Academic literature on the topic 'Soil organic carbon. eng'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil organic carbon. eng.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil organic carbon. eng"
Brombin, Valentina, Enrico Mistri, Mauro De Feudis, Camilla Forti, Gian Marco Salani, Claudio Natali, Gloria Falsone, Livia Vittori Antisari, and Gianluca Bianchini. "Soil Carbon Investigation in Three Pedoclimatic and Agronomic Settings of Northern Italy." Sustainability 12, no. 24 (December 16, 2020): 10539. http://dx.doi.org/10.3390/su122410539.
Full textYang, Hui, Yincai Xie, Tongbin Zhu, and Mengxia Zhou. "Reduced Organic Carbon Content during the Evolvement of Calcareous Soils in Karst Region." Forests 12, no. 2 (February 14, 2021): 221. http://dx.doi.org/10.3390/f12020221.
Full textŤupek, Boris, Carina A. Ortiz, Shoji Hashimoto, Johan Stendahl, Jonas Dahlgren, Erik Karltun, and Aleksi Lehtonen. "Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status." Biogeosciences 13, no. 15 (August 10, 2016): 4439–59. http://dx.doi.org/10.5194/bg-13-4439-2016.
Full textHedley, C. B., I. J. Payton, I. H. Lynn, S. T. Carrick, T. H. Webb, and S. McNeill. "Random sampling of stony and non-stony soils for testing a national soil carbon monitoring system." Soil Research 50, no. 1 (2012): 18. http://dx.doi.org/10.1071/sr11171.
Full textChan, K. Y., D. P. Heenan, and H. B. So. "Sequestration of carbon and changes in soil quality under conservation tillage on light-textured soils in Australia: a review." Australian Journal of Experimental Agriculture 43, no. 4 (2003): 325. http://dx.doi.org/10.1071/ea02077.
Full textMateja, Muršec, Leveque Jean, Chaussod Remi, and Curmi Pierre. "The impact of drip irrigation on soil quality in sloping orchards developed on marl – A case study." Plant, Soil and Environment 64, No. 1 (January 16, 2018): 20–25. http://dx.doi.org/10.17221/623/2017-pse.
Full textZhang, T. Q., C. F. Drury, and B. D. Kay. "Soil dissolved organic carbon: Influences of water-filled pore space and red clover addition and relationships with microbial biomass carbon." Canadian Journal of Soil Science 84, no. 2 (May 1, 2004): 151–58. http://dx.doi.org/10.4141/s02-030.
Full textAsanopoulos, Christina H., Jeff A. Baldock, Lynne M. Macdonald, and Timothy R. Cavagnaro. "Quantifying blue carbon and nitrogen stocks in surface soils of temperate coastal wetlands." Soil Research 59, no. 6 (2021): 619. http://dx.doi.org/10.1071/sr20040.
Full textVerberne, E. L. J., J. Hassink, P. de Willigen, J. J. R. Groot, and J. A. van Veen. "Modelling organic matter dynamics in different soils." Netherlands Journal of Agricultural Science 38, no. 3A (September 1, 1990): 221–38. http://dx.doi.org/10.18174/njas.v38i3a.16585.
Full textNunes, Márcio R., Harold M. van Es, Kristen S. Veum, Joseph P. Amsili, and Douglas L. Karlen. "Anthropogenic and Inherent Effects on Soil Organic Carbon across the U.S." Sustainability 12, no. 14 (July 15, 2020): 5695. http://dx.doi.org/10.3390/su12145695.
Full textDissertations / Theses on the topic "Soil organic carbon. eng"
Rufino, Ana Maria Martins 1977. "Estoque de carborno em solos sob plantios de eucalipto e fragmento em Cerrado /." Botucatu : [s.n.], 2009. http://hdl.handle.net/11449/99768.
Full textAbstract: The carbon sequestration in terrestrial environments, by plants through photosynthesis, allows carbon fixing as a woody matter in plants. This process has been identified as an alternative to mitigate climate change, according to Kyoto Protocol, an international environmental agreement. The removal of the native forest causes a significant decrease of microbial biomass and soil fertility. The storage of carbon in soil organic matter is an important strategy to reduce the concentration of CO2 in the atmosphere. With the reforestation of these areas, occurs a slow and continuous recovery of the quantity and quality of organic matter. The eucalyptus is the most planted species in Brazil for industrial supply. These eucalyptus reforestations may fulfill the role of increasing soil organic carbon concentration, recovering some structures lost by wood harvesting and causing associated environmental changes. This study aimed to quantify the carbon fixation within the soil compartment from 0 to 60 cm depth of a native forest formation in comparison with eucalyptus plantations with 3 different ages: 0 to 1 year (newly planted area); 3 to 4 years (half the harvesting cycle) and 6 to 7 years (harvesting time). Four different sites were chosen for sampling, with a sampling area of 1 ha each. Soil samples were collected in winter and summer time, at different depths, to quantify the organic carbon fixed throughout the soil profile, considering the seasonality factor. The results indicate that management in each area interfered in the accumulation of carbon in the soil in the four sites studied. The savanna fragment stored less carbon than the eucalyptus plantations. Regarding seasonality, a significant difference was found between the accumulation of carbon in winter and summer... (Complete abstract click electronic access below)
Orientador: Iraê Amaral Guerrini
Coorientador: Vera Lex Engel
Banca: Dirceu Maximino Fernandes
Banca: Jacob Siva Souto
Mestre
Martins, Márcio dos Reis. "Carbono orgânico e polissacrídeos em agregados de um latossolo vermelho eutrófico em sequências de culturas sib a semedura direta /." Jaboticabal : [s.n.], 2008. http://hdl.handle.net/11449/96899.
Full textBanca: Álvaro Pires da Silva
Banca: Carolina Fernandes
Resumo: A adaptação do sistema de semeadura direta (SSD) depende da escolha adequada da seqüência de culturas, que devem contribuir para melhorar os atributos solo. O objetivo do presente trabalho foi avaliar o efeito de seqüências de culturas na agregação do solo e no teor de carbono orgânico e polissacarídeos em diferentes classes de agregados estáveis em água de um Latossolo Vermelho eutrófico sob SSD. Um experimento foi implantado em 2002 em Jaboticabal, SP. Os tratamentos foram constituídos pela combinação de quatro seqüências de culturas de verão e sete culturas de inverno. As seqüências de culturas de verão, semeadas em outubro/novembro, foram: monocultura de milho; monocultura de soja; cultivos intercalados ano a ano de soja e milho; seqüência de cultivos de arroz/feijão/algodão/feijão. As culturas de inverno, semeadas em fevereiro/março, repetidas todos os anos nas mesmas parcelas, foram: milho, girassol, nabo forrageiro, milheto, feijão guandu, sorgo granífero e crotalária. A amostragem do solo foi realizada após o quarto ano de condução do experimento, em outubro de 2006. O cultivo de milho em monocultura no verão favoreceu a formação de agregados estáveis em água com diâmetro entre 6,30-2,00 mm e proporcionou o maior teor de COT e PAD nessa classe de tamanho de agregados. Isso indica que a influência das culturas sobre a estabilidade de agregados foi intermediada pelos teores de COT e PAD. Não foi verificada diferença na agregação do solo entre culturas de inverno utilizadas. Os maiores teores de COT, PST e PAD foram verificados nos agregados com diâmetro entre 2,00-1,00 mm e os menores teores nos agregados <0,25 mm.
Abstract: A better performance of the no-tillage system in tropical regions depends on the choice of suitable crop sequences in summer and winter. These crops should contribute to improvement of soil properties. The objective of this work was to assess crop sequences effects on soil aggregation and organic carbon and polysaccharide contents in water-stable aggregate size classes of a Rhodic Oxisol under no-tillage. An experiment was established in Jaboticabal town, São Paulo state, in 2002. Treatments were constituted for a combination of four crop sequences in summer and seven crop sequences in the winter. Crop sequences in the summer were: corn monoculture (CC); soybean monoculture (SS); soybean/corn/soybean/corn sequence (SC) and rice/bean/cotton/bean sequence (RB), seeded in October/November. Winter crops were: corn, sunflower, oilseed radish, millet, pigeonpea, sorghum and sunn hemp, seeded in February/March. Soil sampling took place after forth year after experiment implantation, in October 2006. The MV sequence in summer increased the percentage of 6,30-2,00 mm water-stable aggregates and provided the highest total organic carbon and diluted-acid-extractable polysaccharides contents in the same aggregate size class. These results suggest that crop effects on soil aggregate stability can be mediated by total organic carbon and diluted-acid-extractable polysaccharides. The winter crops do not influence soil aggregation. The highest and lowest total organic carbon, total polysaccharides and diluted-acid-extractable polysaccharides contents was verified, respectively, in 2,00-1,00 mm and <0,25 mm water-aggregate soil size classes.
Mestre
Martins, Márcio dos Reis. "Plantas na agregação e no acúmulo de carbono orgânico em latossolo /." Jaboticabal : [s.n.], 2012. http://hdl.handle.net/11449/105153.
Full textCoorientador: Carolina Fernandes
Banca: Isabella Clerici de Maria
Banca: Cimélio Bayer
Banca: Sandro Roberto Brancalião
Banca: Marcílio Vieira Martins Filho
Resumo: O presente trabalho teve como objetivo geral determinar como as plantas influenciam a estabilidade de agregados, a composição de carboidratos, o acúmulo de C orgânico do solo (COS) e de C microbiano em um Latossolo Vermelho. Na primeira parte do estudo, verificou-se que as sequências de culturas com milho (Zea mays L.) no verão e as milheto (Pennisetum glaucum (L.) Leeke) e sorgo granífero (Sorghum bicolor (L.) Moench) no inverno proporcionaram maior diâmetro médio ponderado (DMP) de agregados estáveis do solo. Assim como observado para o DMP, as sequências de culturas envolvendo milho no verão proporcionaram os maiores teores de xilose do solo. A menor proporção de carboidratos de origem microbiana em relação aos de origem vegetal foram observados com o cultivo mais frequente de espécies de monocotiledôneas. Na segunda parte do estudo, notou-se que os maiores valores de C presente como matéria orgânica particulada (C-MOP) do solo foram encontrados sob cultivo de guandu, o qual proporcionou valores 54%, 46% e 48% maiores em relação ao cultivo de milho, girassol e nabo forrageiro, respectivamente. As variações nos teores de C-MOP explicaram o efeito das culturas nos teores de COS. Notou-se um acúmulo conjunto de C-MOP e de resíduos fúngicos e bacterianos no solo. Na terceira parte do estudo, verificou-se que os materiais de monocotiledôneas adicionados ao solo apresentaram as maiores taxas de mineralização do compartimento de C não lábil (k), os maiores teores de pentose do solo e o maior DMP de agregados do solo em comparação à testemunha e às dicotiledôneas, em período posterior de decomposição. Isso sugere que k e teores de pentoses do solo controlam a estabilidade de agregados do Latossolo em período tardio de incubação. O efeito da decomposição dos materiais vegetais na agregação do solo ocorreu independente da variação da quantidade do teor de COS
Abstract: The general aim of this study was to determine how the plants influence the aggregate stability, carbohydrate composition and accumulation of soil organic C and microbial C of an Oxisol. In the first part of this study, it was found that summer crop sequences involving corn (Zea mays L.) and the winter crops millet (Pennisetum glaucum (L.) Leeke) and grain sorghum (Sorghum bicolor (L.) Moench) provided the highest mean weight diameter (MWD) of soil aggregate. The crop sequences involving corn in summer also provided the highest soil xylose contents. The lowest proportions of carbohydrates of microbial origin in relation to those of plant origin were found in soil under most frequent cultivation of plant species from monocots. In second part of this study, it was found that soil organic C content with pigeon pea was 20% higher compared to corn and 18% higher compared to sunflower. Likewise, the highest values of C associated to soil particulate organic matter (C-POM) was found with pigeon pea cultivation, which provided 54%, 46% and 48% higher contents than corn, sunflower and oilseed radish, respectively. The variation in C-POM explained the crop effects on soil organic C content. The results of the present study showed a co-accumulation of C-POM and microbial residues in soil. In the third part of this study, it was found that monocots plant materials presented the highest mineralization rates of non-labile pool of C (k), soil pentose content, plant pentose input and soil aggregate MWD. The results of the present study suggest that non-labile C pool, especially related to pentoses, controls the soil aggregation of an Oxisol in long-term. This effect appears to be independent of the variation in soil organic C content
Doutor
Arroyo, Garcia Rodrigo 1982. "Rotação de culturas e propriedades físicas e matéria orgânica de um latossolo /." Botucatu : [s.n.], 2010. http://hdl.handle.net/11449/100007.
Full textBanca: Maria Helena Moraes
Banca: Juliano Carlos Calonego
Banca: Sandro Roberto Brancalião
Banca: Sônia Carmela Falcci Dechen
Resumo: O manejo inadequado do solo ocasiona a formação de camadas compactadas que prejudicam o desenvolvimento radicular das plantas, diminuindo a disponibilidade de água e nutrientes, enquanto que o acúmulo de carbono pode melhorar a qualidade do solo. Em sistemas com semeadura direta (SSD), com a menor mobilização do solo, pode-se usar, em rotação, plantas com sistema radicular vigoroso, capaz de crescer em condições adversas. Este trabalho teve como objetivo avaliar a ação de espécies de cobertura, gramíneas e uma leguminosa, em rotação com a cultura da soja, nos atributos físicos de um Latossolo, no acúmulo de carbono, nas diferentes frações da matéria orgânica e na produção da soja, em semeadura direta, ao longo de três anos. O experimento foi conduzido em um Latossolo Vermelho distroférrico de textura argilosa, na Fazenda Experimental Lageado, Unesp/Botucatu, nos anos agrícolas de 2006/2007, 2007/2008 e 2008/2009. No outonoinverno foram estabelecidas parcelas com braquiária (Brachiaria ruziziensis), sorgo granífero (Sorghum bicolor) e sorgo consorciado com braquiária. Na primavera, foram cultivados, em subparcelas, milheto (Pennisetum glaucum), cober crop [Sorghum bicolor (L.) Moench x Sorghum sudanense Piper Stapf], crotalária (Crotalaria juncea) ou pousio. A soja foi cultivada como safra de verão. Em março do primeiro ano foram retiradas amostras para caracterização da área experimental. Após o manejo das espécies cultivadas na primavera, no primeiro e terceiro ano, foram retiradas amostras indeformadas nas camadas de 0-5; 7,5-12,5; 15-20; 27,5-32,5 e 47,5-52,5 cm para determinação da densidade do solo, porosidade e curva de retenção de água no solo. Nas mesmas épocas, a estabilidade de agregados foi avaliada em amostras coletadas nas camadas de 0-5 e 5-10 cm. No terceiro ano do experimento, o intervalo hídrico ótimo (IHO) foi determinado... (resumo completo, clicar acesso eletrônico abaixo)
Abstract: Compacted layers resulting from inappropriate soil management may impair root growth, thus decreasing water and nutrient acquisition by crops. Conversely, soil quality is improved with soil carbon accumulation. In areas under no-till, crop rotation with plants with vigorous root systems may alleviate soil compaction, as well as increase soil carbon. In this experiment the effects of cover crops on soil physical properties, carbon accumulation, organic matter quality and soybean production under no-till in a compacted soil were studied for three years. The experiment was conducted on a clayey Rhodic Ferralsol, Lageado Experimental Farm, Unesp/Botucatu, in 2006/2007, 2007/2008 and 2008/2009. Congo grass (Brachiaria ruziziensis), grain sorghum (Sorghum bicolor) and a mix of both were cropped during fall-winter. Then, in the spring, pear millet (Pennisetum glaucum), cober crop [Sorghum bicolor (L.) Moench x Sorghum sudanense Piper Stapf] and indian hemp (Crotalaria juncea) were cropped and a treatment under fallow was set on sub-plots. Soybean was cropped as a summer crop. In March of the first year, samples were taken for characterization of the area. Right after spring crops were chemically desiccated in 2006 and 2008, undisturbed soil samples were taken from the layers 0-5; 7.5-12.5; 15-20; 27.5-32.5 and 47.5-52.5 cm to determine bulk density, porosity and water retention curve. At the same time, samples taken from the depths 0-5 and 5-10 cm were used to determine aggregate stability. In the third year, least limiting water range (LLWR) was evaluated in the 7.5-12.5 and 27.5-32.5 cm soil layers. Organic matter characterization was done in the third year, in the depths of 0-5 and 5-10 cm. Roots of spring crops were sampled in the layers 0-5; 5-10; 10-20; 20-40 and 40- 60 cm, one day before chemical desiccation in all growing seasons. Soybean roots were sampled in the same depths at R2 each... (Complete abstract click electronic access below)
Doutor
Do, Phai Duy. "Quantifying organic carbon fluxes from upland peat." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/quantifying-organic-carbon-fluxes-from-upland-peat(f66901b0-b930-469e-8c33-2e480c4becd1).html.
Full textDragana, Vidojević. "Процена резерви органске материје у земљиштима Србије." Phd thesis, Univerzitet u Novom Sadu, Poljoprivredni fakultet u Novom Sadu, 2016. https://www.cris.uns.ac.rs/record.jsf?recordId=99871&source=NDLTD&language=en.
Full textOvo istraživanje ima za cilj da proceni rezerve organskog ugljenika u zemljištu i predstavi njegovu prostornu distribuciju u zemljištima Republike Srbije, kao i da utvrdi zavisnost sadržaja organskog ugljenika u zemljištu od tipa zemljišta, temperature, padavina, nadmorske visine, načina korišćenja zemljišta i morfogenetskih karakteristika reljefa. Rezerve organskog ugljenika u zemljištu procenjene su za sloj 0-30 cm i 0-100 cm dubine na osnovu rezultata iz baze podataka uz korišćenje pedološke karte i karte korišćenja zemljišta. Za potrebe utvrđivanja zavisnosti sadržaja organskog ugljenika i tipa zemljišta pedološka karta Srbije je prilagođena WRB klasifikaciji i sadrži 15.437 poligona. Primenjena metodologija za procenu rezerve organskog ugljenika za datu dubinu je bazirana na sumiranju rezerve organskog ugljenika po slojevima zemljišta koja se dobija na osnovu zapreminske mase, vrednosti sadržaja organskog ugljenika i debljine sloja. Proračun je urađen za svaki profil posebno, zatim je urađena kalkulacija za svaku referentnu grupu zemljišta na osnovu rezultata srednjih vrednosti sadržaja organskog ugljenika do 30 cm i 100 cm dubine za glavne referentne grupe i njihovih površina. Na osnovu površina referentnih grupa zemljišta, površine Republike Srbije i vrednosti sadržaja za svaku referentnu grupu, dobijene su ukupne rezerve organskog ugljenika do 30 cm dubine koje iznose 0,71 Pg. Rezultati analize rezerve organskog ugljenika do 100 cm dubine pokazuju vrednost 1,16 Pg.Na osnovu Corine Land Cover (CLC) baze podataka za 2006. godinu izdvojene su površine glavnih kategorija načina korišćenja zemljišta. Na osnovu rezultata srednjih vrednosti sadržaja organskog ugljenika do 30 i 100 cm dubine i površine koju zauzima Corine Land Cover kategorija načina korišćenja zemljišta izračunata je ukupna vrednost rezerve organskog ugljenika za poljoprivredna zemljišta, šume i poluprirodna područja i veštačke površine.Rezultati pokazuju da su rezerve organskog ugljenika u okviru kategorije poljoprivrednih površina 303,22 x 1012g (Tg) do 30 cm dubine i 600,25 x 1012g (Tg) do 100 cm dubine. Kategorije šume i poluprirodna područja imaju rezerve od osnovnih klimatskih elemenata temperature i padavina i nadmorske visine pokazuje da postoji srednje jaka do jaka statistička zavisnost u okviru ispitivanja realizovanih do 30 i 100 cm dubine.organskog ugljenika 345,26 x 1012g (Tg) ugljenika do 30 cm i 457,55 x 1012g (Tg) do 100 cm dubine. Rezultati pokazuju vrednosti rezerve organskog ugljenika u kategoriji veštačke površine koja uglavnom obuhvataju lokalitete u okviru zelenih urbanih područja i rekreacionih površina 19,21 x 1012g (Tg) do 30 cm i 41,50 x 1012g (Tg) do 100 cm dubine.Analiza sadržaja rezerve organskog ugljenika prema načinu korišćenja zemljišta pokazuje da su vrednosti sadržaja organskog ugljenika veće u šumama i poluprirodnim područjima u odnosu na poljoprivredne površine i to za 40,71 % do 30 cm, odnosno za 11,43 % do 100 cm dubine. Proračun gubitka rezerve organskog ugljenika u zemljištu na područjima gde je izvršena prenamena poljoprivrednih površina, šuma i poluprirodnih područja u urbano zemljište, bez kategorije zelena urbana područja, u periodu 1990-2006. godine pokazuje ukupnu vrednosti od 0,92 Mt S, odnosno 1,49 Mt S za dubine do 30 cm, odnosno do 100 cm.Utvrđivanje statističke zavisnosti sadržaja organskog ugljenika u zemljištuod osnovnih klimatskih elemenata temperature i padavina i nadmorske visine pokazuje da postoji srednje jaka do jaka statistička zavisnost u okviru ispitivanja realizovanih do 30 i 100 cm dubine.Proračun sadržaja rezerve organskog ugljenika u zemljištu u zavisnosti od morfometrijskih karakteristika reljefa pokazuje da rezerva sadržaja organskog ugljenika u zemljištu raste sa porastom nadmorske visine. Najveće srednje vrednosti sadržaja izmerene su na terenu koji obuhvata planine sa nadmorskim visinama od 1.000-2.000 m i koji obuhvata 11,5 % teritorije Republike Srbije
The aim of this study was to quantify current SOC stocks and present the spatial distribution of organic carbon (SOC) in the soils of Republic of Serbia. The relation of SOC content to soil type, temperature, precipitation, altitude, land use and topography was investigated. Organic carbon stocks were estimated for soil layers 0-30 cm and 0-100 cm based on the results from a database and using soil and land use maps.To establish the relationship between organic carbon content and soil type, a soil map of Serbia was adapted to the WRB classification and divided into 15,437 polygons (map units). The methodology for SOC stocks estimation was based on bulk density, organic carbon content and thickness of the analyzed soil layers. We calculated the values for each reference soil group based on mean values of SOC at 0-30 and 0-100 cm in the main reference groups and their areas. Based on the size of the reference groups, total area of Republic of Serbia, and the SOC values for each reference group, we calculated the total SOC stocks. The obtained values for the soil layers 0-30 cm and 0-100 cm amounted to 0,71 Pg and 1,16 Pg respectively.Using Corine Land Cover (CLC) database for 2006, we defined areas of the major categories of land use. Based on the obtained mean values of organic carbon content at 0-30 and 0-100 cm and the areas indicated by Corine Land Cover categories of land use, we calculated the organic carbon stocks in agricultural land, forest land, semi-natural areas, and artificial areas. The results showed that the organic carbon stocks in the category of agricultural land were 303.22 x 1012 g (Tg) and 600.25 x 1012 g (Tg) at 0-30 cm and 0-100 cm, respectively. In the category of forests and semi-natural areas, the organic carbon stocks were 345.26 x 1012 g (Tg) and 457.55 x 1012 g (Tg) at 0-30 cm and 0-100 cm, respectively. In the category of artificial areas, which mainly included sites within urban green areas and recreational areas, the organic carbon stocks were 19.21 x 1012 g (Tg) and 41.50 x 1012 g (Tg) at 0-30 cm and 0-100 cm, respectively. The map of organic carbon distribution depending on land use method indicated that organic carbon stocks were higher in forests and semi-natural areas than in agricultural land, up to 40.71% and 11.43% at 0-30 cm and 0-100 cm, respectively.SOC loss amount to 0,92 Mt С at 0-30 cm layer and 1,49 Mt С at 0-100 cm layer in the period 1990-2006 as a results of conversion from agricultural land, forestland and semi-natural areas to artificial areas.For soil layers 0-30 and 0-100 cm, a medium to strong statistical relationship between temperature, precipitation and altitude and amount of organic carbon in soil is indicated. The soil organic carbon density was significantly affected by altitude. SOC content increased with increasing altitude.The highest mean values of organic carbon content were found in the mountainous areas within the elevation of 1000-2000 m, which covers 11,5 % of the territory of the Republic of Serbia.
Bader, Nicholas E. "Plant control of soil organic carbon accumulation /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.
Full textZatta, Alessandro <1976>. "Soil organic carbon dynamics under perennial energy crops." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5921/.
Full textZakharova, Anna. "Soil organic matter dynamics: influence of soil disturbance on labile pools." Thesis, University of Canterbury. School of Biological Sciences, 2014. http://hdl.handle.net/10092/9944.
Full textBeniston, Joshua W. "Soil Organic Carbon Dynamics and Tallgrass Prairie Land Management." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253558307.
Full textBooks on the topic "Soil organic carbon. eng"
Smith, W. Soil degradation risk indicator: Organic carbon component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Find full textLeventhal, Joel S. Soil organic carbon content in rice soils of Arkansas and Louisiana and a comparison to non-agricultural soils, including a bibliography for agricultural soil carbon. [Denver, CO]: U.S. Geological Survey, 1997.
Find full textLeventhal, Joel S. Soil organic carbon content in rice soils of Arkansas and Louisiana and a comparison to non-agricultural soils, including a bibliography for agricultural soil carbon. [Denver, CO]: U.S. Geological Survey, 1997.
Find full textservice), SpringerLink (Online, ed. Carbon Sequestration in Agricultural Soils: A Multidisciplinary Approach to Innovative Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textNong tian tu rang you ji tan bian hua yan jiu: Nongtian turang youjitan bianhua yanjiu. Wuhu Shi: Anhui shi fan da xue chu ban she, 2011.
Find full textRyan, Miriam G. The influence of draught and rewetting on the dynamics of nitrogen, potassium and disolved organic carbon in a coniferous forest ecosystem. Dublin: University College Dublin, 1997.
Find full textMcInerney, M. The effect of earthworm activity, silt/clay content and climatic interactions on soil organic matter dynamics in forestry systems. Dublin: University College Dublin, 1998.
Find full textSoil Organic Carbon: The Hidden Potential. Food & Agriculture Organization of the United Nations, 2017.
Find full textJ, Zinke Paul, Millemann Raymond E, Boden Thomas A, Carbon Dioxide Information Analysis Center (U.S.), Oak Ridge National Laboratory. Environmental Sciences Division, United States. Dept. of Energy. Office of Basic Energy Sciences. Carbon Dioxide Research Division, and United States. Dept. of Energy. Office of Energy Research, eds. Worldwide organic soil carbon and nitrogen data. Oak Ridge, Tenn: Oak Ridge National Laboratory, 1986.
Find full textOchs, Michael. Association of hydrophobic organic compounds with dissolved soil organic carbon. 1988.
Find full textBook chapters on the topic "Soil organic carbon. eng"
Zaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, et al. "Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions." In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 303–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_8.
Full textde Brogniez, Delphine, Cristiano Ballabio, Bas van Wesemael, Robert J. A. Jones, Antoine Stevens, and Luca Montanarella. "Topsoil Organic Carbon Map of Europe." In Soil Carbon, 393–405. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_39.
Full textMcBratney, Alex B., Uta Stockmann, Denis A. Angers, Budiman Minasny, and Damien J. Field. "Challenges for Soil Organic Carbon Research." In Soil Carbon, 3–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_1.
Full textPoch, Rosa M., and Iñigo Virto. "Micromorphology Techniques for Soil Organic Carbon Studies." In Soil Carbon, 17–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_2.
Full textJakab, Gergely, Klaudia Kiss, Zoltán Szalai, Nóra Zboray, Tibor Németh, and Balázs Madarász. "Soil Organic Carbon Redistribution by Erosion on Arable Fields." In Soil Carbon, 289–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_30.
Full textBockheim, James G., and Nick W. Haus. "Distribution of Organic Carbon in the Soils of Antarctica." In Soil Carbon, 373–80. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_37.
Full textFunakawa, Shinya, Kazumichi Fujii, Atsunobu Kadono, Tetsuhiro Watanabe, and Takashi Kosaki. "Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils?" In Soil Carbon, 209–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_22.
Full textBliss, Norman B., Sharon W. Waltman, Larry T. West, Anne Neale, and Megan Mehaffey. "Distribution of Soil Organic Carbon in the Conterminous United States." In Soil Carbon, 85–93. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_9.
Full textMichéli, Erika, Phillip R. Owens, Vince Láng, Márta Fuchs, and Jon Hempel. "Organic Carbon as a Major Differentiation Criterion in Soil Classification Systems." In Soil Carbon, 37–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_4.
Full textAtanassova, Irena D., Stefan H. Doerr, and Gary L. Mills. "Hot-Water-Soluble Organic Compounds Related to Hydrophobicity in Sandy Soils." In Soil Carbon, 137–46. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_14.
Full textConference papers on the topic "Soil organic carbon. eng"
Hersh, Benjamin, and Amin Mirkouei. "Life Cycle Assessment of Pyrolysis-Derived Biochar From Organic Wastes and Advanced Feedstocks." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-97896.
Full textMeador, T., J. Niedzwiecka, S. Jabinski, T. Picek, R. Angel, and H. Šantrůčková. "Modes of Soil Organic Carbon Sequestration and Carbon Use Efficiency Determined by Soil Aeration Status." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134129.
Full textMatarrese, Raffaella, Valeria Ancona, Rosamaria Salvatori, Maria Rita Muolo, Vito Felice Uricchio, and Michele Vurro. "Detecting soil organic carbon by CASI hyperspectral images." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947181.
Full textRaines, Eron, Kevin Norton, Anthony Dosseto, Quan Hua, Claire Lukens, Julie Deslippe, and Maia Bellingham. "Chemical Weathering and Organic Carbon Turnover in Soil." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2159.
Full textHu, Yunfeng, Jiyuan Liu, Dafang Zhuang, Shaoqiang Wang, Fengting Yang, and Siqing Chen. "Soil erosion effects on soil organic carbon and an assessment within China." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Wei Gao and David R. Shaw. SPIE, 2004. http://dx.doi.org/10.1117/12.558631.
Full textZhichen, Yang, Li Hong, and Bai Jinshun. "Effects on Soil Organic Carbon and Microbial Biomass Carbon of Different Tillage." In 2015 AASRI International Conference on Circuits and Systems (CAS 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cas-15.2015.6.
Full text"Analysis of the spatiotemporal distribution of soil organic carbon." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.f6.kunkel.
Full textBobric, Iuliana Gabriela. "SOIL ORGANIC MATTER ASSESSMENT FROM NEAMTU CATCHMENT SOILS THROUGH VARIOUS ORGANIC CARBON METHODS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/32/s13.066.
Full textLu, Peng, Zheng Niu, and Linghao Li. "Prediction of Soil Organic Carbon by Hyperspectral Remote Sensing Imagery." In 2012 Third Global Congress on Intelligent Systems (GCIS). IEEE, 2012. http://dx.doi.org/10.1109/gcis.2012.13.
Full textBaumgartl, Thomas, J. Chan, F. Bucka, and E. Pihlap. "Soil organic carbon in rehabilitated coal mine soils as an indicator for soil health." In 14th International Conference on Mine Closure. QMC Group, Ulaanbaatar, 2021. http://dx.doi.org/10.36487/acg_repo/2152_121.
Full textReports on the topic "Soil organic carbon. eng"
Zinke, P. J., A. G. Stangenberger, W. M. Post, W. R. Emanual, and J. S. Olson. Worldwide organic soil carbon and nitrogen data. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/543663.
Full textGebhart, Dick L., H. A. Torbert, and Michael Hargrave. Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada559158.
Full textFirestone, Mary. Mapping soil carbon from cradle to grave: drafting a molecular blueprint for C transformation from roots to stabilized soil organic C. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1437612.
Full textBradford, M. A., J. M. Melillo, J. F. Reynolds, K. K. Treseder, and M. D. Wallenstein. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/981713.
Full textKostka, Joel. The response of soil carbon storage and microbially mediated carbon turnover to simulated climatic disturbance in a northern peatland forest. Revisiting the concept of soil organic matter recalcitrance. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1330571.
Full textWallenstein, Matthew. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1411190.
Full text