Academic literature on the topic 'Sodium-ion batterie'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sodium-ion batterie.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sodium-ion batterie"

1

M Nishtha Singh, M. "An Investigation into Sodium-Metal Battery as an Alternative to Lithium-Ion Batteries." International Journal of Science and Research (IJSR) 10, no. 1 (2021): 110–15. https://doi.org/10.21275/sr21102173054.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Niu, Jiansu. "The Analysis of the Sodium-ion Battery and its Development." Applied and Computational Engineering 123, no. 1 (2025): 100–105. https://doi.org/10.54254/2755-2721/2025.19580.

Full text
Abstract:
In recent years, as the demand for energy storage systems has continued to grow, sodium-ion batteries have become a promising alternative to traditional lithium-ion batteries. This paper mainly introduces the research of sodium-ion batteries. The advantages of sodium-ion batteries are abundant sodium resources, low cost and excellent electrochemical performance potential. In this paper, the working principle and structure of the sodium-ion battery are introduced, including the key materials such as cathode, anode and electrolyte, and the latest progress of the sodium-ion battery is described.
APA, Harvard, Vancouver, ISO, and other styles
3

Li, Chengyang. "Research of Cathode Materials for Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 116 (November 7, 2024): 283–89. http://dx.doi.org/10.54097/jpaw4474.

Full text
Abstract:
Sodium-ion batteries are being extensively studied as a replacement for lithium-ion batteries in some areas. However, there are also some problems with cathode materials at present. Sodium-ion batteries perform worse performance than lithium-ion batteries, which is due to the properties of sodium. For instance, sodium ions possess a greater ionic radius and increased atomic weight compared to lithium ions. This piece presents an overview of the operational principles behind sodium-ion batteries, examining the preparation techniques, structure, and effectiveness of three main cathode materials.
APA, Harvard, Vancouver, ISO, and other styles
4

Chou, Shulei. "Challenges and Applications of Flexible Sodium Ion Batteries." Materials Lab 1 (2022): 1–24. http://dx.doi.org/10.54227/mlab.20210001.

Full text
Abstract:
Sodium-ion batteries are considered to be a future alternative to lithium-ion batteries because of their low cost and abundant resources. In recent years, the research of sodium-ion batteries in flexible energy storage systems has attracted widespread attention. However, most of the current research on flexible sodium ion batteries is mainly focused on the preparation of flexible electrode materials. In this paper, the challenges faced in the preparation of flexible electrode materials for sodium ion batteries and the evaluation of device flexibility is summarized. Several important parameters
APA, Harvard, Vancouver, ISO, and other styles
5

Li, Yan. "Review of sodium-ion battery research." Advances in Engineering Innovation 16, no. 3 (2025): 31–37. https://doi.org/10.54254/2977-3903/2025.21919.

Full text
Abstract:
Sodium-ion batteries (SIBs) have gained increasing attention due to their low production cost, abundant raw materials, and relatively high energy density. In addition, SIBs exhibit a range of desirable characteristics, including high specific capacity, good high-temperature performance, safety, and environmental friendliness. Therefore, research into sodium-ion batteries is of paramount importance. This paper references a large number of studies on sodium-ion batteries, aiming to analyze and summarize the research issues related to SIBs and the impact of their development on societal progress.
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Mingrui. "Research Status and Development Direction of Anode Materials for Sodium-ion Batteries." Academic Journal of Science and Technology 12, no. 2 (2024): 199–201. http://dx.doi.org/10.54097/gbds7c14.

Full text
Abstract:
With the depletion of lithium resources, people gradually began to look for alternatives to lithium-ion batteries, and then sodium-ion batteries entered the public eye. In the past decade, sodium-ion batteries have developed at a high speed, establishing the beginning of the post-lithium era in the field of energy storage. This technology focuses on improving the performance of cathode and anode as well as electrolyte and optimising the preparation method of sodium-ion batteries. This paper mainly introduces the research status and development direction of anode materials for sodium-ion batter
APA, Harvard, Vancouver, ISO, and other styles
7

Hu, Chunxi. "Nanotechnology based on anode and cathode materials of sodium-ion battery." Applied and Computational Engineering 26, no. 1 (2023): 164–71. http://dx.doi.org/10.54254/2755-2721/26/20230824.

Full text
Abstract:
With the urgent need for carbon neutrality and the new energy vehicle industry's quick development around the world, the market demand for batteries is growing rapidly. At present, the batteries in the market are mainly lithium-ion batteries. However, the shortage and uneven distribution of lithium deposits worldwide result in high production costs. In recent years, sodium-ion batteries have developed rapidly for the sake of their similar principles and easy access to sodium resources, and are regarded as being able to replace lithium-ion batteries in the future. Nanotechnology is widely used
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Qinglan, Andrew Whittaker, and X. Zhao. "Polymer Electrode Materials for Sodium-ion Batteries." Materials 11, no. 12 (2018): 2567. http://dx.doi.org/10.3390/ma11122567.

Full text
Abstract:
Sodium-ion batteries are promising alternative electrochemical energy storage devices due to the abundance of sodium resources. One of the challenges currently hindering the development of the sodium-ion battery technology is the lack of electrode materials suitable for reversibly storing/releasing sodium ions for a sufficiently long lifetime. Redox-active polymers provide opportunities for developing advanced electrode materials for sodium-ion batteries because of their structural diversity and flexibility, surface functionalities and tenability, and low cost. This review provides a short yet
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Hongqiang. "Progress Of Low-Temperature Carbonization of Cellulose as Anode Material for Sodium-Ion Batteries." Highlights in Science, Engineering and Technology 96 (May 5, 2024): 227–34. http://dx.doi.org/10.54097/8sr0ea06.

Full text
Abstract:
With the increasingly serious environmental issues brought by the use of conventional fossil energy sources, and under the idea of "carbon peak and carbon neutral" put forward by China, it has been a global consensus to drive the transition of the energy consumption framework from conventional fossil energy sources to low-carbon, clean reproducible energy sources, and associated energy preservation technologies. So far, secondary battery systems as stable and efficient clean energy storage have been the focus of attention, and the most important energy storage devices are lithium-ion batteries
APA, Harvard, Vancouver, ISO, and other styles
10

Rojo, Teofilo, Yong-Sheng Hu, Maria Forsyth, and Xiaolin Li. "Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (2018): 1800880. http://dx.doi.org/10.1002/aenm.201800880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sodium-ion batterie"

1

Farina, Luca. "Sodium Ion battery for energy intensive application." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
In questa tesi viene proposto uno studio sulle batterie agli ioni sodio e lo sviluppo di un innovativo metodo di studio che sfrutta il microscopio a scansione elettronica (SEM). Le batterie ioni sodio (SIB) sono una tecnologia innovativa che ha interessato gli studiosi soprattutto negli ultimi anni, in virtù della loro competitività rispetto alle più diffuse batterie agli ioni litio (LIB). Infatti, rispetto a queste ultime, caratterizzate dalla presenza di metalli rari e costosi e dal cobalto, un metallo altamente inquinante, le SIB sono costituite da sodio, tra i metalli più abbondanti sulla
APA, Harvard, Vancouver, ISO, and other styles
2

Michelet, Cédric. "Recherche exploratoire de nouveaux matériaux d'électrode négative pour batterie sodium-ion." Nantes, 2014. http://archive.bu.univ-nantes.fr/pollux/show.action?id=d046bc78-38d0-480a-9562-5ec81ce5bca2.

Full text
Abstract:
Les accumulateurs lithium-ion sont devenus indispensables ces dernières années. Pour des raisons d’accès aux ressources et de coût de l’élément alcalin, un nouveau champ de recherche s’intéressant aux accumulateurs sodium-ion a récemment émergé. Parmi les grands défis posés par ce nouveau dispositif, le travail développé durant cette thèse a pour but l’exploration de nouveaux matériaux d’électrode négative. Deux types de matériaux ont été étudiés : l’étain métallique, et les chalcogénures AV4S8 (A=Ga, Ge). L’étain a été obtenu sous forme dense ou dendritique par dépôt électrochimique. En batte
APA, Harvard, Vancouver, ISO, and other styles
3

FIORE, MICHELE. "Nanostructured Materials for secondary alkaline ion batteries." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/262348.

Full text
Abstract:
Thanks to their superior energy and power density, lithium-ion batteries (LIBs) currently dominate the market of power sources for portable devices. The economy of scale and engineering optimizations have driven the cost of LIBs below the 200 $/KWh at the pack level. This catalyzed the market penetration of electric vehicles and made them a viable candidate for stationary energy storage. However, the rapid market expansion of LIBs raised growing concerns about the future sustainability of this technology. In particular, lithium and cobalt supplies are considered vulnerable, primarily because o
APA, Harvard, Vancouver, ISO, and other styles
4

Huynh, Le Thanh Nguyen. "Les accumulateurs au sodium et sodium-ion, une nouvelle génération d’accumulateurs électrochimiques : synthèse et électrochimie de nouveaux matériaux d’électrodes performants." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1123/document.

Full text
Abstract:
Les accumulateurs au lithium jouent un rôle important comme source d'alimentation pour les appareils électroniques portables en raison de leur forte capacité gravimétrique et volumétrique et leur haute tension. En outre, la technologie lithium-ion est la mieux placée pour une application à grande échelle, telle que le véhicule électrique, ce qui pose un problème de ressource et à terme, de coût. Une des réponses envisagées sur le plan économique et environnemental est le développement d’accumulateurs sodium-ion. Dans tous les cas, le problème scientifique consiste à proposer des matériaux d’in
APA, Harvard, Vancouver, ISO, and other styles
5

Desai, Parth. "Achieving Na-ion Battery Advancements Through Decoding Degradation Pathways and Electrolyte Engineering." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS681.

Full text
Abstract:
La dépendance croissante à l’égard des batteries lithium-ion pour le stockage de l’énergie nécessite l’exploration de produits chimiques alternatifs en raison des ressources limitées et géopolitiquement sensibles en lithium. La batterie sodium-ion, est considérée comme une alternative prometteuse, avec d’abondants précurseurs de sodium. Après une analyse comparative des paramètres critiques, la chimie Na3V2(PO4)2F3(NVPF)|hard carbon(HC) a été sélectionnée pour cette étude, de par la durabilité structurelle du matériau NVPF, ses performances énergétiques robustes et sa stabilité air/eau. Cette
APA, Harvard, Vancouver, ISO, and other styles
6

GENTILE, ANTONIO. "MXene-based materials for alkaline-ion batteries: synthesis, properties, applications." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.

Full text
Abstract:
La produzione sempre maggiore di dispositivi portatili e auto elettriche chiede al mercato di produrre dispositivi efficienti in grado di poter accumulare l’energia elettrica. Per questo tipo di tecnologie in cui la miniaturizzazione del dispositivo è essenziale, le batterie litio ione (LIBs) sono diventate il mezzo di accumulare energia. La ricerca su queste batterie è focalizzata ad ottenere dispositivi sempre più performanti con materiali elettrodici ad alte capacità gravimetriche e volumetriche. Accanto all’aspetto tecnologico, legato alla ottimizzazione dei materiali, vi è anche quello de
APA, Harvard, Vancouver, ISO, and other styles
7

Difi, Siham. "Phosphates de type NASICON comme matériaux d'électrode pour batteries sodium-ion à haute densité d'énergie." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT212/document.

Full text
Abstract:
Ce mémoire est consacré à l’étude des composites à base de phosphates de type NASICON comme matériaux d’électrode pour batteries sodium-ion : Na1+xFexTi2-x(PO4)3/C et Na1+xFexSn2-x(PO4)3/C avec 0 ≤ x ≤ 1. Ces composites ont été synthétisés par voie solide suivie d’une pyrolyse avec le saccharose. Ils sont constitués de particules ayant une porosité élevée et enrobées par du carbone conférant à l’électrode une bonne conductivité ionique et électronique. Les mécanismes réactionnels se produisant lors des cycles de charge-décharge ont été analysés en mode operando par diffraction des rayons X, sp
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Zhenying. "Prussian Blue Analog Cathodes for Na-ion Batteries : from fundamentals to practical demonstration." Electronic Thesis or Diss., Sorbonne université, 2025. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2025SORUS046.pdf.

Full text
Abstract:
Le chapitre I introduit l'histoire et les principes fondamentaux des batteries métal-ion (Li/Na-ion), en mettant l'accent sur les spécificités de la chimie des batteries sodium-ion. Il passe en revue différents matériaux des cathodes, en particulier les analogues du bleu de Prusse (PBA). Les stratégies clés issues de la littérature visant à améliorer les cathodes PBA sont discutées, notamment les problématiques liées aux relations entre l'eau structurale, l'électrochimie et les transitions de phase, soutenues par des outils de caractérisation in situ et ex situ. Enfin, la stratégie adoptée dan
APA, Harvard, Vancouver, ISO, and other styles
9

Beuvier, Thomas. "Des nanotitanates de sodium aux dioxydes de titane : électrode négative à base de TiO2(B) nanométrique pour accumulateur lithium-ion." Phd thesis, Université de Nantes, 2009. http://tel.archives-ouvertes.fr/tel-00454406.

Full text
Abstract:
Le dioxyde de titane, connu pour ses applications dans les domaines de la photoactivité et du photovoltaïque, est aussi un candidat d'électrode négative pour batteries lithium-ion. Les variétés anatase et TiO2(B) sont les plus prometteuses. Leurs capacités sont respectivement de 0,50 et 0,75 Li+ par motif de TiO2. Sous forme nanométrique, elles présentent des densités d'énergie et de puissance accrues. L'objet de ce travail de thèse concerne la synthèse par chimie douce de dioxydes de titane nanométriques selon la méthode développée initialement par Kasuga et al. et leur caractérisation. La mé
APA, Harvard, Vancouver, ISO, and other styles
10

Minart, Gaël. "Étude de l'influence de la morphologie, de modifications de surface et de la composition de matériaux d'électrode positive pour batteries Na-ion." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0340.

Full text
Abstract:
Cette thèse rapporte des travaux portant sur l'étude de l'influence de la morphologie, de la modification de surface et de la composition de particules de matériaux d'électrodes positives de batteries Na-ion sur leurs performances électrochimiques. Dans un premier temps, trois matériaux de formules Na3V2(PO4)FO2 possédant trois morphologies différentes ont été synthétisés par voie topochimique en milieu liquide ionique. La morphologie affichant les meilleures performances a ensuite été choisie pour y appliquer un revêtement conducteur en carbone par traitement thermique à partir de la couche d
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sodium-ion batterie"

1

Gaddam, Rohit R., and George Zhao. Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chao, Dongliang. Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3080-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Jun. Carbon-Based Electrodes for High-Performance Sodium-Ion Batteries and Their Interfacial Electrochemistry. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7566-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sodium-Ion Batteries. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, Man, Feng Wu, and Yongxin Huang. Sodium-Ion Batteries. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110749069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ji, X. Sodium-Ion Batteries - Technologies AndApplications. Wiley & Sons, Limited, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hou, Hongshuai. Sodium-Ion Batteries: Technologies and Applications. Wiley & Sons, Incorporated, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hou, Hongshuai. Sodium-Ion Batteries: Technologies and Applications. Wiley & Sons, Incorporated, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hou, Hongshuai. Sodium-Ion Batteries: Technologies and Applications. Wiley & Sons, Limited, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Titirici, Maria-Magdalena, Philipp Adelhelm, and Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sodium-ion batterie"

1

Ferraro, Marco, and Giovanni Tumminia. "Techno-economics Analysis on Sodium-Ion Batteries: Overview and Prospective." In The Materials Research Society Series. Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-48359-2_14.

Full text
Abstract:
AbstractSodium-ion batteries are considered compelling electrochemical energy storage systems considering its abundant resources, high cost-effectiveness, and high safety. Therefore, sodium-ion batteries might become an economically promising alternative to lithium-ion batteries (LIBs). However, while there are several works available in the literature on the costs of lithium-ion battery materials, cells, and modules, there is relatively little available analysis of these for sodium ion. Moreover, most of the works on sodium ion focus on costs of material preparation and the electrodes/electro
APA, Harvard, Vancouver, ISO, and other styles
2

Abraham, K. M. "Rechargeable Sodium and Sodium-Ion Batteries." In Lithium Batteries. John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Yumei, and Weibo Hua. "Sodium-Ion Batteries." In Advanced Metal Ion Storage Technologies. CRC Press, 2023. http://dx.doi.org/10.1201/9781003208198-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ma, Lin. "Sodium-Ion Batteries." In Green Energy and Technology. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-88550-1_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Ye, Lie Wang, Yang Zhao, and Huisheng Peng. "Flexible Aqueous Sodium-Ion Batteries." In Flexible Batteries. CRC Press, 2022. http://dx.doi.org/10.1201/9781003273677-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Garg, Nisha, Venkatasailanathan Ramadesigan, and Sankara Sarma V. Tatiparti. "Principles of Electrochemistry." In Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soares, Davi Marcelo, Santanu Mukherjee, and Gurpreet Singh. "Transition Metal Dichalcogenides as Active Anode Materials for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Yinzhu, Yao Huang, and Yuting Gao. "Prussian Blue Analogues as Cathode Materials for Sodium-Ion Bateries." In Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Qinglan, and Minhua Shao. "Polymer Electrodes for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rangom, Yverick, Timothy T. Duignan, Xin Fan, and X. S. (George) Zhao. "Cycling Stability of Sodium-Ion Batteries in Analogy to Lithium-Ion Batteries." In Handbook of Sodium-Ion Batteries. Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sodium-ion batterie"

1

Sandri, Cesare, Roberto Di Rienzo, Niccolò Nicodemo, Federico Baronti, Roberto Roncella, and Roberto Saletti. "Electrical Circuit Model for Sodium-ion Batteries." In IECON 2024 - 50th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2024. https://doi.org/10.1109/iecon55916.2024.10905594.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Grobler, Inus, Hanif Banderker, and Reesen Govindsamy. "Evaluating Sodium-Ion Batteries (SiB) and its Applications." In 2025 33rd Southern African Universities Power Engineering Conference (SAUPEC). IEEE, 2025. https://doi.org/10.1109/saupec65723.2025.10944345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Casey, Austin J., and Matilde D'Arpino. "Performance of Sodium-Ion and Lithium-Ion Batteries for Energy Storage System Applications." In 2025 IEEE Electrical Energy Storage Applications and Technologies Conference (EESAT). IEEE, 2025. https://doi.org/10.1109/eesat62935.2025.10891240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yehia, Sary, Lakhdar Mamouri, Nagham El Ghossein, and Tedjani Mesbahi. "Hysteresis in Sodium-ion Batteries: Temperature and Relaxation Time Effects." In 2024 IEEE Vehicle Power and Propulsion Conference (VPPC). IEEE, 2024. http://dx.doi.org/10.1109/vppc63154.2024.10755409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Masemola, Khanyisile, and David G. Dorrell. "A Review of the Most Recent Developments in Sodium-ion Batteries." In 2025 33rd Southern African Universities Power Engineering Conference (SAUPEC). IEEE, 2025. https://doi.org/10.1109/saupec65723.2025.10944355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Song, Zheyuan Pang, Yijie He, Zhengxiang Song, Kun Yang, and Jianhua Wang. "SOC Estimation for Sodium-ion Battery Based on Fusion Algorithm." In 2024 6th International Conference on Power and Energy Technology (ICPET). IEEE, 2024. https://doi.org/10.1109/icpet62369.2024.10940267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Yupeng, Lijun Yang, Ruijin Liao, Tinghui Wang, Yanlin Xiao, and Siquan Li. "Deterioration and Acoustic Emission Characteristics of Sodium-ion Batteries Induced by Overcharge." In 2025 IEEE International Conference on Power Systems and Smart Grid Technologies (PSSGT). IEEE, 2025. https://doi.org/10.1109/pssgt64932.2025.11033803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chen, Cheng, Yusheng Zhang, and Mengqiang Wu. "Zn-doping Na3+xV2-xZnx(PO4)2F3/C cathodes for sodium ion batteries." In Tenth International Conference on Energy Materials and Electrical Engineering (ICEMEE 2024), edited by Yuanhao Wang and Cristian Paul Chioncel. SPIE, 2024. https://doi.org/10.1117/12.3050386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ling, Lei, Tianyu Zou, Yusheng Lu, et al. "Performance study of Zn-Sn-P as anode material for sodium-ion batteries." In 10th International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2024), edited by Yunhui Liu and Zili Li. SPIE, 2024. http://dx.doi.org/10.1117/12.3046589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Montanino, Maria, Claudia Paoletti, Anna De Girolamo Del Mauro, and Giuliano Sico. "Gravure Printing for Sodium-ion Batteries Manufacturing: A First Attempt of Printed Cathode." In 2024 IEEE International Conference on Environment and Electrical Engineering and 2024 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). IEEE, 2024. http://dx.doi.org/10.1109/eeeic/icpseurope61470.2024.10751379.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sodium-ion batterie"

1

Dzwiniel, Trevor L., Krzysztof Z. Pupek, and Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1329386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wiley, Ted, Jay Whitacre, Eric Weber, et al. Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications. Office of Scientific and Technical Information (OSTI), 2012. http://dx.doi.org/10.2172/1081309.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Liang, Xinghui, Rizki Ismoyojati, and Yang-Kook Sun. A Novel Lithium Substitution Induced Tunnel/Spinel Heterostructured Cathode Material for Advanced Sodium-Ion Batteries. Peeref, 2022. http://dx.doi.org/10.54985/peeref.2207p9041979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Muelaner, Jody E. The Role of Hybrid Vehicles in a Net-zero Transport System. SAE International, 2024. http://dx.doi.org/10.4271/epr2024021.

Full text
Abstract:
<div class="section abstract"><div class="htmlview paragraph">As the world looks to net-zero emissions goals, hybrid electric vehicles may play an increasingly important role. For passenger electric vehicles (EVs) that predominantly make short journeys but occasionally need to make longer trips, electrofuel range extension may be more cost effective than either hydrogen or rapid charging. Micro gas turbines and catalytic combustion show significant potential to deliver low-cost, low-maintenance, lightweight engines with virtually no emissions, and hydrocarbon consuming solid oxide
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!