Academic literature on the topic 'Soft robot'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soft robot.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soft robot"
Zhang, Ke, Yongqi Bi, and Ruiyu Zhang. "Design and Implementation of a Hybrid-Driven Soft Robot." Complexity 2024 (May 29, 2024): 1–17. http://dx.doi.org/10.1155/2024/7624799.
Full textYu, Wancheng. "Potential future bottlenecks for soft robots and their corresponding solutions." Journal of Physics: Conference Series 2634, no. 1 (November 1, 2023): 012027. http://dx.doi.org/10.1088/1742-6596/2634/1/012027.
Full textXu, Ruomeng, and Qingsong Xu. "Design of a Bio-Inspired Untethered Soft Octopodal Robot Driven by Magnetic Field." Biomimetics 8, no. 3 (June 22, 2023): 269. http://dx.doi.org/10.3390/biomimetics8030269.
Full textLee, Seonghyeon, Insun Her, Woojun Jung, and Yongha Hwang. "Snakeskin-Inspired 3D Printable Soft Robot Composed of Multi-Modular Vacuum-Powered Actuators." Actuators 12, no. 2 (January 31, 2023): 62. http://dx.doi.org/10.3390/act12020062.
Full textLiu, Kerun, Weiwei Chen, Weimin Yang, Zhiwei Jiao, and Yuan Yu. "Review of the Research Progress in Soft Robots." Applied Sciences 13, no. 1 (December 22, 2022): 120. http://dx.doi.org/10.3390/app13010120.
Full textGu, Guoying, Jiang Zou, Ruike Zhao, Xuanhe Zhao, and Xiangyang Zhu. "Soft wall-climbing robots." Science Robotics 3, no. 25 (December 19, 2018): eaat2874. http://dx.doi.org/10.1126/scirobotics.aat2874.
Full textYu, Zhang, Huang Peiyu, You Bo, Yu Zhibin, Li Dongjie, and Dong Guoqi. "Design and Motion Simulation of a Soft Robot for Crawling in Pipes." Applied Bionics and Biomechanics 2023 (February 5, 2023): 1–8. http://dx.doi.org/10.1155/2023/5334604.
Full textCalisti, M., G. Picardi, and C. Laschi. "Fundamentals of soft robot locomotion." Journal of The Royal Society Interface 14, no. 130 (May 2017): 20170101. http://dx.doi.org/10.1098/rsif.2017.0101.
Full textZhao, Wenchuan, Yu Zhang, and Ning Wang. "Soft Robotics: Research, Challenges, and Prospects." Journal of Robotics and Mechatronics 33, no. 1 (February 20, 2021): 45–68. http://dx.doi.org/10.20965/jrm.2021.p0045.
Full textLiu, Zhipeng, Linsen Xu, Xingcan Liang, and Jinfu Liu. "Stiffness-Tuneable Segment for Continuum Soft Robots with Vertebrae." Machines 10, no. 7 (July 18, 2022): 581. http://dx.doi.org/10.3390/machines10070581.
Full textDissertations / Theses on the topic "Soft robot"
Thorapalli, Muralidharan Seshagopalan, and Ruihao Zhu. "Continuum Actuator Based Soft Quadruped Robot." Thesis, KTH, Mekatronik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286348.
Full textFyrfotarobotar kan lättare korsa en mängd olika terränger jämfört med hjulrobotar. Traditionella styva fyrfotarobotar har kraftiga begränsningar då de saknar strukturell följsamhet. De flesta befintliga mjuka fyrbenta robotar är kopplade till en eller flera kablar och drivs av pneumatik, vilket är en lågkvalitativ energikälla och lämpar sig inte för robotar med lång uthållighet. Arbetet i denna avhandling föreslår utvecklingen av en continuum ställdonsdriven fyrfotarobot, som ger följsamhet samtidigt som den ¨ar frånkopplad och elektromekaniskt driven. I detta arbete framställs continuum ställdon med mestadels 3D-printade delar. Dessutom utvecklas dessa ställdons slutna kontrolloop för gång. Linjärkvadratisk regulator (LQR) och metoder baserade på polplacering utvärderades för styrsyntes, och det fastställdes att LQR presterade bättre när man minimerar ställdonets ansträngning samt avvikelse från referensvärde. Continuum ställdon sammansattes för att bilda en fyrbent robot. Gånganalyser utfördes på roboten och dess ben kunde följa gång- och galopprörelser.
Al, Abeach L. A. T. "Pneumatic variable stiffness soft robot end effectors." Thesis, University of Salford, 2017. http://usir.salford.ac.uk/44183/.
Full textHomberg, Bianca (Bianca S. ). "Robust proprioceptive grasping with a soft robot hand." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106123.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-88).
This work presents a soft hand capable of robustly grasping and identifying objects based on internal state measurements along with a combined system which autonomously performs grasps. A highly compliant soft hand allows for intrinsic robustness to grasping uncertainties; the addition of internal sensing allows the configuration of the hand and object to be detected. The hand can be configured in different ways using finger unit modules. The finger module includes resistive force sensors on the fingertips for contact detection and resistive bend sensors for measuring the curvature profile of the finger. The curvature sensors can be used to estimate the contact geometry and thus to distinguish between a set of grasped objects. With one data point from each finger, the object grasped by the hand can be identified. A clustering algorithm to find the correspondence for each grasped object is presented for both enveloping grasps and pinch grasps. This hand is incorporated into a full system with vision and motion planning on the Baxter robot to autonomously perform grasps of objects placed on a table. This hand is a first step towards proprioceptive soft grasping.
by Bianca Homberg.
M. Eng.
Kandhari, Akhil. "Control and Analysis of Soft Body Locomotion on a Robotic Platform." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1579793861351961.
Full textTzemanaki, A. "Anthropomorphic surgical system for soft tissue robot-assisted surgery." Thesis, University of the West of England, Bristol, 2016. http://eprints.uwe.ac.uk/28870/.
Full textCloitre, Audren Damien Prigent. "Design and control of a soft biomimetic batoid robot." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81598.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 71-74).
This thesis presents the work accomplished in the design, experimental characterization and control of a soft batoid robot. The shape of the robot is based on the body of the common stingray, Dasyatidae, and is made of soft silicone polymers. Although soft batoid robots have been previously studied, the novelty brought by the present work centers around autonomy and scale, making it suitable for field operations. The design of the robot relies on the organismic consideration that the stingray body is rigid at its center and flexible towards its fins. Indeed, all mechanical and electrical parts are inside a rigid shell embedded at the center of the robot's flexible body. The silicone forms a continuum which encases the shell and constitutes the two pectoral fins of the robot. The core idea of this design is to make use of the natural modes of vibration of the soft silicone to recreate the fin kinematics of an actual stingray. By only actuating periodically the front of the fins, a wave propagating downstream the soft fins is created, producing a net forward thrust. Experiments are conducted to quantify the robot's swimming capabilities at different regimes of actuation. The forward velocity, the stall forces produced by the robot when it is flapping its fins while being clamped, and the power consumption of the actuation are all measured. The peak velocity of the robot is 0.35 body-length per second and is obtained for a flapping frequency of 1.4 Hz and a flapping amplitude of 30°. At a flapping frequency of 2 Hz, and an amplitude of 30°, the maximum stall forward force of the robot averages at 45 Newtons and peaks at 150 Newtons. Other data collected is used to better understand the hydrodynamics of the robot.
by Audren Damien Prigent Cloitre.
S.M.
Kraus, Dustan Paul. "Coordinated, Multi-Arm Manipulation with Soft Robots." BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7066.
Full textBoxerbaum, Alexander Steele. "Continuous Wave Peristaltic Motion in a Robot." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1333649965.
Full textGiannaccini, M. E. "Safe and effective physical human-robot interaction : approaches to variable compliance via soft joints and soft grippers." Thesis, University of the West of England, Bristol, 2015. http://eprints.uwe.ac.uk/27224/.
Full textAMARA, VISHNU DEV. "Energetic and Dynamic Performance Enhancements for Compliant Robot Actuation." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1045123.
Full textBooks on the topic "Soft robot"
Xia, Boxi. Soft actuator and agile soft robot. [New York, N.Y.?]: [publisher not identified], 2022.
Find full textInoue, Takahiro. Mechanics and control of soft-fingered manipulation. London: Springer, 2009.
Find full textInoue, Takahiro. Mechanics and control of soft-fingered manipulation. London: Springer, 2009.
Find full textInoue, Takahiro. Mechanics and control of soft-fingered manipulation. London: Springer, 2009.
Find full textGalt, Stuart. Soft computing based motion control for an eight-legged robot. Portsmouth: University of Portsmouth, Dept. of Electricsl and Electronic Engineering, 1998.
Find full textSuzumori, Koichi, Kenjiro Fukuda, Ryuma Niiyama, and Kohei Nakajima, eds. The Science of Soft Robots. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-5174-9.
Full text1963-, Zhou Changjiu, Maravall Darío 1952-, and Ruan Da, eds. Autonomous robotic systems: Soft computing and hard computing : methodologies and applications. Heidelberg: Physica-Verlag, 2003.
Find full textJain, Lakhmi C. Soft Computing for Intelligent Robotic Systems. Heidelberg: Physica-Verlag HD, 1998.
Find full textZhou, Changjiu. Autonomous Robotic Systems: Soft Computing and Hard Computing Methodologies and Applications. Heidelberg: Physica-Verlag HD, 2003.
Find full textHirai, Shinichi, and Takahiro Inoue. Mechanics and Control of Soft-Fingered Manipulation. Springer London, Limited, 2010.
Find full textBook chapters on the topic "Soft robot"
Kundrat, Dennis, Andreas Schoob, Lüder A. Kahrs, and Tobias Ortmaier. "Flexible Robot for Laser Phonomicrosurgery." In Soft Robotics, 265–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44506-8_22.
Full textValdivia y Alvarado, Pablo, and Kamal Youcef-Toumi. "Soft-Body Robot Fish." In Springer Tracts in Mechanical Engineering, 161–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46870-8_6.
Full textOtake, Mihoko. "Motion Design-A Gel Robot Approach." In Soft Actuators, 429–40. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6850-9_26.
Full textOtake, Mihoko. "Motion Design-A Gel Robot Approach." In Soft Actuators, 343–54. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54767-9_25.
Full textHaddadin, Sami. "Optimal Exploitation of Soft-Robot Dynamics." In Soft Robotics, 92–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44506-8_9.
Full textWolf, Sebastian, Thomas Bahls, Maxime Chalon, Werner Friedl, Markus Grebenstein, Hannes Höppner, Markus Kühne, et al. "Soft Robotics with Variable Stiffness Actuators: Tough Robots for Soft Human Robot Interaction." In Soft Robotics, 231–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44506-8_20.
Full textArmbrust, Christopher, Lisa Kiekbusch, Thorsten Ropertz, and Karsten Berns. "Soft Robot Control with a Behaviour-Based Architecture." In Soft Robotics, 81–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44506-8_8.
Full textWei, Tianqi, Adam Stokes, and Barbara Webb. "A Soft Pneumatic Maggot Robot." In Biomimetic and Biohybrid Systems, 375–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-42417-0_34.
Full textAgüero, Carlos, and Manuela Veloso. "Transparent Multi-Robot Communication Exchange for Executing Robot Behaviors." In Advances in Intelligent and Soft Computing, 215–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28762-6_26.
Full textCherfouh, K., E. W. Handerson, J. Gu, E. Scheme, M. Asad, and U. Farooq. "Robot Identification using Modern Pattern Recognition Techniques." In Soft Computing Applications, 28–40. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23636-5_3.
Full textConference papers on the topic "Soft robot"
Hall, Robin, and Cagdas D. Onal. "Untethered Underwater Soft Robot with Thrust Vectoring." In 2024 IEEE International Conference on Robotics and Automation (ICRA), 8828–34. IEEE, 2024. http://dx.doi.org/10.1109/icra57147.2024.10610430.
Full textRus, Daniela. "Soft Robots: Increasing Robot Diversity with Soft Materials." In The 2021 Conference on Artificial Life. Cambridge, MA: MIT Press, 2021. http://dx.doi.org/10.1162/isal_a_00474.
Full textAngatkina, Oyuna, Kimberly Gustafson, Aimy Wissa, and Andrew Alleyne. "Path Following for the Soft Origami Crawling Robot." In ASME 2019 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/dscc2019-9175.
Full textGarcia, Martin, Amir Ali Amiri Moghadam, Ayse Tekes, and Randy Emert. "Development of a 3D Printed Soft Parallel Robot." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-23138.
Full textDeMario, Anthony, and Jianguo Zhao. "A Miniature, 3D-Printed, Walking Robot With Soft Joints." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68182.
Full textOvando, Ammy, Sky Papendorp, Turaj Ashuri, and Amir Ali Amiri Moghadam. "Development of a Novel Hybrid Soft Cable-Driven Parallel Robot." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-113598.
Full textAbidoye, Cecil, Devin Grace, Andrea Contreras-Esquen, Aden Edwards, Turaj Ashuri, Ayse Tekes, and Amir Ali Amiri Moghadam. "Development of a Novel 3-Universal-Spherical-Revolote Soft Parallel Robot." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-95235.
Full textLuo, Ming, Mahdi Agheli, and Cagdas D. Onal. "Theoretical Modeling of a Pressure-Operated Soft Snake Robot." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35340.
Full textGlasgo, Nina, Mitchell Soohoo, and Yen-Lin Han. "Investigating the Design of a Soft Robot for Finger Rehabilitation." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-92663.
Full textBaysa, Matthew, Noah Turoski, Manilyn Cabrera, and Yen-Lin Han. "“EXTENSOR” SOFT ROBOT FOR CLENCHED FIST REHABILITATION AFTER STROKE." In 2023 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/dmd2023-4176.
Full text