textKendrick, Paul, and Sabine von Hünerbein. "Fixed Echo Rejection in Sodar Using Noncoherent Matched Filter Detection and Gaussian Mixture Model–Based Postprocessing." Journal of Atmospheric and Oceanic Technology 36, no. 1 (January 2019): 3–16. http://dx.doi.org/10.1175/jtech-d-18-0095.1.
Full textAnderson, Philip S., Russell S. Ladkin, and Ian A. Renfrew. "An Autonomous Doppler Sodar Wind Profiling System." Journal of Atmospheric and Oceanic Technology 22, no. 9 (September 1, 2005): 1309–25. http://dx.doi.org/10.1175/jtech1779.1.
Full textBradley, Stuart, Erich Mursch-Radlgruber, and Sabine von Hünerbein. "Sodar Measurements of Wing Vortex Strength and Position." Journal of Atmospheric and Oceanic Technology 24, no. 2 (February 1, 2007): 141–55. http://dx.doi.org/10.1175/jtech1966.1.
Full textBradley, Stuart. "Aspects of the Correlation between Sodar and Mast Instrument Winds." Journal of Atmospheric and Oceanic Technology 30, no. 10 (October 1, 2013): 2241–47. http://dx.doi.org/10.1175/jtech-d-12-00256.1.
Full textReitebuch, Oliver, and Stefan Emeis. "SODAR Messungen zur Atmosphärenforschung und Umweltüberwachung." Meteorologische Zeitschrift 7, no. 1 (February 18, 1998): 11–14. http://dx.doi.org/10.1127/metz/7/1998/11.
Full textAlzahrani, Abdullah A. H., Eltayeb M. Alhassan, Mahmoud A. Attia, and Mohammad A. Albanghali. "Enhancing Dental Carving Skills of Preclinical Dental Hygiene Students Using Online Dental Anatomy Resources." Open Dentistry Journal 13, no. 1 (December 31, 2019): 499–504. http://dx.doi.org/10.2174/1874210601913010499.
Full textRao, I. Srinivasa, V. K. Anandan, and M. Shravan Kumar. "Multifrequency Decoding of a Phased Array Doppler Sodar." Journal of Atmospheric and Oceanic Technology 26, no. 4 (April 1, 2009): 759–68. http://dx.doi.org/10.1175/2008jtecha1166.1.
Full textDissertations / Theses on the topic "SODAR"
Louca, K., A. Stadler, A. Raabe, and A. Ziemann. "Comparison of wind measurements between a Mini-SODAR PA0, a METEK-SODAR and a 99 m tower." Universität Leipzig, 2010. https://ul.qucosa.de/id/qucosa%3A16372.
Full textPietschmann, Karin. "Testmessung eines Mini-SODARs im Vergleich mit einem 100m-Mast und einem Doppler-SODAR." Wissenschaftliche Mitteilungen des Leipziger Instituts für Meteorologie ; 41 = Meteorologische Arbeiten aus Leipzig … und Jahresbericht … des Instituts für Meteorologie der Universität Leipzig ; 12 (2007), S. 123-138, 2007. https://ul.qucosa.de/id/qucosa%3A15578.
Full textSeit März 2006 ist das Leipziger Institut für Meteorologie (LIM) in Besitz eines kommerziellen Mini-SODARs. Das Mini-SODAR ist auf Grund seiner Größe sehr mobil und lässt sich unter geringem Aufwand schnell an einem beliebigen Standort aufbauen. Die erste größere Testmessung und gleichzeitig Vergleichsmessung dieses Gerätes mit einem Windmast und einem Doppler-SODAR fand im Juni 2006 auf dem Grenzschichtmessfeld in Falkenberg statt, welches zum Meteorologischen Observatorium (MOL) des Deutschen Wetterdienstes (DWD) gehört. Die Auswertung dieser 6-stündigen Messung wird hier vorgestellt. Es wurde ein statistischer Vergleich zwischen Mini-SODAR, Windmast und Doppler-SODAR durchgeführt. Weiterhin wurden das Sodargramm und die gemessenen Profildaten des Mini-SODARs untersucht und interpretiert.
Pietschmann, Karin. "Testmessung eines Mini-SODARs im Vergleich mit einem 100m-Mast und einem Doppler-SODAR." Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223342.
Full textSeit März 2006 ist das Leipziger Institut für Meteorologie (LIM) in Besitz eines kommerziellen Mini-SODARs. Das Mini-SODAR ist auf Grund seiner Größe sehr mobil und lässt sich unter geringem Aufwand schnell an einem beliebigen Standort aufbauen. Die erste größere Testmessung und gleichzeitig Vergleichsmessung dieses Gerätes mit einem Windmast und einem Doppler-SODAR fand im Juni 2006 auf dem Grenzschichtmessfeld in Falkenberg statt, welches zum Meteorologischen Observatorium (MOL) des Deutschen Wetterdienstes (DWD) gehört. Die Auswertung dieser 6-stündigen Messung wird hier vorgestellt. Es wurde ein statistischer Vergleich zwischen Mini-SODAR, Windmast und Doppler-SODAR durchgeführt. Weiterhin wurden das Sodargramm und die gemessenen Profildaten des Mini-SODARs untersucht und interpretiert
Etienne, Christian. "Réalisation et évaluation d'un sodar monostatique : étude des signatures sodars en fonction de paramètres météorologiques." Orléans, 1986. http://www.theses.fr/1986ORLE0404.
Full textEtienne, Christian. "Réalisation et évaluation d'un sodar monostatique étude des signatures sodars en fonction de paramètres météorologiques." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb375974345.
Full textPiper, Benjamin. "SODAR comparison methods for compatible wind speed estimation." Thesis, University of Salford, 2011. http://usir.salford.ac.uk/16501/.
Full textHolmgren, Viktor, and Karl-Johan Vikmyr. "Detektion av fasta ekon vid vindmätning med SODAR." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Datateknik och informatik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-36490.
Full textSyfte – Syftet med detta examensarbete var att underlätta sökandet efter ekon från fasta objekt, så kallade "fasta ekon", vid vindmätning med SODAR-teknik. Vidare var syftet att utreda om fasta ekon framträder olika under olika förutsättningar som: mätinstrumentets ljudlobsvinkel mot objektet som ger upphov till eko, mätfrekvens, luftens temperatur och den relativa luftfuktigheten. Metod – Data samlades in med två olika SODAR-instrument, AQ500 och AQ510, från företaget AQSystem på en testplats i södra Sverige, februari – april 2017. Data samlades in genom att installera instrumenten på olika avstånd, samt roterat åt olika riktningar, från ett stationärt objekt (en ca 100 m hög mast). Denna data genomsöktes sedan, både manuellt och med hjälp av Excel, efter fasta ekon och jämfördes med tidigare nämnda parametrar. En mjukvara som kan användas för att detektera fasta ekon utvecklades. Mjukvaran använder r-kvadratvärdet för en potensfunktion anpassad till insamlade data för att avgöra storleken på ett eventuellt fast eko. Resultat – Studiens resultat visade att SODAR-instrumentets ljudlobsvinkel mot ekoalstrande objekt hade relativt hög påverkan på fasta ekons styrka. När varsin ljudlob på instrumenten riktades direkt mot masten ökade det fasta ekot jämfört mot när ljudloberna var riktade vid sidan av masten. AQ510, som mäter med en högre frekvens än AQ500, påverkades mindre av fasta ekon än vad AQ500 gjorde vid simultana mätningar. Både luftens temperatur och den relativa luftfuktigheten hade svag korrelation med fasta ekons styrka. Därför drogs slutsatsen att just dessa atmosfäriska parametrar ej påverkar hur fasta ekon uppstår. r-kvadratvärdet för en potensfunktion anpassad till vinddata visades vara ett bra mått på magnituden av ett fast eko. När korrelationskoefficienten för r-kvadratvärdet och andelen vindprofiler innehållande fasta ekon i vinddata beräknades antog den värdet 0,995 vilket visar på en stark positiv korrelation. r-kvadratvärdet jämförs med ett tröskelvärde (som beror av antalet vindprofiler i data som analyseras) för att avgöra om ett fast eko orsakar störningar. En kontroll görs även där det de uppmätta vindvärdena jämförs med potensfunktionens värden för att hitta mindre avvikelser som kan ha orsakats av fasta ekon. Implikationer – Om examensarbetets resultat tas i beaktning kan det underlätta för både installatörer och utvecklare av SODAR-instrument. För installatören visar resultatet att fasta ekon kan minskas genom att rotera mätinstrumentet. För utvecklaren visar resultatet att fasta ekon kan minskas genom att välja en lämplig mätfrekvens. Om varken luftens temperatur eller den relativa luftfuktigheten påverkar fasta ekon nämnvärt kan detta visa på att vindmätning med SODAR-instrument är brukbart i varierande klimat. Även analytiker kan ha nytta av examensarbetets resultat i form av den mjukvara som utvecklats. Mjukvaran kan användas för att på ett mer effektivt sätt än tidigare upptäcka fasta ekon. Begränsningar – Datainsamlingen genomfördes under en begränsad period under sen vinter till tidig vår i södra Sverige. Därför har varken exceptionellt låga- eller höga temperaturer mätts upp. Examensarbetet begränsas ytterligare av att endast mätinstrument från företaget AQSystem av typen "multiple axis" har använts. Nyckelord – SODAR, vindmätning, fasta ekon, mätinstrument.
Presentationen har redan skett.
Haggagy, Mahmoud El-Nouby Adam [Verfasser], and Helmut [Akademischer Betreuer] Mayer. "A sodar-based investigation of the atmospheric boundary layer." Freiburg : Universität, 2003. http://d-nb.info/115653271X/34.
Full textHaggagy, Mahmoud El-Nouby Adam. "A sodar based investigation of the atmospheric boundary layer /." [S.l. : s.n.], 2003. http://www.gbv.de/dms/goettingen/367276976.pdf.
Full textMandock, Randal Lee Nicholas. "A multiple beam sodar for the measurement of atmospheric turbulence." Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/25869.
Full textBooks on the topic "SODAR"
Gregg, David W. NOAA advanced real-time digital sodar. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1995.
Find full textHaggagy, Mahmoud El-Nouby Adam. A sodar-based investigation of the atmospheric boundary layer. Freiburg: Meteorologisches Institut der Universität Freiburg, 2003.
Find full textShaw, William J. Sodar, rawinsonde, and surface layer measurements at a coastal site: SCCCAMP data report. Monterey, Calif: Naval Postgraduate School, 1986.
Find full textScovil, Douglas H. An analysis of diurnal wind variability in the Santa Barbara Channel from SODAR measurements. Monterey, Calif: Naval Postgraduate School, 1989.
Find full textAndrade, Eugenio de. Solar matter =: Matéria solar. Fort Bragg, Calif: QED Press, 1995.
Find full textBook chapters on the topic "SODAR"
Emeis, Stefan. "Sodar and RASS." In Springer Handbook of Atmospheric Measurements, 661–81. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-52171-4_23.
Full textCoulter, R. L. "Turbulence variables derived from sodar data." In Acoustic Remote Sensing Applications, 191–201. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009566.
Full textWeill, A. "Indirect Measurements of Fluxes Using Doppler Sodar." In Land Surface Evaporation, 301–11. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3032-8_18.
Full textMastrantonio, G., and S. Argentini. "A modular PC-based multiband sodar system." In Acoustic Remote Sensing Applications, 105–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009561.
Full textFoken, Th, H. J. Albrecht, K. Sasz, and F. Vogt. "Operational use of sodar information in nowcasting." In Acoustic Remote Sensing Applications, 395–405. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009575.
Full textHareesh Babu, M., M. Bala Naga Bhushanamu, D. S. S. N. Raju, B. Benarji, and M. Purnachandra Rao. "Scattering of SODAR Signal Through Rough Circular Bodies." In Lecture Notes in Electrical Engineering, 277–90. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2728-1_25.
Full textMelas, Dimitrios, Giulia Abbate, and Harry Kambezidis. "Coupling of Sodar Data with Simple Numerical Models." In Air Pollution Modeling and Its Application XIII, 731–32. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4153-0_80.
Full textIto, Yoshiki. "Design of a tri-monostatic doppler sodar system." In Acoustic Remote Sensing Applications, 85–104. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009560.
Full textYazidi, Hatem. "Sodar (SOnic Detection and Ranging) Measurement Campaign: Case Study." In ICREGA’14 - Renewable Energy: Generation and Applications, 455–62. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05708-8_36.
Full textBull, Günther. "Sodar investigations of gravity waves by cross spectral analysis." In Acoustic Remote Sensing Applications, 275–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0009570.
Full textConference papers on the topic "SODAR"
Rogers, Anthony L., James F. Manwell, and George G. Grills. "Investigation of the Applicability of SODAR for Wind Resource Measurements in Complex and Inhomogeneous Terrain." In ASME 2003 Wind Energy Symposium. ASMEDC, 2003. http://dx.doi.org/10.1115/wind2003-1186.
Full textBokal, Zhanna M., and Rustem B. Sinitsyn. "Random signal sodar for meteorology." In Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2009, edited by Ryszard S. Romaniuk and Krzysztof S. Kulpa. SPIE, 2009. http://dx.doi.org/10.1117/12.837997.
Full textUlich, Bobby, Kenneth Steele, Harold Linton, Patrick McMillin, Richard Benney, and Brian Bagdonovich. "A SODAR Height Sensor for RRDAS." In 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-2114.
Full textPanchenko, A. Yu, N. E. Alferov, and V. A. Maryuh. "Acoustic aerial for the experimental research sodar." In 2011 VIII International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2011. http://dx.doi.org/10.1109/icatt.2011.6170767.
Full textRogers, Anthony, Elizabeth Walls, William Henson, and James Manwell. "Addressing Ground Clutter Corruption of Sodar Measurements." In 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-1226.
Full textDietz, Anthony, Paul Sorenson, Ken Steele, Kristen Lafond, and Steve Tavan. "A Sodar Height Sensor for Precision Airdrops." In 19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2558.
Full textCapanni, Annalisa, and Giovanni Gualtieri. "SODAR applications for estimating boundary layer parameters." In Remote Sensing, edited by Anton Kohnle and John D. Gonglewski. SPIE, 1999. http://dx.doi.org/10.1117/12.371332.
Full textEaton, Frank, Judith Miller, and Sheldon Stokes. "Sodar measurements of turbulence in complex terrain." In 31st Plasmadynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2000. http://dx.doi.org/10.2514/6.2000-2356.
Full textUlianov, Y. N., V. S. Skvortsov, V. I. Vetrov, V. L. Misailov, and N. G. Maksimova. "Parametric acoustic antenna for noise-proof pulse sodar." In 2013 IX International Conference on Antenna Theory and Techniques (ICATT). IEEE, 2013. http://dx.doi.org/10.1109/icatt.2013.6650760.
Full textDevi, M. "Sensing of atmosphere through sodar for rain prediction." In Tenth International Conference on Antennas and Propagation (ICAP). IEE, 1997. http://dx.doi.org/10.1049/cp:19970394.
Full textReports on the topic "SODAR"
Coulter, Richard L. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook. Office of Scientific and Technical Information (OSTI), April 2016. http://dx.doi.org/10.2172/1251389.
Full textNichols, R., J. Kohn, N. Rigas, E. Boessneck, E. Kress, and P. Gayes. SODAR DATA FROM OYSTER BAY AT WINYAH BAY NATIONAL ESTUARINE RESEARCH RESERVE. Office of Scientific and Technical Information (OSTI), April 2013. http://dx.doi.org/10.2172/1076960.
Full textYuechun, Yi, Wang Jixue, Wang Hongfang, Li Guimin, Yang Bolin, George Scott, Dennis Elliott, and David Kline. Comparison of Triton SODAR Data to Meteorological Tower Wind Measurement Data in Hebei Province, China. Office of Scientific and Technical Information (OSTI), January 2012. http://dx.doi.org/10.2172/1036043.
Full textDeola, Regina Anne. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work. Office of Scientific and Technical Information (OSTI), February 2010. http://dx.doi.org/10.2172/977234.
Full textClifton, A. Improved Tools for Wind Resource Assessment with Remote Sensing Sodar Device: Cooperative Research and Development Final Report, CRADA Number: CRD-09-363. Office of Scientific and Technical Information (OSTI), February 2015. http://dx.doi.org/10.2172/1172275.
Full textKelley, N. Optimization of Sodar Wind Profile Measurements in Low-Humidity Climates at High Altitudes: Cooperative Research and Development Final Report, CRADA number CRD-07-00246. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/985564.
Full textKong, Weiqiang, Simon Furbo, and Jianhua Fan. Simulation and design of collector array units within large systems. IEA SHC Task 55, October 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0005.
Full textBranduardi-Raymont, Graziella, and et al. SMILE Definition Study Report. ESA SCI, December 2018. http://dx.doi.org/10.5270/esa.smile.definition_study_report-2018-12.
Full textFan, Jianhua, Weiqiang Kong, and Simon Furbo. Simulation and design of collector array units within large systems. IEA SHC Task 55, October 2019. http://dx.doi.org/10.18777/ieashc-task55-2019-0006.
Full textRusk, Todd, Ryan Siegel, Linda Larsen, Tim Lindsey, and Brian Deal. Technical and Financial Feasibility Study for Installation of Solar Panels at IDOT-owned Facilities. Illinois Center for Transportation, August 2021. http://dx.doi.org/10.36501/0197-9191/21-024.
Full text