Academic literature on the topic 'Söderberg electrodes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Söderberg electrodes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Söderberg electrodes"

1

Shoko, L., J. P. Beukes, and C. A. Strydom. "Determining the baking isotherm temperature of Söderberg electrodes and associated structural changes." Minerals Engineering 49 (August 2013): 33–39. http://dx.doi.org/10.1016/j.mineng.2013.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shoko, L., J. P. Beukes, C. A. Strydom, B. Larsen, and L. Lindstad. "Predicting the toluene- and quinoline insoluble contents of coal tar pitches used as binders in Söderberg electrodes." International Journal of Mineral Processing 144 (November 2015): 46–49. http://dx.doi.org/10.1016/j.minpro.2015.09.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

White, Jesse F., Konstantinos Rigas, S. Peter Andersson, and Björn Glaser. "Thermal Properties of Söderberg Electrode Materials." Metallurgical and Materials Transactions B 51, no. 5 (July 6, 2020): 1928–32. http://dx.doi.org/10.1007/s11663-020-01890-0.

Full text
Abstract:
Abstract Thermal properties of green Söderberg electrode pastes were measured up to 1073 K (800 °C) using the transient plane source method. Comparison was made to measurements on an electrode material baked beforehand to 1473 K (1200 °C). For the green pastes, thermal conductivity was found to decrease up to 673 K (400 °C) at the onset of baking. After about 873 K (600 °C), thermal conductivity of the material increases with increasing temperature. For previously baked Söderberg material, thermal conductivity continually increases with increasing temperature.
APA, Harvard, Vancouver, ISO, and other styles
4

Beukes, J. P., H. Roos, L. Shoko, P. G. van Zyl, H. W. J. P. Neomagus, C. A. Strydom, and N. F. Dawson. "The use of thermomechanical analysis to characterise Söderberg electrode paste raw materials." Minerals Engineering 46-47 (June 2013): 167–76. http://dx.doi.org/10.1016/j.mineng.2013.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Söderberg electrodes"

1

Rigas, Konstantinos. "Thermal Physical Properties of Söderberg Electrode Material." Thesis, KTH, Materialvetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-259191.

Full text
Abstract:
Söderberg electrodes take part in the production of ferroalloys, copper, nickel, platinum, and calcium carbide. They are involved in a continuous and with low costs operation. The study of such electrodes is essential, since research and new findings will provide us with vital information regarding the operation of such furnaces leading to a more efficient production. Therefore, the study of Söderberg electrodes materials characteristics is of great importance. The current work refers to the thermal properties of Söderberg electrode paste by focusing on the thermal conductivity coefficient from room temperature up to 800 °C with the Transient Plane Source (TPS) method applied to an electrode paste material with softening point at 65°C. Another electrode paste with higher softening point at 90 °C and an already baked material are studied to some extent. The study gives significant results for the thermal conductivity coefficient for all the investigated cases. Results indicate variation of coefficients regarding the phase evolved during heating at different temperatures. In principle, thermal conductivity of the green paste with low softening point decreases until 400°C and increases after the baking point which is found in between 400-500°C. A few measurements for the green paste with higher softening point indicate the same trend. For the case of the fully baked electrode, thermal conductivity seems to keep an increasing trend according to temperature increase. On the two last mentioned materials, more experimental work will be conducted in future.
Söderberg-elektroder används till produktionen av ferrolegeringar, koppar, nickel, platina och kalciumkarbider. De är involverade i kontinuerliga och lågkostnadsoperationer. Studien av sådana elektroder är väsentlig eftersom forskning och nya fynd kommer att ge oss viktig information om driften av sådana ugnar vilket leder till en effektivare produktion. Därför är studien av Söderberg-elektrodens materialegenskaper av stor betydelse. Det nuvarande arbetet refererar till de termiska egenskaperna hos Söderberg-elektrodpastan genom att fokusera på den termiska konduktivitetskoefficienten från rumstemperatur upp till 800°C med den TPS-metoden (Transient Plane Source) tillämpad på ett elektrodpasta-material med en mjukningspunkt vid 65°C. En annan elektrodpasta med en högre mjukningspunkt vid 90°C samt ett redan bakat material studeras även till viss del. Studien ger signifikanta resultat för värmeledningsförmågan för alla undersökta fall. Resultaten indikerar på variationer av koefficienterna gällande fasen som utvecklas under uppvärmning vid olika temperaturer. I stort sett minskar värmeledningsförmågan hos den gröna pastan med låg mjukningspunkt upp till 400°C och ökar efter bakningspunkten som finns mellan 400-500°C. Några mätningar för den gröna pastan med en högre mjukningspunkt visar samma trend. När det gäller den helt bakade elektroden verkar värmdeledningsförmågan hålla en ökande trend beroende på temeperaturökningen. På de två sistnämnda materialen kommer mer experimentellt arbete att genomföras i framtiden.
APA, Harvard, Vancouver, ISO, and other styles
2

Shoko, Lay. "Effects of the chemical composition of coal tar pitch on dimensional changes during graphitization / Lay Shoko." Thesis, 2014. http://hdl.handle.net/10394/12261.

Full text
Abstract:
Coal can be converted to different chemical products through processes such destructive distillation. The destructive distillation of coal yields coke as the main product with byproducts such as coal tar pitch (CTP). CTP has a wide range of applications, especially in the carbon-processing industries. Typical applications include the manufacture of anodes used in many electrochemical processes, as well as Söderberg electrodes used in different ferroalloy processes. Söderberg electrodes are made from the thermal treatment of Söderberg electrode paste. The Söderberg electrode paste is a mixture of CTP (binding material) and coke/calcined anthracite (filler). Söderberg electrodes are characterised by a baking isotherm temperature. This temperature is located in the baking zone of the Söderberg electrode system. In the baking zone, the liquid paste is transformed into a solid carbonaceous material. Knowing the baking isotherm temperature is essential as it will ensure the safe, profitable and continuous operation of submerged arc furnaces. Thermomechanical analysis (TMA) was used in this study to determine the baking isotherm temperature of CTP samples. The baking isotherm temperature for all samples was found to lie between 450 and 475 °C irrespective of the initial chemical and physical composition of the CTP. TMA was also used to measure the dimensional changes that take place in the binding material (CTP) at temperatures above the baking isotherm. The dimensional changes of 12 CTP samples when heated from room temperature up to a maximum of 1300 °C were measured. The results indicated that all CTP samples shrank by approximately 14% in the first heating and cooling cycle. The second and third heating and cooling cycles gave a small change in dimensions of approximately 2% for all samples. The significant change in dimensions observed for all CTP samples during the first TMA thermal treatment cycle was attributed to the structural rearrangement that takes place within the carbonaceous material. The structural ordering of all CTP samples thermally treated was evaluated by X-ray diffractometry (XRD). XRD is widely used in the determination of crystallinity/amorphousness of carbonaceous materials, interlayer distance (d-spacing), as well as the degree of ordering (DOG) in a given material. For comparison of structural ordering, XRD analysis was also performed on raw (as-received) CTPs, as well as CTPs thermally treated at 475 and 1300 °C. Prebaked electrode graphite was also analysed. From the XRD results, raw CTP was found to be amorphous with no significant ordering. The interlayer spacing (d002) for all raw CTP samples averaged 3.70 Å, compared to 3.37 Å for prebaked electrode graphite. CTPs thermally treated at 1300 °C had a d-spacing of 3.51 Å. The DOG of raw samples was found to be negative which was indicative of the amorphousness of the raw CTP. The DOG increased with an increase in thermal treatment temperature, as was seen from the DOG of CTPs thermally treated at 1300 °C, which was calculated to be approximately -81% for all 12 samples. The calculated DOG for prebaked electrode graphite was 81%. Prior to determining the baking isotherm temperature, as well as the changes in dimensions during thermal treatment, the chemical compositions of the 12 CTP samples were determined. In the chemical composition determination, fundamental properties such as softening point (SP), coking value (CV), toluene and quinoline insolubles (TI and QI, respectively) were evaluated. This was in addition to proximate and ultimate analysis. The information obtained from this diverse characterisation showed significant differences in the chemical composition of the 12 CTPs. By making use of multi-linear regression analysis (MLR), it was possible to predict or calculate less commonly determined characteristics (CV, TI and QI) from the more commonly obtained parameters (proximate and ultimate analysis parameters). It was found that MLR could be used successfully to calculate CV and TI, but less so for QI. Additional chemical composition of CTP was determined by analytical techniques such as Fourier Transform Infra-Red spectroscopy (FT-IR) and Nuclear Magnetic Resonance spectroscopy (NMR). Results from the FT-IR analysis showed that the spectra for all 12 raw CTPs were similar, with differences only being in the FT-IR band intensities. The differences in FT-IR band intensities were supported by NMR analysis data, which gave quantitative information on the different structural parameters found in all CTPs. The structural composition of CTPs changed during thermal treatment, as was shown by the FT-IR analysis performed on raw CTPs samples, CTPs thermally treated at 475, 700, 1000 and 1300 °C, as well as prebaked electrode graphite.
PhD (Chemistry), North-West University, Potchefstroom Campus, 2014
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography