Academic literature on the topic 'Sodium-ion batteries'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Sodium-ion batteries.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Sodium-ion batteries"

1

Rojo, Teofilo, Yong-Sheng Hu, Maria Forsyth, and Xiaolin Li. "Sodium-Ion Batteries." Advanced Energy Materials 8, no. 17 (June 2018): 1800880. http://dx.doi.org/10.1002/aenm.201800880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Slater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Sodium-Ion Batteries." Advanced Functional Materials 23, no. 8 (May 21, 2012): 947–58. http://dx.doi.org/10.1002/adfm.201200691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Slater, Michael D., Donghan Kim, Eungje Lee, and Christopher S. Johnson. "Correction: Sodium-Ion Batteries." Advanced Functional Materials 23, no. 26 (July 8, 2013): 3255. http://dx.doi.org/10.1002/adfm.201301540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Libich, Jiří, Josef Máca, Andrey Chekannikov, Jiří Vondrák, Pavel Čudek, Michal Fíbek, Werner Artner, Guenter Fafilek, and Marie Sedlaříková. "Sodium Titanate for Sodium-Ion Batteries." Surface Engineering and Applied Electrochemistry 55, no. 1 (January 2019): 109–13. http://dx.doi.org/10.3103/s1068375519010125.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chou, Shulei. "Challenges and Applications of Flexible Sodium Ion Batteries." Materials Lab 1 (2022): 1–24. http://dx.doi.org/10.54227/mlab.20210001.

Full text
Abstract:
Sodium-ion batteries are considered to be a future alternative to lithium-ion batteries because of their low cost and abundant resources. In recent years, the research of sodium-ion batteries in flexible energy storage systems has attracted widespread attention. However, most of the current research on flexible sodium ion batteries is mainly focused on the preparation of flexible electrode materials. In this paper, the challenges faced in the preparation of flexible electrode materials for sodium ion batteries and the evaluation of device flexibility is summarized. Several important parameters including cycle-calendar life, energy/power density, safety, flexible, biocompatibility and multifunctional intergration of current flexible sodium ion batteries will be described mainly from the application point of view. Finally, the promising current applications of flexible sodium ion batteries are summarized.
APA, Harvard, Vancouver, ISO, and other styles
6

Zhao, Qinglan, Andrew Whittaker, and X. Zhao. "Polymer Electrode Materials for Sodium-ion Batteries." Materials 11, no. 12 (December 17, 2018): 2567. http://dx.doi.org/10.3390/ma11122567.

Full text
Abstract:
Sodium-ion batteries are promising alternative electrochemical energy storage devices due to the abundance of sodium resources. One of the challenges currently hindering the development of the sodium-ion battery technology is the lack of electrode materials suitable for reversibly storing/releasing sodium ions for a sufficiently long lifetime. Redox-active polymers provide opportunities for developing advanced electrode materials for sodium-ion batteries because of their structural diversity and flexibility, surface functionalities and tenability, and low cost. This review provides a short yet concise summary of recent developments in polymer electrode materials for sodium-ion batteries. Challenges facing polymer electrode materials for sodium-ion batteries are identified and analyzed. Strategies for improving polymer electrochemical performance are discussed. Future research perspectives in this important field are projected.
APA, Harvard, Vancouver, ISO, and other styles
7

Ouyang, Zhiran. "Sodium-Ion Batteries: Exploration of Electrolyte Materials." Highlights in Science, Engineering and Technology 43 (April 14, 2023): 419–26. http://dx.doi.org/10.54097/hset.v43i.7460.

Full text
Abstract:
In recent years, as fossil energy sources such as oil and coal continue to be consumed, the issue of resources and the environment has become one of the main challenges to the sustainable development of human society. People's electricity consumption has increased dramatically, and the demand for energy storage batteries has also increased. Sodium-ion batteries (SIBs) are a very worthwhile development because of high Na reserves in the world, which can bring many advantages. The electrolyte can control the battery's inherent electrochemical window and performance, influence the nature of the electrode/electrolyte interface, and is one of the most important material choices for SIBs. The electrolyte simultaneously influences the electrochemical performance and safety of SIBs. This paper focuses on electrolyte materials in SIBs, explaining the fundamental needs and categorization of sodium ion electrolytes and highlighting the most recent advances in liquid and solid electrolytes. It is found that SIBs still have problems such as lower energy density, narrower electrochemical stability windows, poorer solid electrolyte interphase (SEI) stability, etc. Solving the related technical problems is of great significance for commercializing SIBs.
APA, Harvard, Vancouver, ISO, and other styles
8

Ellis, Brian L., and Linda F. Nazar. "Sodium and sodium-ion energy storage batteries." Current Opinion in Solid State and Materials Science 16, no. 4 (August 2012): 168–77. http://dx.doi.org/10.1016/j.cossms.2012.04.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

El Moctar, Ismaila, Qiao Ni, Ying Bai, Feng Wu, and Chuan Wu. "Hard carbon anode materials for sodium-ion batteries." Functional Materials Letters 11, no. 06 (December 2018): 1830003. http://dx.doi.org/10.1142/s1793604718300037.

Full text
Abstract:
Recent results have shown that sodium-ion batteries complement lithium-ion batteries well because of the low cost and abundance of sodium resources. Hard carbon is believed to be the most promising anode material for sodium-ion batteries due to the expanded graphene interlayers, suitable working voltage and relatively low cost. However, the low initial coulombic efficiency and rate performance still remains challenging. The focus of this review is to give a summary of the recent progresses on hard carbon for sodium-ion batteries including the impact of the uniqueness of carbon precursors and strategies to improve the performance of hard carbon; highlight the advantages and performances of the hard carbon. Additionally, the current problems of hard carbon for sodium-ion batteries and some challenges and perspectives on designing better hard-carbon anode materials are also provided.
APA, Harvard, Vancouver, ISO, and other styles
10

Skundin, A. M., T. L. Kulova, and A. B. Yaroslavtsev. "Sodium-Ion Batteries (a Review)." Russian Journal of Electrochemistry 54, no. 2 (February 2018): 113–52. http://dx.doi.org/10.1134/s1023193518020076.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Sodium-ion batteries"

1

Adelhelm, Philipp. "From Lithium-Ion to Sodium-Ion Batteries." Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nwafornso, Tochukwu. "Bismuth anode for sodium-ion batteries." Thesis, Uppsala universitet, Strukturkemi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-449075.

Full text
Abstract:
It is imperative to develop alternative battery technologies based on naturally abundant elements, with competitive performance as lithium-ion batteries. Sodium has a natural abundance 1000 times more than lithium with both lithium and sodium-ion batteries having similar chemistry. Sodium-ion batteries are potentially an alternative that can achieve such competitive performance, given that electrode and electrolyte materials of high rate and long-term electrochemical performance are being developed. This thesis investigates the rate capability and long-term performance of bulk bismuth electrodes containing varying carbon content. The electrodes were cycled in cells with glyme-based electrolytes: diglyme and tetraglyme. Scanning electron microscopy and energy dispersive spectroscopy showed the morphology and elemental mapping of pristine and cycled bismuth electrodes. The result demonstrates the evolving porosity as the electrode cycled. The galvanostatic cycling of half-cells showed two plateaus each for sodiation and desodiation. Also, two peaks are seen in cyclic voltammetry suggesting a two-phase reaction. When cycled between -0.6 to 0.6 V in a symmetrical cell, the bismuth electrode showed an appreciable rate capability at a current rate of 770  mA/g in diglyme. In tetraglyme, it showed a poor rate capability, even at a current rate of 308 mA/g. The rate performance in a full cell cycled between 0.1 to 3.2 V also showed a good rate capability at a current rate of 770  mA/g in diglyme. Tetraglyme showed poor rate capability at the same current rate. The capacity retention was higher in the symmetrical cells, with 79 % and 78 % capacity retention relative to the initial charge capacity after 100 cycles for diglyme and tetraglyme. At the same current rate and more than 70 cycles, the full cells showed capacity retention of 58 % in diglyme and 44.8 % in tetraglyme. The capacity retention varied slightly for the two different electrode composites.  The superior performance in the symmetrical cell is due to the narrow voltage window.  Evaluating the stability of the solid electrolyte interphase via galvanostatic cycling suggests some stability issues. The full cells showed growing resistance with an increasing number of cycles.
APA, Harvard, Vancouver, ISO, and other styles
3

Simone, Virginie. "Développement d'accumulateurs sodium-ion." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI092/document.

Full text
Abstract:
Au vu d’une demande croissante pour un stockage d’énergie à grande échelle, il est préférable de se tourner vers des matériaux peu coûteux et répandus. De ce point de vue, le sodium, qui présente des caractéristiques très proches de celles du lithium, présente également l’avantage d’être peu coûteux, abondant et réparti uniformément dans le monde. Cette thèse porte sur l’étude d’un système complet Na-ion constitué d’un carbone dur à l’électrode négative et d’un oxyde lamellaire à l’électrode positive. Un volet sur l’électrolyte a également été abordé.Concernant l’électrode négative, l’influence de la température de pyrolyse de la cellulose sur la structure des carbones durs et sur les performances électrochimiques a été étudiée. Une graphitisation localisée, une fermeture des pores et une évolution de la porosité interne avec la température de pyrolyse ont pu être observées. Les meilleures performances électrochimiques ont été obtenues pour le matériau synthétisé à 1600 °C : une capacité réversible d’environ 300 mAh.g-1 stable sur 200 cycles est atteinte à 37,2 mA.g-1 avec une efficacité coulombique initiale de 84 %. Pour mieux comprendre les mécanismes d’insertion du sodium dans ces matériaux, des études par spectroscopie d’impédance, SAXS et EDX ont été réalisées sur des carbones durs cyclés à différents potentiels.Le matériau d’électrode positive choisi est l’oxyde lamellaire Na0,6Ni0,25Mn0,75O2. L’influence de la température de calcination a permis de faire varier le nombre de défauts d’empilement de type P3 au profit d’une phase P2 plus cristalline. Après avoir optimisé l’électrolyte à base de carbonates pour garantir la reproductibilité des tests oxyde lamellaire//sodium métal, une capacité d’oxydation de 130 mAh.g-1 a pu être atteinte au premier cycle avant de chuter fortement sur les 40 cycles suivants. Cette perte de capacité a pu être en partie expliquée par des études de DRX operando. Enfin, ces travaux ont permis d’aboutir à des systèmes complets Na-ion dont les premiers résultats sont prometteurs
Because of the development of renewable energy and electric vehicles, the need for a large scale energy storage has increased. This type of storage requires a large amount of raw materials. Therefore low cost and abundant resources are necessary. Consequently the use of sodium batteries is of interest because sodium’s low cost, high abundance, and worldwide availability. This PhD thesis deals with the study of a full Na-ion cell containing a hard carbon negative electrode, and a layered oxide positive electrode. A shorter part concerns the electrolyte.Concerning the negative electrode, the first objective was to understand in detail the influence of the pyrolysis temperature of a hard carbon precursor, cellulose, on the final structure of the material and its consequences on the electrochemical performance. Many techniques were used to characterize the hard carbon structure as a function of the pyrolysis temperature. Localized graphitization, pore closure, and an increase in micropore size have been observed with increasing temperature. The best electrochemical performance has been reached with the hard carbon synthesized at 1600°C: a reversible capacity of around 300 mAh.g-1 stable over 200 cycles is obtained at 37.2 mA.g-1 with an initial coulombic efficiency of 84%. To deeper understand sodium insertion mechanisms in hard carbon structures impedance spectroscopy, SAXS and EDX were carried out on hard carbon electrodes cycled at different voltages.The layered oxide Na0.6Ni0.25Mn0.75O2 was investigated as the positive electrode. It was observed that with increasing calcination temperature the number of P3-type stacking faults decreases in favor of a more crystalline P2 phase. Then, the carbonate-based electrolyte has been optimized to guarantee the reproducibility of the electrochemical tests performed in a layered oxide//sodium metal configuration. A first oxidation capacity of around 130 mAh.g-1 is reached. However this value drops quickly after 40 cycles. Operando XRD analysis did partially explain the capacity decrease. Finally, the results of these investigations were used to design an optimized full cell which demonstrated promising performance during initial testing
APA, Harvard, Vancouver, ISO, and other styles
4

Toigo, Christina Verena <1986&gt. "Towards eco-friendly batteries: concepts for lithium and sodium ion batteries." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10067/1/Thesis%20CT_final.pdf.

Full text
Abstract:
Several possibilities are arising aiming the development of “greener”, more sustainable energy storage systems. One point is the completely water-based processing of battery electrodes, thus being able to renounce the use of toxic solvents in the preparation process. Despite its advantage of lower cost and eco-friendlyness, there is the need of similar mechanical and electrochemichal behavior for boosting this preparation mode. Another point – accompanying the water-based processing - is the replacement of solvent-based polymer binders by water-based ones. These binders can be based on fluorinated, crude-oil based polymers on the one side, but also on naturally abundant and economic friendly biopolymers. The most common anode materials, graphite and lithium titanate (LTO), have been subjected a water-based preparation route with different binder systems. LTO is a promising anode material for lithium ion batteries (LIBs), as it shows excellent safety characteristics, does not form a significant SEI and its volume change upon intercalation of lithium ions is negligible. Unfortunately, this material suffers from a rather low electric conductivity - that is why an intensive study on improved current collector surfaces for LTO electrodes was performed. In order to go one step ahead towards sustainable energy storage, anode and cathode active materials for a sodium ion battery were synthesized. Anode active material resulted in a successful product which was then subjected to further electrochemical tests. In this PhD work the development of “greener” energy storage possibilities is tested under several aspects. The ecological impact of raw materials and required battery components is examined in detail.
APA, Harvard, Vancouver, ISO, and other styles
5

Nose, Masafumi. "Studies on Sodium-containing Transition Metal Phosphates for Sodium-ion Batteries." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215565.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Naqash, Sahir Verfasser], Olivier [Akademischer Betreuer] Guillon, and Jochen M. [Akademischer Betreuer] [Schneider. "Sodium ion conducting ceramics for sodium ion batteries / Sahir Naqash ; Olivier Guillon, Jochen Michael Schneider." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1190040611/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Naqash, Sahir [Verfasser], Olivier Akademischer Betreuer] Guillon, and Jochen M. [Akademischer Betreuer] [Schneider. "Sodium ion conducting ceramics for sodium ion batteries / Sahir Naqash ; Olivier Guillon, Jochen Michael Schneider." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2019070807164971884045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wu, Di Ph D. Massachusetts Institute of Technology. "A layered sodium titanate as promising anode material for sodium ion batteries." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93004.

Full text
Abstract:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 58-60).
Sodium ion batteries have recently received great attention for large-scale energy applications because of the abundance and low cost of sodium source. Although some cathode materials with desirable electrochemical properties have been proposed, it's quite challenging to develop suitable anode materials with high energy density and good cyclability for sodium ion batteries. Herein, we report a layered material, 03-NaTiO2, that delivers 130mAhg-1 of reversible capacity and presents excellent cyclability with capacity retention over 97.5% after 40 cycles and high rate capability. Furthermore, by coupling the electrochemical process with in situ X-ray diffraction, the structure evolution and variation of cell parameters corresponding to an 03-03' phase transition during sodium deintercalation is investigated. Unusual lattice parameter variation was observed by in situ XRD, which can be related to the structure modulation with varying Na vacancy ordering. An irreversible structural modification upon overcharging is also confirmed by in situ XRD. In summary, our work demonstrates that 03-NaTiO2 is a very promising anode material for sodium ion batteries with high energy density.
by Di Wu.
S.M.
APA, Harvard, Vancouver, ISO, and other styles
9

Cesetti, Lorenzo. "Systematic study of in-situ sodium plating/stripping on anode free substrates for sodium ion batteries." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
Gli oggetti di studio di questo lavoro di tesi sono le batterie agli ioni-sodio, in particolare una loro variante ancora in fase di sviluppo denominata “anode-free”. Seppur questi accumulatori al sodio non siano nuovi ma conosciuti da tempo, è solamente dal 2010 che gli studi al riguardo si sono intensificati, tanto da portare alla realizzazione di diversi prototipi in pochi anni. Le maggiori difficoltà nel loro sviluppo sono state riscontrate nella scelta del materiale costituente l’anodo. Per ovviare al problema sono state ideate le batterie agli ioni-sodio “anode-free”: l’anodo è rappresentato da un semplice collettore di corrente, generalmente alluminio o rame, dove gli ioni-sodio si depositano, riducendosi e formando sodio metallico in situ durante la carica; al contrario, durante la scarica, è il sodio metallico che si ossida tornando ione e migrando verso il catodo. Il lavoro di tesi ivi proposto è stato sviluppato presso l’Energy Storage Group del College of Engineering della Swansea University di Swansea (UK). Sono stati esaminati tre substrati differenti valutando l’idoneità di ciascuno di essi ad un’applicazione come anodo in un accumulatore agli ioni-sodio “anode-free”, attraverso tecniche di caratterizzazione standard quali Galvanostatic Cycling (GC), Cyclic Voltammetry (CV) ed analisi al microscopio. I materiali presi in esame sono stati: acciaio inossidabile, acciaio inossidabile rivestito di nichel ed un substrato di nichel chiamato nichel foam. Dopo aver visto che l’acciaio inossidabile è il substrato in grado di garantire prestazioni migliori, lo step successivo è stato quello di realizzare una vera e propria batteria agli ioni-sodio “anode-free” utilizzando un catodo composto da pirite presodiata. Le performance della batteria proposta in questa tesi sono state infine confrontate con quelle di un modello di riferimento che impiega un collettore di corrente in alluminio rivestito da carbon black come anodo.
APA, Harvard, Vancouver, ISO, and other styles
10

Toumar, Alexandra Jeanne. "Phase transformations in layered electrode materials for sodium ion batteries." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111255.

Full text
Abstract:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 118-130).
In this thesis, I investigate sodium ion intercalation in layered electrode materials for sodium ion batteries. Layered metal oxides have been at the forefront of rechargeable lithium ion battery technology for decades, and are currently the state of the art materials for sodium ion battery cathodes in line for commercialization. Sodium ion intercalated layered oxides exist in several different host phases depending on sodium content and temperature at synthesis. Unlike their lithium ion counterparts, seven first row layered TM oxides can intercalate Na ions reversibly. Their voltage curves indicate significant and numerous reversible phase transformations during electrochemical cycling. These transformations arise from Na-ion vacancy ordering and metal oxide slab glide but are not well understood and difficult to characterize experimentally. In this thesis, I explain the nature of these lattice differences and phase transformations for O and P-type single-transition-metal layered systems with regards to the active ion and transition metal at hand. This thesis first investigates the nature of vacancy ordering within the O3 host lattice framework, which is currently the most widely synthesized framework for sodium ion intercalating oxides. I generate predicted electrochemical voltage curves for each of the Na-ion intercalating layered TM oxides using a high-throughput framework of density functional theory (DFT) calculations and determine a set of vacancy ordered phases appearing as ground states in all NaxMO₂ systems, and investigate the energy effect of stacking of adjacent layers. I also examine the influence of transition metal mixing and transition metal migration on the materials' thermodynamic properties. Recent work has established the P2 framework as a better electrode candidate structure type than O3, because its slightly larger interlayer spacing allows for faster sodium ion diffusion due to lower diffusion barriers. However, little has been resolved in explaining what stabilizing mechanisms allow for the formation of P-type materials and their synthesis. This work therefore also investigates what stabilizes P2, P3 and O3 materials and what makes them synthesizable at given synthesis conditions, both for the optimization of synthesis techniques and for better-guided material design. It is of further interest to understand why some transition metal oxide systems readily form P2 or P3 compounds while others do not. I investigate several possible stabilizing mechanisms that allow P-type layered sodium metal oxides to by synthesized, and relate these to the choice of transition metal in the metal oxide structure. Finally, this work examines the difficulty of sodium ion intercalation into graphite, which is a commonly used anode material for lithium ion batteries, proposing possible reasons for why graphite does not reversibly intercalate sodium ions and why cointercalation with other compounds is unlikely. This thesis concludes that complex stabilizing mechanisms that go beyond simple electrostatics govern the intercalation of sodium ions into layered systems, giving it advantages and disadvantages over lithium ion batteries and outlining design principles to improve full-cell sodium ion battery materials.
by Alexandra Jeanne Toumar.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Sodium-ion batteries"

1

Gaddam, Rohit R., and George Zhao. Handbook of Sodium-Ion Batteries. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chao, Dongliang. Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3080-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Sodium-Ion Batteries. Materials Research Forum LLC, 2020. http://dx.doi.org/10.21741/9781644900833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Xie, Man, Feng Wu, and Yongxin Huang. Sodium-Ion Batteries. De Gruyter, 2022. http://dx.doi.org/10.1515/9783110749069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ji, X. Sodium-Ion Batteries - Technologies AndApplications. Wiley & Sons, Limited, John, 2023.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Titirici, Maria-Magdalena, Philipp Adelhelm, and Yong Sheng Hu. Sodium-Ion Batteries: Materials, Characterization, and Technology. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Xie, Man, Yongxin Huang, Feng Wu, and Publishing House Publishing House of Electronics Industry. Sodium-Ion Batteries: Advanced Technology and Applications. de Gruyter GmbH, Walter, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yu, Yang. Sodium-Ion Batteries: Energy Storage Materialsand Technologies. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yu, Yang. Sodium-Ion Batteries: Energy Storage Materialsand Technologies. Wiley & Sons, Incorporated, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yu, Y. Sodium-Ion Batteries - Energy Storage Materialsand Technologies. Wiley & Sons, Limited, John, 2022.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Sodium-ion batteries"

1

Abraham, K. M. "Rechargeable Sodium and Sodium-Ion Batteries." In Lithium Batteries, 349–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118615515.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zhang, Ye, Lie Wang, Yang Zhao, and Huisheng Peng. "Flexible Aqueous Sodium-Ion Batteries." In Flexible Batteries, 81–99. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003273677-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Rangom, Yverick, Timothy T. Duignan, Xin Fan, and X. S. (George) Zhao. "Cycling Stability of Sodium-Ion Batteries in Analogy to Lithium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 389–466. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rajagopalan, Ranjusha, and Lei Zhang. "Introduction for Sodium Ion Batteries." In Advanced Materials for Sodium Ion Storage, 1–6. New York, NY : CRC Press/Taylor & Francis Group, 2020. |: CRC Press, 2019. http://dx.doi.org/10.1201/9780429423772-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Garg, Nisha, Venkatasailanathan Ramadesigan, and Sankara Sarma V. Tatiparti. "Principles of Electrochemistry." In Handbook of Sodium-Ion Batteries, 33–61. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Soares, Davi Marcelo, Santanu Mukherjee, and Gurpreet Singh. "Transition Metal Dichalcogenides as Active Anode Materials for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 293–321. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jiang, Yinzhu, Yao Huang, and Yuting Gao. "Prussian Blue Analogues as Cathode Materials for Sodium-Ion Bateries." In Handbook of Sodium-Ion Batteries, 183–242. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Zhao, Qinglan, and Minhua Shao. "Polymer Electrodes for Sodium-Ion Batteries." In Handbook of Sodium-Ion Batteries, 243–91. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ramaprabhu, S., and Piriya V. S. Ajay. "Effect of Polymeric Binders on the Sodium-Ion Storage Performance of Positive and Negative Electrode Materials." In Handbook of Sodium-Ion Batteries, 323–44. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Chen, Weihua, Jiyu Zhang, Xinle Li, and Xiaoniu Guo. "Production, Characteristic, and Development of Separators." In Handbook of Sodium-Ion Batteries, 519–87. New York: Jenny Stanford Publishing, 2023. http://dx.doi.org/10.1201/9781003308744-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Sodium-ion batteries"

1

Šimek, Antonín. "Negative Electrode For Sodium-Ion Batteries." In STUDENT EEICT 2021. Brno: Fakulta elektrotechniky a komunikacnich technologii VUT v Brne, 2021. http://dx.doi.org/10.13164/eeict.2021.77.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lagarde, Quentin, Serge Mazen, Bruno Beillard, Julien Leylavergne, Joel Andrieu, Jean-Pierre Cancès, Vahid Meghdadi, Michelle Lalande, Edson Martinod, and Marie-Sandrine Denis. "Étude et conception de système de management pour batteries innovantes, Batterie Sodium (NA-ion)." In Les journées de l'interdisciplinarité 2022. Limoges: Université de Limoges, 2022. http://dx.doi.org/10.25965/lji.581.

Full text
Abstract:
La transition énergétique passera notamment par l’autoconsommation et l’autoproduction. L’utilisation de sources d’origines solaire et/ou éolienne permettront d’atteindre les objectifs bas carbone (atteindre la neutralité carbone à l’horizon 20250). Cette production étant intermittente, il est indispensable de les stocker pour pouvoir les utiliser au moment opportun. Actuellement la technologie dominante est l’accumulation d’énergie dans des batteries au lithium qui sont nuisibles à l’environnement et tributaires de la disponibilité au niveau mondial.De nouvelles batteries innovantes, comme celles au sodium-ion paraissent plus écologiques. Néanmoins, elles présentent l’inconvénient d’une durée de vie plus faible. L’utilisation d’un système de management de batterie (BMS – Battery Management System) l’améliore, les rendant ainsi concurrentielles aux batteries lithium-ion.
APA, Harvard, Vancouver, ISO, and other styles
3

Adelhelm, Philipp. "Inorganic Electrodes for Sodium-ion and Solid-state Batteries." In Materials for Sustainable Development Conference (MAT-SUS). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.nfm.2022.226.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Raja, Arsalan Ahmad, Rana Abdul Shakoor, and Ramazan Kahraman. "Electrochemical Analyses of Sodium based Mixed Pyrophosphate Cathodes for Rechargeable Sodium Ion Batteries." In Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.eepp3291.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Izanzar, Ilyasse, Manami Kiso, Mouad Dahbi, Shinichi Komaba, and Ismael Saadoune. "Hard Carbons Prepared by Pyrolyzing Date's Pits for Sodium Ion Batteries." In 2017 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2017. http://dx.doi.org/10.1109/irsec.2017.8477296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hakim, Charifa, Habtom Desta Asfaw, Mouad Dahbi, Daniel Brandell, Kristina Edstrom, Reza Younesi, and Ismael Saadoune. "P-doped Hard Carbon as Anode Material for Sodium-ion Batteries." In 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2019. http://dx.doi.org/10.1109/irsec48032.2019.9078196.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chari, A., M. Dahbi, K. El Ouardi, B. Orayech, A. El Bouari, and I. Saadoune. "New Phosphate-based Electrode Material for High Performance Sodium-Ion Batteries." In 2019 7th International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2019. http://dx.doi.org/10.1109/irsec48032.2019.9078213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Rambabu, A., B. Kishore, N. Munichandraiah, S. B. Krupanidhi, and P. Barpanda. "Na2Ti6O13 thin films as anode for thin film sodium ion batteries." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980519.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pandey, Indu, and Jai Deo Tiwari. "TiO2 incorporated exfoliated graphite paper based super anode for sodium ion batteries." In 2019 International Conference on Electrical, Electronics and Computer Engineering (UPCON). IEEE, 2019. http://dx.doi.org/10.1109/upcon47278.2019.8980114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Saadoune, Ismael, Siham Difi, Siham Doubaji, Kristina Edstrom, and Pierre Emmanuel Lippens. "Electrode materials for sodium ion batteries: A cheaper solution for the energy storage." In 2014 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM). IEEE, 2014. http://dx.doi.org/10.1109/optim.2014.6851038.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Sodium-ion batteries"

1

Dzwiniel, Trevor L., Krzysztof Z. Pupek, and Gregory K. Krumdick. Scale-up of Metal Hexacyanoferrate Cathode Material for Sodium Ion Batteries. Office of Scientific and Technical Information (OSTI), October 2016. http://dx.doi.org/10.2172/1329386.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Liang, Xinghui, Rizki Ismoyojati, and Yang-Kook Sun. A Novel Lithium Substitution Induced Tunnel/Spinel Heterostructured Cathode Material for Advanced Sodium-Ion Batteries. Peeref, July 2022. http://dx.doi.org/10.54985/peeref.2207p9041979.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography