Journal articles on the topic 'Soil-borne pathogen'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Soil-borne pathogen.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zitnick-Anderson, Kimberly, Luis E. del Río Mendoza, Shana Forster, and Julie S. Pasche. "Associations among the communities of soil-borne pathogens, soil edaphic properties and disease incidence in the field pea root rot complex." Plant and Soil 457, no. 1-2 (2020): 339–54. http://dx.doi.org/10.1007/s11104-020-04745-4.
Full textSu, Lv, Lifan Zhang, Duoqian Nie, Eiko E. Kuramae, Biao Shen, and Qirong Shen. "Bacterial Tomato Pathogen Ralstonia solanacearum Invasion Modulates Rhizosphere Compounds and Facilitates the Cascade Effect of Fungal Pathogen Fusarium solani." Microorganisms 8, no. 6 (2020): 806. http://dx.doi.org/10.3390/microorganisms8060806.
Full textCastellanos-Morales, V., R. Cárdenas-Navarro, J. M. García-Garrido, et al. " Bioprotection against Gaeumannomyces graminis in barley a comparison between arbuscular mycorrhizal fungi." Plant, Soil and Environment 58, No. 6 (2012): 256–61. http://dx.doi.org/10.17221/622/2011-pse.
Full textDoley, Khirood, Mayura Dudhane, Mahesh Borde, and Paramjit K. Jite. "Effects of Glomus fasciculatum and Trichoderma asperelloides in Roots of Groundnut (Cv. Western-51) Against Pathogen Sclerotium rolfsii." International Journal of Phytopathology 3, no. 2 (2014): 89–100. http://dx.doi.org/10.33687/phytopath.003.02.0809.
Full textAyala-Doñas, Alejandro, Miguel de Cara-García, Miguel Talavera-Rubia, and Soledad Verdejo-Lucas. "Management of Soil-Borne Fungi and Root-Knot Nematodes in Cucurbits through Breeding for Resistance and Grafting." Agronomy 10, no. 11 (2020): 1641. http://dx.doi.org/10.3390/agronomy10111641.
Full textCarlucci, Antonia, Maria Luisa Raimondo, Donato Colucci, and Francesco Lops. "Streptomyces albidoflavus Strain CARA17 as a Biocontrol Agent against Fungal Soil-Borne Pathogens of Fennel Plants." Plants 11, no. 11 (2022): 1420. http://dx.doi.org/10.3390/plants11111420.
Full textAltman, J., and A. D. Rovira. "Herbicide-pathogen interactions in soil-borne root diseases." Canadian Journal of Plant Pathology 11, no. 2 (1989): 166–72. http://dx.doi.org/10.1080/07060668909501133.
Full textRamdan, Evan Purnama, Astri Afriani, Andini Hanif, et al. "Peran Solarisasi Tanah terhadap Pertumbuhan Patogen Tular Tanah dan Populasi Mikroba Tanah." Agrotechnology Research Journal 6, no. 1 (2022): 27. http://dx.doi.org/10.20961/agrotechresj.v6i1.55979.
Full textFacelli, Evelina, Suzanne F. McKay, José M. Facelli, and Eileen S. Scott. "A soil-borne generalist pathogen regulates complex plant interactions." Plant and Soil 433, no. 1-2 (2018): 101–9. http://dx.doi.org/10.1007/s11104-018-3828-x.
Full textAl–Harthy, Thuraya, Abdullah M. Al-Sadi, Wajdi Zoghaib, Ebrahim Moghadam, Raphael Stoll, and Raid Abdel-Jalil. "Design, Synthesis and Bioactivity of Benzimidazole–2–Carbamates as Soil–Borne Anti–Fungal Agents †,‡." Chemistry Proceedings 3, no. 1 (2020): 64. http://dx.doi.org/10.3390/ecsoc-24-08093.
Full textLi, Yaoming, Lili Jiang, Wangwang Lv, et al. "Fungal pathogens pose a potential threat to animal and plant health in desertified and pika-burrowed alpine meadows on the Tibetan Plateau." Canadian Journal of Microbiology 65, no. 5 (2019): 365–76. http://dx.doi.org/10.1139/cjm-2018-0338.
Full textTimila, Ram D., and S. Manandhar. "Invitro Bio-Assay of Some Botanicals Against Some Important Soil-Borne Fungi." Journal of the Plant Protection Society 5 (December 31, 2018): 87–95. http://dx.doi.org/10.3126/jpps.v5i0.47118.
Full textKarim, Z., and MS Hossain. "Management of bacterial wilt (Ralstonia solanacearum) of potato: focus on natural bioactive compounds." Journal of Biodiversity Conservation and Bioresource Management 4, no. 1 (2018): 73–92. http://dx.doi.org/10.3329/jbcbm.v4i1.37879.
Full textRighini, Hillary, Roberta Roberti, Silvia Cetrullo, et al. "Jania adhaerens Primes Tomato Seed against Soil-Borne Pathogens." Horticulturae 8, no. 8 (2022): 746. http://dx.doi.org/10.3390/horticulturae8080746.
Full textZhou, Cheng, Zhongyou Ma, Xiaoming Lu, Lin Zhu, and Jianfei Wang. "Phenolic Acid-Degrading Consortia Increase Fusarium Wilt Disease Resistance of Chrysanthemum." Agronomy 10, no. 3 (2020): 385. http://dx.doi.org/10.3390/agronomy10030385.
Full textLiu, Hong, Feifei Sun, Junwei Peng, Minchong Shen, Jiangang Li, and Yuanhua Dong. "Deterministic Process Dominated Belowground Community Assembly When Suffering Tomato Bacterial Wilt Disease." Agronomy 12, no. 5 (2022): 1024. http://dx.doi.org/10.3390/agronomy12051024.
Full textSommermann, Loreen, Doreen Babin, Jan Helge Behr, et al. "Long-Term Fertilization Strategy Impacts Rhizoctonia solani–Microbe Interactions in Soil and Rhizosphere and Defense Responses in Lettuce." Microorganisms 10, no. 9 (2022): 1717. http://dx.doi.org/10.3390/microorganisms10091717.
Full textChrapačienė, Simona, Neringa Rasiukevičiūtė, and Alma Valiuškaitė. "PLANT EXTRACTS AS BIOFUNGICIDES AGAINST SOIL-BORNE PATHOGEN ALTERNARIA SPP." RURAL DEVELOPMENT 2019 2021, no. 1 (2022): 15–18. http://dx.doi.org/10.15544/rd.2021.003.
Full textShin, Ji-Hoon, Byung-Dae Yun, Hye-Jin Kim, Si-Ju Kim, and Doug-Young Chung. "Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng." Korean Journal of Soil Science and Fertilizer 45, no. 3 (2012): 370–76. http://dx.doi.org/10.7745/kjssf.2012.45.3.370.
Full textPriess, Grant L., Jason K. Norsworthy, Trenton L. Roberts, and Terry N. Spurlock. "Flumioxazin effects on soybean canopy formation and soil-borne pathogen presence." Weed Technology 34, no. 5 (2020): 711–17. http://dx.doi.org/10.1017/wet.2020.43.
Full textJeżewska, Małgorzata, and Katarzyna Trzmiel. "Studies on Cereal Soil-Borne Viruses in Poland." Journal of Plant Protection Research 50, no. 4 (2010): 527–34. http://dx.doi.org/10.2478/v10045-010-0087-0.
Full textWindisch, Saskia, Anja Walter, Narges Moradtalab, et al. "Role of Benzoic Acid and Lettucenin A in the Defense Response of Lettuce against Soil-Borne Pathogens." Plants 10, no. 11 (2021): 2336. http://dx.doi.org/10.3390/plants10112336.
Full textNugraheni, Ika Afifah, Tsania Taskia Nabila, Rais Sulistyo Widiyatmoko, and Wiwit Probowati. "An In Vitro Study of The Spore Densities Effect of Trichoderma spp. as Biocontrol Agent for Fusarium Wilt in Cayenne Pepper (Capsicum sp.)." International Journal of Health Science and Technology 3, no. 1 (2021): 117–29. http://dx.doi.org/10.31101/ijhst.v3i1.2238.
Full textKumar, Rajneesh, and Pooja Singh. "Characterization and Diagnostics of Listeria Monocytogenes: A Human Pathogen." Asian Pacific Journal of Health Sciences 9, no. 2 (2022): 102–8. http://dx.doi.org/10.21276/apjhs.2022.9.2.21.
Full textOros, Gyula. "Varietal dependent response of barley to soil-borne Waitea circinata infection." Acta Agraria Debreceniensis, no. 66 (June 2, 2015): 100–106. http://dx.doi.org/10.34101/actaagrar/66/1899.
Full textSangeeta, N., H. Virupaksha Prabhu, and Gurupad Balol. "In vitro evaluation of botanicals and bio control agents against Sclerotium rolfsii Sacc. Causing collar rot of chickpea." INTERNATIONAL JOURNAL OF PLANT SCIENCES 17, no. 2 (2022): 123–27. http://dx.doi.org/10.15740/has/ijps/17.2/123-127.
Full textM, Ayyandurai, Akila R, Mini M L, and Manonmani K. "Gas chromatography–mass spectrometry (GC-MS) analysis of antimicrobial compounds produced by mahua oil cake against the stem rot pathogen- Sclerotium rolfsii." Journal of Applied and Natural Science 14, no. 2 (2022): 600–606. http://dx.doi.org/10.31018/jans.v14i2.3360.
Full textDOLEY, Khirood, and Paramjit Kaur JITE. "In-Vitro Efficacy of Trichoderma viride Against Sclerotium rolfsii and Macrophomina phaseolina." Notulae Scientia Biologicae 4, no. 4 (2012): 39–44. http://dx.doi.org/10.15835/nsb447818.
Full textSnelders, Nick C., Hanna Rovenich, Gabriella C. Petti, et al. "Microbiome manipulation by a soil-borne fungal plant pathogen using effector proteins." Nature Plants 6, no. 11 (2020): 1365–74. http://dx.doi.org/10.1038/s41477-020-00799-5.
Full textToyota, K., and M. Kimura. "Earthworms disseminate a soil-borne plant pathogen, Fusarium oxysporum f. sp. raphani." Biology and Fertility of Soils 18, no. 1 (1994): 32–36. http://dx.doi.org/10.1007/bf00336441.
Full textSmolińska, Urszula, and Beata Kowalska. "Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum –– a review." Journal of Plant Pathology 100, no. 1 (2018): 1–12. http://dx.doi.org/10.1007/s42161-018-0023-0.
Full textMadhosingh, C. "Fusarium graminearum DNA induces variations in soil-borne F. culmorum plant pathogen." Journal of Environmental Science and Health, Part B 25, no. 6 (1990): 801–16. http://dx.doi.org/10.1080/03601239009372720.
Full textOzbahce, Aynur. "Chemigation for soil-borne pathogen management on melon growth under drought stress." Australasian Plant Pathology 43, no. 3 (2014): 299–306. http://dx.doi.org/10.1007/s13313-014-0270-2.
Full textLiu, Yunpeng, Lin Chen, Gengwei Wu, et al. "Identification of Root-Secreted Compounds Involved in the Communication Between Cucumber, the Beneficial Bacillus amyloliquefaciens, and the Soil-Borne Pathogen Fusarium oxysporum." Molecular Plant-Microbe Interactions® 30, no. 1 (2017): 53–62. http://dx.doi.org/10.1094/mpmi-07-16-0131-r.
Full textPatil, S. V., and J. Raja. "Antagonism Of Trichoderma Species Against Major Soil Borne Plant Pathogens." Journal of Plant Disease Sciences 17, no. 1 (2022): 39–43. http://dx.doi.org/10.48165/jpds.2022.1708.
Full textSamaddar, Sandipan, Daniel S. Karp, Radomir Schmidt, et al. "Role of soil in the regulation of human and plant pathogens: soils' contributions to people." Philosophical Transactions of the Royal Society B: Biological Sciences 376, no. 1834 (2021): 20200179. http://dx.doi.org/10.1098/rstb.2020.0179.
Full textPinto, Felipe Augusto Moretti Ferreira, Victor Biazzotto Correia Porto, Rafaela Araújo Guimarães, et al. "Detection and Factors That Induce Stenocarpella spp. Survival in Maize Stubble and Soil Suppressiveness under Tropical Conditions." Applied Sciences 12, no. 10 (2022): 4974. http://dx.doi.org/10.3390/app12104974.
Full textAnguelov, Roumen, Rebecca Bekker, and Yves Dumont. "Bi-stable dynamics of a host-pathogen model." BIOMATH 8, no. 1 (2019): 1901029. http://dx.doi.org/10.11145/j.biomath.2019.01.029.
Full textDOLEY, Khirood, and Paramjit Kaur JITE. "Management of Stem-rot of Groundnut (Arachis hypogaea L.) Cultivar in Field." Notulae Scientia Biologicae 5, no. 3 (2013): 316–24. http://dx.doi.org/10.15835/nsb538895.
Full textMisrak, K., A. Amare, and N. Dechassa N Dechassa. "Evaluation of soil solarisation and bio-fumigation for the management of bacterial spot of tomato." African Journal of Food, Agriculture, Nutrition and Development 14, no. 64 (2014): 8998–9015. http://dx.doi.org/10.18697/ajfand.64.13595.
Full textLarkin, Robert P. "Use of Crop Rotations, Cover Crops and Green Manures for Disease Suppression in Potato Cropping Systems." Global Journal of Agricultural Innovation, Research & Development 8 (November 15, 2021): 153–68. http://dx.doi.org/10.15377/2409-9813.2021.08.12.
Full textLópez-Sánchez, Aida, Miquel Capó, Jesús Rodríguez-Calcerrada, et al. "Exploring the Use of Solid Biofertilisers to Mitigate the Effects of Phytophthora Oak Root Disease." Forests 13, no. 10 (2022): 1558. http://dx.doi.org/10.3390/f13101558.
Full textBasu, Muthuramalingam, and Karuppagnaniar Santhaguru. "Impact of Glomus Fasciculatum and Fluorescent Pseudomonas on Growth Performance of Vigna Radiata (L.) Wilczek Challenged with Phytopathogens." Journal of Plant Protection Research 49, no. 2 (2009): 190–94. http://dx.doi.org/10.2478/v10045-009-0028-y.
Full textMendes, Lucas William, Rodrigo Mendes, Jos M. Raaijmakers, and Siu Mui Tsai. "Breeding for soil-borne pathogen resistance impacts active rhizosphere microbiome of common bean." ISME Journal 12, no. 12 (2018): 3038–42. http://dx.doi.org/10.1038/s41396-018-0234-6.
Full textQiao, K., H. Y. Wang, X. B. Shi, X. X. Ji, and K. Y. Wang. "Effects of 1,3-dichloropropene on nematode, weed seed viability and soil-borne pathogen." Crop Protection 29, no. 11 (2010): 1305–10. http://dx.doi.org/10.1016/j.cropro.2010.07.014.
Full textWilkening, Jean V., Enrique Cardillo, Enrique Abad, and Sally E. Thompson. "Saturation excess overland flow accelerates the spread of a generalist soil-borne pathogen." Journal of Hydrology 593 (February 2021): 125821. http://dx.doi.org/10.1016/j.jhydrol.2020.125821.
Full textSaad, Ahmed, Bethany Macdonald, Anke Martin, Noel L. Knight, and Cassandra Percy. "Comparison of disease severity caused by four soil-borne pathogens in winter cereal seedlings." Crop and Pasture Science 72, no. 5 (2021): 325. http://dx.doi.org/10.1071/cp20245.
Full textMészárosné Póss, Anett, Anikó Südiné Fehér, Franciska Tóthné Bogdányi, and Ferenc Tóth. "The Spread of the Soil-Borne Pathogen Fusarium solani in Stored Potato Can Be Controlled by Terrestrial Woodlice (Isopoda: Oniscidea)." Agriculture 12, no. 1 (2021): 45. http://dx.doi.org/10.3390/agriculture12010045.
Full textLou, Haibo, Xiaobing Wang, Jun Chen, Bozhi Wang, and Wei Wang. "Transcriptomic response ofRalstonia solanacearumto antimicrobialPseudomonas fluorescensSN15-2 metabolites." Canadian Journal of Microbiology 64, no. 11 (2018): 816–25. http://dx.doi.org/10.1139/cjm-2018-0094.
Full textLee, Munhaeng. "Response of Melon Powdery Mildew to a Biocontrol Agent Bacillus velezensis M10 and Paraffin Oil." International Journal of Agriculture and Biology 25, no. 05 (2021): 962–68. http://dx.doi.org/10.17957/ijab/15.1752.
Full text