Journal articles on the topic 'Sodium channels'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Sodium channels.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Sula, Altin, and B. A. Wallace. "Interpreting the functional role of a novel interaction motif in prokaryotic sodium channels." Journal of General Physiology 149, no. 6 (2017): 613–22. http://dx.doi.org/10.1085/jgp.201611740.
Full textWarmke, Jeffrey W., Robert A. G. Reenan, Peiyi Wang, et al. "Functional Expression of Drosophila para Sodium Channels." Journal of General Physiology 110, no. 2 (1997): 119–33. http://dx.doi.org/10.1085/jgp.110.2.119.
Full textDuch, D. S., E. Recio-Pinto, C. Frenkel, S. R. Levinson, and B. W. Urban. "Veratridine modification of the purified sodium channel alpha-polypeptide from eel electroplax." Journal of General Physiology 94, no. 5 (1989): 813–31. http://dx.doi.org/10.1085/jgp.94.5.813.
Full textScheuer, T., and W. A. Catterall. "Control of neuronal excitability by phosphorylation and dephosphorylation of sodium channels." Biochemical Society Transactions 34, no. 6 (2006): 1299–302. http://dx.doi.org/10.1042/bst0341299.
Full textBarnes, S., and B. Hille. "Veratridine modifies open sodium channels." Journal of General Physiology 91, no. 3 (1988): 421–43. http://dx.doi.org/10.1085/jgp.91.3.421.
Full textHuguenard, John R. "Sodium Channels." Neuron 33, no. 4 (2002): 492–94. http://dx.doi.org/10.1016/s0896-6273(02)00592-5.
Full textWood, John N., and Federico Iseppon. "Sodium channels." Brain and Neuroscience Advances 2 (January 2018): 239821281881068. http://dx.doi.org/10.1177/2398212818810684.
Full textYatani, A., D. L. Kunze, and A. M. Brown. "Effects of dihydropyridine calcium channel modulators on cardiac sodium channels." American Journal of Physiology-Heart and Circulatory Physiology 254, no. 1 (1988): H140—H147. http://dx.doi.org/10.1152/ajpheart.1988.254.1.h140.
Full textSegal, Michael M., and Andrea F. Douglas. "Late Sodium Channel Openings Underlying Epileptiform Activity Are Preferentially Diminished by the Anticonvulsant Phenytoin." Journal of Neurophysiology 77, no. 6 (1997): 3021–34. http://dx.doi.org/10.1152/jn.1997.77.6.3021.
Full textTerlau, H., M. Stocker, K. J. Shon, J. M. McIntosh, and B. M. Olivera. "MicroO-conotoxin MrVIA inhibits mammalian sodium channels, but not through site I." Journal of Neurophysiology 76, no. 3 (1996): 1423–29. http://dx.doi.org/10.1152/jn.1996.76.3.1423.
Full textRehberg, Benno, and Daniel S. Duch. "Suppression of Central Nervous System Sodium Channels by Propofol." Anesthesiology 91, no. 2 (1999): 512–20. http://dx.doi.org/10.1097/00000542-199908000-00026.
Full textPaillart, C., J. L. Boudier, J. A. Boudier, H. Rochat, F. Couraud, and B. Dargent. "Activity-induced internalization and rapid degradation of sodium channels in cultured fetal neurons." Journal of Cell Biology 134, no. 2 (1996): 499–509. http://dx.doi.org/10.1083/jcb.134.2.499.
Full textWaxman, Stephen G. "The neuron as a dynamic electrogenic machine: modulation of sodium–channel expression as a basis for functional plasticity in neurons." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, no. 1394 (2000): 199–213. http://dx.doi.org/10.1098/rstb.2000.0559.
Full textTomaselli, G. F., A. M. Feldman, G. Yellen, and E. Marban. "Human cardiac sodium channels expressed in Xenopus oocytes." American Journal of Physiology-Heart and Circulatory Physiology 258, no. 3 (1990): H903—H906. http://dx.doi.org/10.1152/ajpheart.1990.258.3.h903.
Full textHahin, R. "Removal of inactivation causes time-invariant sodium current decays." Journal of General Physiology 92, no. 3 (1988): 331–50. http://dx.doi.org/10.1085/jgp.92.3.331.
Full textTakahashi, Izumi, and Masami Yoshino. "Functional coupling between sodium-activated potassium channels and voltage-dependent persistent sodium currents in cricket Kenyon cells." Journal of Neurophysiology 114, no. 4 (2015): 2450–59. http://dx.doi.org/10.1152/jn.00087.2015.
Full textRehberg, Benno, Yong-Hong Xiao, and Daniel S. Duch. "Central Nervous System Sodium Channels Are Significantly Suppressed at Clinical Concentrations of Volatile Anesthetics." Anesthesiology 84, no. 5 (1996): 1223–33. http://dx.doi.org/10.1097/00000542-199605000-00025.
Full textLee, Sora, Samuel J. Goodchild, and Christopher A. Ahern. "Local anesthetic inhibition of a bacterial sodium channel." Journal of General Physiology 139, no. 6 (2012): 507–16. http://dx.doi.org/10.1085/jgp.201210779.
Full textDavis, Scott F., and Cindy L. Linn. "Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina." American Journal of Physiology-Cell Physiology 284, no. 5 (2003): C1193—C1204. http://dx.doi.org/10.1152/ajpcell.00256.2002.
Full textAlthaus, Mike, Wolfgang G. Clauss, and Martin Fronius. "Amiloride-Sensitive Sodium Channels and Pulmonary Edema." Pulmonary Medicine 2011 (2011): 1–8. http://dx.doi.org/10.1155/2011/830320.
Full textGarty, H., and L. G. Palmer. "Epithelial sodium channels: function, structure, and regulation." Physiological Reviews 77, no. 2 (1997): 359–96. http://dx.doi.org/10.1152/physrev.1997.77.2.359.
Full textBan, Yue, Benjamin E. Smith, and Michael R. Markham. "A highly polarized excitable cell separates sodium channels from sodium-activated potassium channels by more than a millimeter." Journal of Neurophysiology 114, no. 1 (2015): 520–30. http://dx.doi.org/10.1152/jn.00475.2014.
Full textTousson, A., C. D. Alley, E. J. Sorscher, B. R. Brinkley, and D. J. Benos. "Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia." Journal of Cell Science 93, no. 2 (1989): 349–62. http://dx.doi.org/10.1242/jcs.93.2.349.
Full textStocker, Patrick J., and Eric S. Bennett. "Differential Sialylation Modulates Voltage-gated Na+ Channel Gating throughout the Developing Myocardium." Journal of General Physiology 127, no. 3 (2006): 253–65. http://dx.doi.org/10.1085/jgp.200509423.
Full textWorley, J. F., R. J. French, and B. K. Krueger. "Trimethyloxonium modification of single batrachotoxin-activated sodium channels in planar bilayers. Changes in unit conductance and in block by saxitoxin and calcium." Journal of General Physiology 87, no. 2 (1986): 327–49. http://dx.doi.org/10.1085/jgp.87.2.327.
Full textPayandeh, Jian. "Crystallographic studies of voltage-gated sodium and calcium channels." Acta Crystallographica Section A Foundations and Advances 70, a1 (2014): C1488. http://dx.doi.org/10.1107/s2053273314085118.
Full textStern, M., R. Kreber, and B. Ganetzky. "Dosage effects of a Drosophila sodium channel gene on behavior and axonal excitability." Genetics 124, no. 1 (1990): 133–43. http://dx.doi.org/10.1093/genetics/124.1.133.
Full textQiu, W., B. Lee, M. Lancaster, W. Xu, S. Leung, and S. E. Guggino. "Cyclic nucleotide-gated cation channels mediate sodium and calcium influx in rat colon." American Journal of Physiology-Cell Physiology 278, no. 2 (2000): C336—C343. http://dx.doi.org/10.1152/ajpcell.2000.278.2.c336.
Full textMcEwen, Dyke P., та Lori L. Isom. "Heterophilic Interactions of Sodium Channel β1 Subunits with Axonal and Glial Cell Adhesion Molecules". Journal of Biological Chemistry 279, № 50 (2004): 52744–52. http://dx.doi.org/10.1074/jbc.m405990200.
Full textVais, Horia, Martin S. Williamson, Susannah J. Goodson, et al. "Activation of Drosophila Sodium Channels Promotes Modification by Deltamethrin." Journal of General Physiology 115, no. 3 (2000): 305–18. http://dx.doi.org/10.1085/jgp.115.3.305.
Full textVinson, Valda. "Targeting sodium channels." Science 363, no. 6433 (2019): 1296.7–1297. http://dx.doi.org/10.1126/science.363.6433.1296-g.
Full textRossier, Bernard C., Cecilia M. Canessa, Laurent Schild, and Jean-Daniel Horisberger. "Epithelial sodium channels." Current Opinion in Nephrology and Hypertension 3, no. 5 (1994): 487–96. http://dx.doi.org/10.1097/00041552-199409000-00003.
Full textKeller, B. U., R. P. Hartshorne, J. A. Talvenheimo, W. A. Catterall, and M. Montal. "Sodium channels in planar lipid bilayers. Channel gating kinetics of purified sodium channels modified by batrachotoxin." Journal of General Physiology 88, no. 1 (1986): 1–23. http://dx.doi.org/10.1085/jgp.88.1.1.
Full textStadnicka, Anna, Wai-Meng Kwok, Hali A. Hartmann, and Zeljko J. Bosnjak. "Effects of Halothane and Isoflurane on Fast and Slow Inactivation of Human Heart hH1a Sodium Channels." Anesthesiology 90, no. 6 (1999): 1671–83. http://dx.doi.org/10.1097/00000542-199906000-00024.
Full textWu, Xin, and Liang Hong. "Calmodulin Interactions with Voltage-Gated Sodium Channels." International Journal of Molecular Sciences 22, no. 18 (2021): 9798. http://dx.doi.org/10.3390/ijms22189798.
Full textDuszyk, Marek, Andrew S. French, and S. F. Paul Man. "Cystic fibrosis affects chloride and sodium channels in human airway epithelia." Canadian Journal of Physiology and Pharmacology 67, no. 10 (1989): 1362–65. http://dx.doi.org/10.1139/y89-217.
Full textLiin, Sara I., Per-Eric Lund, Johan E. Larsson, Johan Brask, Björn Wallner, and Fredrik Elinder. "Biaryl sulfonamide motifs up- or down-regulate ion channel activity by activating voltage sensors." Journal of General Physiology 150, no. 8 (2018): 1215–30. http://dx.doi.org/10.1085/jgp.201711942.
Full textRatnakumari, Lingamaneni, and Hugh C. Hemmings. "Inhibition of Presynaptic Sodium Channels by Halothane." Anesthesiology 88, no. 4 (1998): 1043–54. http://dx.doi.org/10.1097/00000542-199804000-00025.
Full textCampos, Fabiana V., Baron Chanda, Paulo S. L. Beirão та Francisco Bezanilla. "β-Scorpion Toxin Modifies Gating Transitions in All Four Voltage Sensors of the Sodium Channel". Journal of General Physiology 130, № 3 (2007): 257–68. http://dx.doi.org/10.1085/jgp.200609719.
Full textVanoye, Carlos G., Christoph Lossin, Thomas H. Rhodes, and Alfred L. George. "Single-channel Properties of Human NaV1.1 and Mechanism of Channel Dysfunction in SCN1A-associated Epilepsy." Journal of General Physiology 127, no. 1 (2005): 1–14. http://dx.doi.org/10.1085/jgp.200509373.
Full textGray, Richard, and Daniel Johnston. "Sodium sensitivity of KNa channels in mouse CA1 neurons." Journal of Neurophysiology 125, no. 5 (2021): 1690–97. http://dx.doi.org/10.1152/jn.00064.2021.
Full textPerez-Pinzon, M. A., M. Rosenthal, T. J. Sick, P. L. Lutz, J. Pablo, and D. Mash. "Downregulation of sodium channels during anoxia: a putative survival strategy of turtle brain." American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 262, no. 4 (1992): R712—R715. http://dx.doi.org/10.1152/ajpregu.1992.262.4.r712.
Full textJEZIORSKI, M. C., R. M. GREENBERG, and P. A. V. ANDERSON. "Cloning of a putative voltage-gated sodium channel from the turbellarian flatworm Bdelloura candida." Parasitology 115, no. 3 (1997): 289–96. http://dx.doi.org/10.1017/s0031182097001388.
Full textNegulyaev, Y. A., E. A. Vedernikova, and A. V. Maximov. "Disruption of actin filaments increases the activity of sodium-conducting channels in human myeloid leukemia cells." Molecular Biology of the Cell 7, no. 12 (1996): 1857–64. http://dx.doi.org/10.1091/mbc.7.12.1857.
Full textRatnakumari, L., and H. C. Hemmings. "Effects of Propofol on Sodium Channel-dependent Sodium Influx and Glutamate Release in Rat Cerebrocortical Synaptosomes." Anesthesiology 86, no. 2 (1997): 428–39. http://dx.doi.org/10.1097/00000542-199702000-00018.
Full textBehrens, M. I., A. Oberhauser, F. Bezanilla, and R. Latorre. "Batrachotoxin-modified sodium channels from squid optic nerve in planar bilayers. Ion conduction and gating properties." Journal of General Physiology 93, no. 1 (1989): 23–41. http://dx.doi.org/10.1085/jgp.93.1.23.
Full textDocken, Steffen S., Colleen E. Clancy, and Timothy J. Lewis. "Rate-dependent effects of lidocaine on cardiac dynamics: Development and analysis of a low-dimensional drug-channel interaction model." PLOS Computational Biology 17, no. 6 (2021): e1009145. http://dx.doi.org/10.1371/journal.pcbi.1009145.
Full textOhara, A., H. Matsunaga, and D. C. Eaton. "G protein activation inhibits amiloride-blockable highly selective sodium channels in A6 cells." American Journal of Physiology-Cell Physiology 264, no. 2 (1993): C352—C360. http://dx.doi.org/10.1152/ajpcell.1993.264.2.c352.
Full textGhovanloo, Mohammad-Reza, Noah Gregory Shuart, Janette Mezeyova, Richard A. Dean, Peter C. Ruben, and Samuel J. Goodchild. "Inhibitory effects of cannabidiol on voltage-dependent sodium currents." Journal of Biological Chemistry 293, no. 43 (2018): 16546–58. http://dx.doi.org/10.1074/jbc.ra118.004929.
Full textAhern, Christopher A., Jian Payandeh, Frank Bosmans, and Baron Chanda. "The hitchhiker’s guide to the voltage-gated sodium channel galaxy." Journal of General Physiology 147, no. 1 (2015): 1–24. http://dx.doi.org/10.1085/jgp.201511492.
Full text