Academic literature on the topic 'Sodium bicarbonate'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sodium bicarbonate.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sodium bicarbonate"

1

MONTVILLE, THOMAS J., and PETER K. GOLDSTEIN. "Sodium Bicarbonate Inhibition of Aflatoxigenesis in Corn." Journal of Food Protection 52, no. 1 (January 1, 1989): 45–48. http://dx.doi.org/10.4315/0362-028x-52.1.45.

Full text
Abstract:
This study sought to determine if the ability of sodium bicarbonate and ammonium bicarbonate to inhibit aflatoxigenesis in microbiological media could be extended to corn systems. A method for applying bicarbonates evenly to corn was developed. Aflatoxin levels of sodium bicarbonate-treated (0.17 % wt/wt) corn were reduced to one-third those of untreated corn when both were inoculated with Aspergillus parasiticus spores and incubated at 30°C for three weeks. While both sodium and ammonium bicarbonate reduced the amount of fungal growth, only sodium bicarbonate reduced aflatoxin production.
APA, Harvard, Vancouver, ISO, and other styles
2

&NA;. "Sodium bicarbonate see Hydrocortisone/sodium bicarbonate." Reactions Weekly &NA;, no. 315 (August 1990): 7. http://dx.doi.org/10.2165/00128415-199003150-00033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

&NA;. "Sodium bicarbonate." Reactions Weekly &NA;, no. 1189 (February 2008): 30–31. http://dx.doi.org/10.2165/00128415-200811890-00097.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

&NA;. "Sodium bicarbonate." Reactions Weekly &NA;, no. 1129 (November 2006): 19–20. http://dx.doi.org/10.2165/00128415-200611290-00063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

&NA;. "Sodium bicarbonate." Reactions Weekly &NA;, no. 1148 (April 2007): 31. http://dx.doi.org/10.2165/00128415-200711480-00098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

&NA;. "Sodium bicarbonate." Reactions Weekly &NA;, no. 1241 (February 2009): 36. http://dx.doi.org/10.2165/00128415-200912410-00103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

&NA;. "Sodium bicarbonate." Reactions Weekly &NA;, no. 1328 (November 2010): 40. http://dx.doi.org/10.2165/00128415-201013280-00140.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barna, Peter. "Sodium Bicarbonate." Journal of Clinical Gastroenterology 8, no. 6 (December 1986): 697. http://dx.doi.org/10.1097/00004836-198612000-00028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

DEPASQUALE, DAVID A., ANWAAR EL-NABARAWY, JOSEPH D. ROSEN, and THOMAS J. MONTVILLE. "Ammonium Bicarbonate Inhibition of Mycotoxigenic Fungi and Spoilage Yeasts." Journal of Food Protection 53, no. 4 (April 1, 1990): 324–28. http://dx.doi.org/10.4315/0362-028x-53.4.324.

Full text
Abstract:
Sodium bicarbonate inhibits growth and aflatoxin production by Aspergillus parasiticus. This survey determined that other mycotoxigenic fungi were also sensitive to bicarbonates. Sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate, ammonium sulfate, and sodium chloride were added to buffered or unbuffered potato-dextrose agar to determine the bicarbonate effect on growth and morphology of six mycotoxigenic fungi. Three nonmycotoxigenic fungi and four yeast species were also examined. Ammonium bicarbonate at 0.11M completely inhibited the growth of Fusarium tricinctum NRRL 13442, F. tricinctum NRRL 13426, F. graminearum NRRL 5883, F. sporotrichioides NRRL 3249, Penicillium griseofulvum NRRL 989, Aspergillus ochraceus NRRL 3174, A. flavus NRRL 1957, A. niger, and P. notatum. Sodium chloride and pH elevated through the use of ampso-NaOH, capso-NaOH, or glycine-NaOH buffer did not display an inhibitory effect on the filamentous fungi examined. Buffered ammonium sulfate treatments (pH approximately 9.0) completely inhibited all of the mycotoxigenic fungi, but at pH 5.6, ammonium sulfate treatments were not inhibitory. Sodium bicarbonate (0.11M) was effective only against P. griseofulvum, A. flavus NRRL 1957, A. niger, and P. notatum, causing viability reductions of 5.6, 3.7, 4.9, and 2.9 log cycles, respectively. Potassium bicarbonate was generally as inhibitory as the sodium salt. In contrast, elevated pH, alone, appeared to account for the >6 log reduction observed for the yeasts Lipomyces starkeyi, Geotrichum candidum, Kluyveromyces marxianus, and Debaryomyces hansenii.
APA, Harvard, Vancouver, ISO, and other styles
10

Velissaris, Dimitrios, Vasilios Karamouzos, Nikolaos Ktenopoulos, Charalampos Pierrakos, and Menelaos Karanikolas. "The Use of Sodium Bicarbonate in the Treatment of Acidosis in Sepsis: A Literature Update on a Long Term Debate." Critical Care Research and Practice 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/605830.

Full text
Abstract:
Introduction. Sepsis and its consequences such as metabolic acidosis are resulting in increased mortality. Although correction of metabolic acidosis with sodium bicarbonate seems a reasonable approach, there is ongoing debate regarding the role of bicarbonates as a therapeutic option.Methods. We conducted a PubMed literature search in order to identify published literature related to the effects of sodium bicarbonate treatment on metabolic acidosis due to sepsis. The search included all articles published in English in the last 35 years.Results. There is ongoing debate regarding the use of bicarbonates for the treatment of acidosis in sepsis, but there is a trend towards not using bicarbonate in sepsis patients with arterial blood gaspH>7.15.Conclusions. Routine use of bicarbonate for treatment of severe acidemia and lactic acidosis due to sepsis is subject of controversy, and current opinion does not favor routine use of bicarbonates. However, available evidence is inconclusive, and more studies are required to determine the potential benefit, if any, of bicarbonate therapy in the sepsis patient with acidosis.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sodium bicarbonate"

1

Wester, Leanna E. "Offering sodium bentonite and sodium bicarbonate free-choice to lactating dairy cattle." Thesis, Virginia Tech, 2002. http://hdl.handle.net/10919/34899.

Full text
Abstract:
The objective of this experiment was to evaluate the effects of free-choice intake of sodium bentonite and sodium bicarbonate on physiological and production parameters. Eight Jerseys and seventeen Holsteins (four fistulated) were randomly assigned to two groups to equalize stage of lactation, age and production history. Two diets were fed: diet 1 without added sodium bicarbonate and diet 2 with sodium bicarbonate added at 1.2% of dry matter. Each group followed a different diet regime: 1) diet 1 with no free-choice (D1-NFC), 2) diet 2 with no free-choice (D2-NFC), 3) diet 1 with free-choice (D1-WFC), and 4) diet 2 with free-choice (D2-WFC). Free-choice options of sodium bentonite and sodium bicarbonate were offered side by side in a covered feeder to breed groups. Diets were changed every 10 d to provide 8 periods with a repetition of each diet regime. All diets were adjusted to 17% ADF and 17% CP. There were no differences with either breed among diets for blood and fecal observations or milk protein. Urine specific gravity was lower in both breeds when sodium bicarbonate was force-fed. Holsteins force-fed sodium bicarbonate had greater intake and milk production than Holsteins not force-fed. In Jerseys, milk urea nitrogen (MUN) decreased when sodium bicarbonate was added to the TMR. During periods in which cows were allowed free-choice access to sodium bentonite and sodium bicarbonate, Jerseys had higher urine pH, fat-corrected milk, MUN, and dry matter intake (DMI), and Holsteins had higher milk fat percentages and fecal pH.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
2

Gutierrez, Vanessa. "Etude de la cristallisation du bicarbonate de sodium raffiné: contribution au modèle des colonnes à bulles." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210152.

Full text
Abstract:
La société Solvay est le plus grand producteur de bicarbonate de sodium raffiné au monde. Le NaHCO3 est un des produits parmi les plus connus et utilisés. Sa production a lieu dans des colonnes à bulles de volumes très importants. La production du bicarbonate de sodium raffiné dans ces réacteurs peut se résumer par la réaction entre une solution saturée de carbonate de sodium (Na2CO3) et le CO2(gaz)

Cette production implique la connaissance et le contrôle des réacteurs de type triphasique. En effet dans ce procédé on met en jeu deux types de transferts entre un gaz et un liquide le CO2 et la solution de Na2CO3 et entre un liquide et un solide, NaHCO3 (liq) et NaHCO3 (solide)

Le but de ce travail est d’acquérir des informations concernant la cristallisation du NaHCO3 dans une colonne à bulles. L’étude de la cristallisation de ce produit se fait au travers des modèles des cinétiques de cristallisation :la vitesse de croissance G (m•s-1) et la vitesse de nucléation J (
Doctorat en Sciences de l'ingénieur
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
3

Zhu, Yi. "Etude expérimentale de la cristallisation du bicarbonate de sodium." Doctoral thesis, Universite Libre de Bruxelles, 2004. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211131.

Full text
Abstract:
Abstract:

Sodium bicarbonate is one of the major chemical compound used worldwide. We have studied the mechanisms presiding the crystallization of this product in order to identify the kinetic parameters.

To be assured of the relevancy of our experimental results, we developed new and accurate measurement techniques to follow the supersaturation and to characterize the crystal morphologies of NaHCO3 like density measurement and images analysis.

The systematic study of the mechanisms and the kinetic parameters of the crystallization of NaHCO3 has been conducted by the use of three different types of crystallizers conceived and built at the Department of Industrial Chemistry of ULB :a fluidized bed crystallizer, a classic MSMPR crystallizer and a bubble column. By this choice, we were able to thoroughly investigate the intrinsic phenomena occurring in the crystallization of NaHCO3 from the ideal condition to the conditions close to the industry.

A NaHCO3 solution is typically a three components equilibrium, NaHCO3, Na2CO3 and CO2, depending on temperature. Our developed method of density measurement allows to measure continuously the supersaturation, during the crystallization. This method permits to neglect complex side effects due to Na2CO3 or dissolved mineral impurities. Density measurements are quick, sensitive and reliable.

We have shown that the growth of sodium bicarbonate is widely controlled by a reaction step at 45°C (< 200 µm). A diffusion step controlled growth occurs however for large crystals (>300-425µm) which consume much less material than the small ones. We have shown that the secondary nucleation of NaHCO3 is principally dominated by the surface nucleation.

The shape of the crystals obtained experimentally is in agreement with the theory, and strongly related to the size of the crystals and to the presence of impurities.

Based on experience of NaHCO3 crystallization without introduction of impurity, we have demonstrated that Ca2+ and Mg2+ suppress crystallization kinetics.

In the end, we have taken a brief look at the precipitation of NaHCO3 by gaz-liquid reaction in a bubble column.

By a comparative and a fundamental approach, our experimental studies lead us to improve our understanding and the operational parameters of the NaHCO3 industrial refining process.

Key words: Industrial crystallization, Sodium bicarbonate, Density measurement, Fluidized bed, MSMPR, Bubble column, Crystal growth, Nucleation

Résumé:

Le bicarbonate de sodium (NaHCO3) est un produit chimique important sur le marché mondial. Nous avons étudier les mécanismes de la cristallisation de ce produit afin d'en déterminer les paramètres cinétiques.

Afin de garantir l'analyse la plus objective de ces phénomènes, nous avons développé des techniques de mesures originales pour la connaissance de la sursaturation et pour la caractérisation des cristaux de NaHCO3 par densimétrie et par analyse d’images.

L'étude systématique des cinétiques et des mécanismes de cristallisation du NaHCO3 a été réalisée au moyen de trois cristallisoirs de conception différente, développés et construits au laboratoire du Service de Chimie Industrielle de l'ULB: un cristallisoir à lit fluidisé, un cristallisoir à cuve agitée MSMPR et une colonne à bulles. Ce choix nous a permis d'approfondir notre connaissance des phénomènes intrinsèques de la cristallisation du NaHCO3 dans des conditions idéales et des conditions proches des procédés industriels.

Une solution de NaHCO3 est un système à l’équilibre à trois composantes, NaHCO3, Na2CO3 et CO2 fonction de la température. La mise au point de la méthode densimétrique a permis la mesure de la sursaturation en NaHCO3 en continu. Cette méthode permet de s’affranchir des complications introduites par la présence de Na2CO3 et des impuretés inorganiques en solution. Les mesures de masse volumique sont rapides, précises et sensibles.

Nous avons démontré que la croissance du bicarbonate de sodium est largement dominé par l'étape de réaction à 45°C (< 200 µm). L'étape de diffusion intervient cependant dans la croissance de grands cristaux (>300-425µm) qui ne sont toutefois pas les plus grands consommateurs de matière. Nous avons mis en évidence que le mécanisme de la germination secondaire du NaHCO3 est principalement une germination secondaire vraie.

La forme des cristaux obtenus est parfaitement en accord avec la théorie et dépend étroitement de la taille des cristaux mais également de la présence d'impuretés.

En se basant sur les expériences de cristallisation du NaHCO3 sans introduction d’impuretés, nous avons démontré les effets de ralentissement des cinétiques de cristallisation d'ions tels que Ca2+ et Mg2+ .

Nous avons enfin brièvement abordé la précipitation du NaHCO3 par réaction gaz-liquide dans une colonne à bulles.

Cette approche expérimentale, comparative et fondamentale a permis d'affiner notre compréhension et d’optimiser un procédé industriel de raffinage du bicarbonate de sodium.

Mots clés: Cristallisation industrielle, Bicarbonate de sodium, Densimétrie, Lit fluidisé, MSMPR, Colonne à bulles, Croissance des cristaux, Germination


Doctorat en sciences appliquées
info:eu-repo/semantics/nonPublished

APA, Harvard, Vancouver, ISO, and other styles
4

Taylor, Elizabeth Ardelle. "Effect of orally administered sodium bicarbonate on caecal pH." Kansas State University, 2014. http://hdl.handle.net/2097/17867.

Full text
Abstract:
Master of Science
Department of Biomedical Sciences
Warren Beard
Reasons for performing study: Caecal acidosis is a central event in the metabolic cascade that occurs following grain overload. Buffering the caecal acidosis by enterally administered sodium bicarbonate may be beneficial to affected horses. Objectives: To determine the effect and duration of enterally administered sodium bicarbonate (NaHCO[subscript]3) on caecal pH in healthy horses. Study design: Prospective controlled study using normal horses with caecal cannulas Methods: 9 horses previously fitted with a caecal cannula. 6 horses received 1.0 g/kg bwt NaHCO[subscript]3 via nasogastric tube and 3 control horses were given 3 L of water via nasogastric tube. Clinical parameters, water consumption, venous blood gases, caecal pH, faecal pH and faecal water content were measured at 6 hour intervals over a 36 hour study period. Results: Horses that received enterally administered NaHCO[subscript]3 had a significantly increased caecal pH that lasted the duration of the study. Treated horses increased their water intake, developed metabolic alcalemia, significantly increased sodium concentrations and significantly decreased potassium concentrations. Conclusions and potential relevance: Enterally administered NaHCO[subscript]3 may be beneficial in buffering the caecal acidosis that occurs following an acute carbohydrate overload
APA, Harvard, Vancouver, ISO, and other styles
5

Gérard, Antoine. "Cristallisation du bicarbonate de sodium : étude pratique et théorique." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0072.

Full text
Abstract:
Récemment, il y a une demande accrue pour des cristaux de bicarbonate de sodium de propriétés d'usage spécifiques. Dans l'étude présentée, la réaction de cristallisation du bicarbonate de sodium est abordée et s'effectue dans un milieu triphasique dans lequel interviennent de nombreux phénomènes tels que le transfert de matière, la nucléation et la croissance cristalline. L'objectif de ce travail est d'étudier l'impact des paramètres opératoires, des additifs et de la technologie du réacteur sur la cristallisation du bicarbonate de sodium afin d'obtenir des cristaux avec une taille importante et une masse volumique apparente non tassée élevée. Les essais réalisés dans un réacteur ouvert de type MSMPR (Mixed Suspension Mixed Product Removal) ont permis d'optimiser les conditions opératoires du procédé et ont montré que l'ajout de calcium par le biais d'une solution de chlorure de calcium dans le milieu réactionnel améliore sensiblement la morphologie des cristaux, réduit la vitesse de nucléation tout en influençant légèrement la vitesse de croissance cristalline. Lorsque du polystyrène sulfonate de sodium (NaPSS) est ajouté au chlorure de calcium, sont obtenus des cristaux encore plus compacts avec des surfaces plus lisses et des arêtes marquées. A contrario, l'utilisation d'additifs chelatant le calcium comme le citrate de calcium dégrade la qualité des cristaux de bicarbonate de sodium et est donc proscrite pour une utilisation industrielle car les étapes de filtration et de séchage sont plus difficiles. Enfin, le passage d'un réacteur MSMPR à un réacteur à lit fluidisé a conduit, dans des conditions opératoires identiques, à une amélioration notable de la qualité du produit fini en produisant des cristaux avec une morphologie relativement sphérique et une taille importante
Recently, there is an increased demand for sodium bicarbonate crystals with specific properties. In the present study, the crystallization reaction of sodium bicarbonate is performed in a three-phase medium in which many phenomena such as mass transfer, nucleation and crystal growth occurred. The objective of this work is to study the impact of operating parameters, additives and reactor technology on the crystallization of sodium bicarbonate in order to obtain crystals with important size and high bulk density. The experiments carried out in a MSMPR (Mixed Suspension Mixed Product Removal) reactor have shown that the addition of calcium through a calcium chloride solution in the reaction mixture improves the crystal morphology, reduces the nucleation rate and weakly influences the crystal growth rate. When a mixture of sodium polystyrene sulfonate (NaPSS) and calcium chloride is used, more compact crystals with smoother surfaces and marked edges are obtained. Conversely, the use of calcium chelating additives such as calcium citrate affects the quality of sodium bicarbonate crystals and thus is prohibited for industrial use because the filtration and drying steps are much more difficult. Finally, the transposition from a MSMPR reactor to a fluidized bed reactor allows, under the same operating conditions, a significant improvement of the solid quality by producing big spheroidal particles
APA, Harvard, Vancouver, ISO, and other styles
6

Ourmozdi, Elizabeth Phaedra. "Studies on proteins of the bicarbonate transporter superfamily." Thesis, University of Bristol, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ch'en, Frederick Fei-Te. "Regulation of sodium-bicarbonate co-transport in cardiac ventricular myocytes." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393335.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

BASTOS, MARCELO SOUZA MAGALHAES. "DAMAGE QUANTIFICATION OF DENTINE SURFACE AFTER BLASTING WITH SODIUM BICARBONATE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2005. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=8201@1.

Full text
Abstract:
PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
Este trabalho apresenta os resultados da quantificação do dano em superfícies dentinárias de molares humanos após jateamento com bicarbonato de sódio. Após a seleção e preparação das amostras, as mesmas foram divididas em dois grupos experimentais (Grupo Controle e Grupo de Jateamento). Inicialmente, mediu-se a rugosidade e dureza local (microdureza) do Grupo Controle, adotadas como valores padrão. Em seqüência, as amostras do Grupo de Jateamento foram submetidas à diferentes condições de jateamento, variando-se os parâmetros granulometria das partículas de bicarbonato de sódio (60 e 200 mesh), vazão da mistura água-bicarbonato de sódio-ar (mínima e máxima) e tempo de instrumentação (15 e 30 segundos). Finalmente, mediu-se a rugosidade e microdureza da região da dentina, bem como a área de depressões superficiais formada pelo jateamento. Os resultados mostraram que todas as condições de jateamento provocaram danos na região da dentina, caracterizados por aumentos de rugosidade e dureza, bem como o aparecimento de cavidades nesta região. A vazão mínima da mistura água-bicarbonato de sódio-ar provocou maiores rugosidades e endurecimentos na região dentinária. Por outro lado, as maiores áreas de cavidades na mesma região foram criadas por partículas menores quando jateadas com vazão máxima da mistura água-bicarbonato de sódio-ar
This work presents the results concerning the damage quantification in human molar dentine surfaces after blasting with sodium bicarbonate. After selection and preparation, the samples were divided into two experimental groups (Control Group and Blasting Group). Initially, the roughness and local hardness (microhardness) of the Control Group were measured and adopted as standard values. In the sequence, the samples of the Blasting Group were subjected to different blasting conditions, making change in parameters as grain size of the sodium bicarbonate particles (60 and 200 mesh), water-sodium bicarbonate-air mixture outflowing (minimum and maximum) and instrumentation time (15 and 30 seconds). Finally, the roughness and the microhardness of the dentine region were measured, as well as the area of the surface depressions due to blasting. The results showed that all blasting conditions caused damages in the dentine region, characterized by an increase in roughness and microhardness, as well as the creation of cavities in this region. The minimum water-sodium bicarbonate-air mixture outflowing was associated with larger values of roughness and microhardness in the dentine region. On the other hand, larger areas of cavities in the same region were created by smaller particles of sodium bicarbonate when blasted with maximum water-sodium bicarbonate-air mixture outflowing.
APA, Harvard, Vancouver, ISO, and other styles
9

Wheat, Valerie Jo. "MECHANISM OF BICARBONATE SECRETION ACROSS THE TRACHEAL EPITHELIUM: ABERRANT REGULATION BY CFTR." University of Cincinnati / OhioLINK, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=ucin998078909.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Belhimer, E. "Stress corrosion cracking of pipeline steels and pure iron in a sodium carbonate-sodium bicarbonate solution." Thesis, University of Newcastle Upon Tyne, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.376310.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sodium bicarbonate"

1

Briggs, Margaret. Bicarbonate of soda: A very versatile natural substance. Leicester: Abbeydale Press/Bookmart, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

U.S. Geological Survey Oil Shale Assessment Team. Oil shale and nahcolite resources of the Piceance Basin, Colorado. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takarajimasha, ed. Kurashi ni yasashii jusō katsuyōjutsu =: The baking soda book. Tōkyō: Takarajimasha, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ciullo, Peter A. Baking soda bonanza. New York: HarperPerennial, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kenkyūkai, Jūsō Kurashi. Jūsō tettei tsukai konashi aidia 212. Tōkyō: Futabasha, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ciullo, Peter A. Saleratus: The curious history & complete uses of baking soda. Naugatuck, CT: Maradia Press, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ciullo, Peter A. Baking sodabonanza. New York: HarperPerennial, 1995.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ciullo, Peter A. Baking soda bonanza. 2nd ed. New York: Collins, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Droulhiole, Michel. Xiao shu da de miao yong =: Baking soda. Xianggang: Wan li ji gou, De li shu ju, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blokdijk, G. J. Sodium Bicarbonate; A Complete Guide. CreateSpace Independent Publishing Platform, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sodium bicarbonate"

1

Lookabill, Sara K., Anna Rouse Dulaney, Greene Shepherd, and William P. Kerns. "Sodium Bicarbonate." In Critical Care Toxicology, 1–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20790-2_169-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lookabill, Sara K., Anna Rouse Dulaney, Greene Shepherd, and William P. Kerns. "Sodium Bicarbonate." In Critical Care Toxicology, 2967–86. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-17900-1_169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bährle-Rapp, Marina. "Sodium Bicarbonate." In Springer Lexikon Kosmetik und Körperpflege, 506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-71095-0_9430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kashani, John, Richard D. Shih, Thomas H. Cogbill, David H. Jang, Lewis S. Nelson, Mitchell M. Levy, Margaret M. Parker, et al. "Sodium Bicarbonate, Intravenous." In Encyclopedia of Intensive Care Medicine, 2085–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-00418-6_312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Waldrop, Jennifer E. "Administration of Sodium Bicarbonate." In Textbook of Small Animal Emergency Medicine, 1140–46. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119028994.ch174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Schmidt, G. A. "Treatment of Acidosis: Sodium Bicarbonate and Other Drugs." In Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E., 681–93. Milano: Springer Milan, 2002. http://dx.doi.org/10.1007/978-88-470-2099-3_57.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arieff, Allen I. "Therapy of Lactic Acidosis: Alternatives to Sodium Bicarbonate." In Hypoxia, Metabolic Acidosis, and the Circulation, 196–210. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4614-7542-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bersin, Robert M. "Effects of Sodium Bicarbonate on Myocardial Metabolism and Circulatory Function during Hypoxia." In Hypoxia, Metabolic Acidosis, and the Circulation, 139–74. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4614-7542-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suss, Alexander, Andrey Panov, Alexander Kozyrev, Natalya Kuznetsova, and Sergey Gorbachev. "Specific Features of Scandium Behavior During Sodium Bicarbonate Digestion of Red Mud." In The Minerals, Metals & Materials Series, 165–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72284-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ravikumar, P., G. Rajeshkumar, K. C. Nagaraja, S. Rajanna, and M. Karthick. "Bidirectional Jute-Reinforced Polyester Composites: Influence of Sodium Bicarbonate Treatment on Static Mechanical Properties." In Materials, Design and Manufacturing for Sustainable Environment, 143–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-3053-9_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sodium bicarbonate"

1

Hanor, Jeffrey S., and F. Colleen Wendeborn. "ORIGIN OF SODIUM-BICARBONATE GROUNDWATERS BY SILICATE HYDROLYSIS." In GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-353931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kong, Yougen, and Jean-Pascal Balland. "Effective Removal of HCl and SO2 With Dry Injection of Sodium Bicarbonate or Trona." In 19th Annual North American Waste-to-Energy Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/nawtec19-5408.

Full text
Abstract:
The newly promulgated EPA MACT rules for solid waste incinerators require HCl to be mitigated to extremely low concentrations. Most existing air pollution control systems will probably not be able to satisfy these very low limits. To meet the new challenges, dry injection of sodium bicarbonate or trona is a low-cost solution that can be applied in the following situations: (1) Replace existing acid gas mitigation systems; (2) Supplement existing systems; (3) Install where no acid gas mitigation systems exist yet. In a dry sorbent injection system, sodium bicarbonate or trona is injected directly into hot flue gas. After injection, the sorbent is calcined into porous activated sodium carbonate. Its high surface area enables fast gas-solid reactions between acid gases (mainly HCl and SO2) and Na2CO3 to form NaCl and Na2SO4 which are collected by either electrostatic precipitators (ESP) or fabric filters. The dry injection systems with sodium bicarbonate have shown over 99% removal of HCl and 95% removal of SO2 at over 150 Waste-To-Energy plants in Europe. This paper will describe the concept of dry sorbent injection system with sodium bicarbonate or trona, provide performance data from several plants, and describe system design guidelines.
APA, Harvard, Vancouver, ISO, and other styles
3

Malladi, Avinash, Seeniappan Kaliappan, L. Natrayan, and V. Mahesh. "Effectiveness of Thermal and Mechanical Properties of Jute Fibers under Different Chemical Treatment for Automotive Interior Trim." In Automotive Technical Papers. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-01-5008.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">In the quest for sustainable materials for automotive interior trim, jute fiber is gaining traction due to its characteristics, which align with other renowned natural fibers. This study aimed to assess the efficacy of sodium bicarbonate as a treatment for jute fibers in comparison to conventional alkaline treatments. Both treated and untreated fibers were examined. Results showed that alkali-processed fibers demonstrated enhanced crystallization, thermal resistance, and surface quality relative to untreated ones. Specifically, alkali-treated jute fibers exhibited a degradation onset at 261.23°C, while those treated with sodium bicarbonate began degrading at 246.32°C. Untreated fibers had a degradation onset at 239.25°C. Although both treatments improved the thermal stability of the fiber, sodium bicarbonate processing, while beneficial, was slightly less effective than the traditional alkaline method. Overall, the research underscores the potential of sodium bicarbonate as an alternative treatment for fibrous materials, even if its efficacy is somewhat lesser than traditional methods. The findings offer insights into optimizing jute fiber for automotive interior trim applications.</div></div>
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Junjun, Ruizhi Luo, Yaqin Wang, and Shiqing Man. "Microstructure Fabricated by Monocrystalline Silicon Anisotropic Etching in Sodium Carbonate and Sodium Bicarbonate Solutions." In 2015 International Conference on Electromechanical Control Technology and Transportation. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icectt-15.2015.109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ma, Junjun, and Shiqing Man. "Surface Microstructure of Monocrystalline Silicon Anisotropically Etched with Sodium Carbonate and Sodium Bicarbonate Solutions." In 6th International Conference on Electronic, Mechanical, Information and Management Society. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/emim-16.2016.196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Habibullah, J. M., K. Bland, A. Tsegaye, and M. Narasimhan. "Back to the Basics: A Case of Sodium Bicarbonate Toxicity." In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a3496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Raveendran, Kaveeta, Suriati Sufian, Baljit Singh Bhathal Singh, and Ana Hasrinatullina M. Basri. "Optimization of sodium bicarbonate based solar pond for power generation." In XIV INTERNATIONAL CONFERENCE ELECTROMACHINING 2023. AIP Publishing, 2024. http://dx.doi.org/10.1063/5.0195539.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Pereira, Marco, Teresa Pequito, Ana Lutas, João Valença, Richard Staats, Mónica Grafino, and Sofia Furtado. "Association between sodium bicarbonate and STOP-BANG questionnaire in OSA screening." In ERS International Congress 2017 abstracts. European Respiratory Society, 2017. http://dx.doi.org/10.1183/1393003.congress-2017.pa2292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wang, Xiaodong, Lei Hua, Aijuan Dong, Xiaoqing Wang, and Siqi Mao. "Core/Shell of Sodium Bicarbonate in composite Shell with Enhanced Thermal Stability." In 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST). IEEE, 2021. http://dx.doi.org/10.1109/iaecst54258.2021.9695936.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hussein, Mohamad Saed, Pei Leng Teh, Firuz Zainuddin, Abdul Razak Rahmat, and Cheow Keat Yeoh. "Properties of epoxy/LNR foam using sodium bicarbonate as a gas generator." In INTERNATIONAL SYMPOSIUM ON ADVANCED MATERIALS AND PROCESSING 2021 (ISAMP 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0090698.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sodium bicarbonate"

1

Kinzel, Robert L. An analysis of electrostatic discharge considerations in the use of sodium bicarbonate media for de-potting sensitive electronic assemblies. Office of Scientific and Technical Information (OSTI), July 2012. http://dx.doi.org/10.2172/1051719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Riebesell, Ulf. Comprehensive data set on ecological and biogeochemical responses of a low latitude oligotrophic ocean system to a gradient of alkalinization intensities. OceanNets, August 2022. http://dx.doi.org/10.3289/oceannets_d5.4.

Full text
Abstract:
The potential biogeochemical and ecological impacts of ocean alkalinity enhancement were tested in a 5-weeks mesocosm experiment conducted in the subtropical, oligotrophic waters off Gran Canaria in September/October 2021. In the nine mesocosms, each with a volume of about 10 m3 inhabiting a natural plankton community, alkalinity enhancement was achieved through addition of a mix of sodium bicarbonate and sodium carbonate, simulating CO2-equilibrated alkalinization in a gradient from control up to twice the natural alkalinity. The response of the enclosed plankton community to the alkalinity addition was monitored in over 50 parameters which were sampled or measured in situ daily or every second day. In addition to the mesocosm experiment, a series of side experiments were conducted, focusing on individual aspects of mineral dissolution, secondary precipitation and biological responses at the primary producer level. This campaign, in which 47 scientists from 6 nations participated, generated the most comprehensive data set collected so far on the ecological and biogeochemical impacts of ocean alkalinity enhancement.
APA, Harvard, Vancouver, ISO, and other styles
3

Ko, Kyung Yuk, Aubrey F. Mendonca, and Dong U. Ahn. Influence of Zn2 + , Sodium Bicarbonate, and Citric Acid on the Antibacterial Activity of Ovotransferrin against E. coli O157:H7 and L. monocytogenes in Model Systems and Ham. Ames (Iowa): Iowa State University, January 2010. http://dx.doi.org/10.31274/ans_air-180814-1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kirby, Stefan M., J. Lucy Jordan, Janae Wallace, Nathan Payne, and Christian Hardwick. Hydrogeology and Water Budget for Goshen Valley, Utah County, Utah. Utah Geological Survey, November 2022. http://dx.doi.org/10.34191/ss-171.

Full text
Abstract:
Goshen Valley contains extensive areas of agriculture, significant wetlands, and several small municipalities, all of which rely on both groundwater and surface water. The objective of this study is to characterize the hydrogeology and groundwater conditions in Goshen Valley and calculate a water budget for the groundwater system. Based on the geologic and hydrologic data presented in this paper, we delineate three conceptual groundwater zones. Zones are delineated based on areas of shared hydrogeologic, geochemical, and potentiometric characteristics within the larger Goshen Valley. Groundwater in Goshen Valley resides primarily in the upper basin fill aquifer unit (UBFAU) and lower carbonate aquifer unit (LCAU) hydrostratigraphic units. Most wells in Goshen Valley are completed in the UBFAU, which covers much of the valley floor. The UBFAU is the upper part of the basin fill, which is generally less than 1500 feet thick in Goshen Valley. Important spring discharge at Goshen Warm Springs issues from the LCAU. Relatively impermeable volcanic rocks (VU) occur along much of the upland parts of the southern part of Goshen Valley. Large sections of the southwest part of the Goshen Valley basin boundary have limited potential for interbasin flow. Interbasin groundwater flow is likely at several locations including the Mosida Hills and northern parts of Long Ridge and Goshen Gap in areas underlain by LCAU. Depth to groundwater in Goshen Valley ranges from at or just below the land surface to greater than 400 feet. Groundwater is within 30 feet of the land surface near and north of Goshen, in areas of irrigated pastures and wetlands that extend east toward Long Ridge and Goshen Warm Springs, and to the north towards Genola. Groundwater movement is from upland parts of the study area toward the valley floor and Utah Lake. Long-term water-level change is evident across much of Goshen Valley, with the most significant decline present in conceptual zone 2 and the southern part of conceptual zone 1. The area of maximum groundwater-level decline—over 50 feet—is centered a few miles south of Elberta in conceptual zone 2. Groundwater in Goshen Valley spans a range of chemistries that include locally high total dissolved solids and elevated nitrate and arsenic concentrations and varies from calcium-bicarbonate to sodium-chloride-type waters. Overlap in chemistry exists in surface water samples from Currant Creek, the Highline Canal, and groundwater. Stable isotopes indicate that groundwater recharges from various locations that may include local recharge, from the East Tintic Mountains, or far-traveled groundwater recharged either in Cedar Valley or east of the study area along the Wasatch Range. Dissolved gas recharge temperatures support localized recharge outside of Goshen. Most groundwater samples in Goshen Valley are old, with limited evidence of recent groundwater recharge. An annual water budget based on components of recharge and discharge yields total recharge of 32,805 acre-ft/yr and total discharge of 35,750 acre-ft/yr. Most recharge is likely from interbasin flow and lesser amounts from precipitation and infiltration of surface water. Most discharge is from well water withdrawal with minor spring discharge and groundwater evapotranspiration. Water-budget components show discharge is greater than recharge by less than 3000 acreft/yr. This deficit or change in storage is manifested as longterm water-level decline in conceptual zone 2, and to a lesser degree, in conceptual zone 1. The primary driver of discharge in conceptual zone 2 is well withdrawal. Conceptual zone 3 is broadly in balance across the various sources of recharge and discharge, and up to 1830 acre-ft/yr of water may discharge from conceptual zone 3 into Utah Lake. Minimal groundwater likely flows to Utah Lake from zones 1 or 2.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography