To see the other types of publications on this topic, follow the link: Soil organic carbon mineralization.

Dissertations / Theses on the topic 'Soil organic carbon mineralization'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'Soil organic carbon mineralization.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Calias, Pangiotis. "Forest soil organic matter of a European transect : carbon mineralization in response to temperature." Thesis, University of Exeter, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.363387.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ma, Qian. "Effects of Crop Residue Quality and Nitrogen Fertilization on Priming of Soil Organic Carbon Mineralization." Kyoto University, 2021. http://hdl.handle.net/2433/261632.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lynch, Madalyn Josephine. "A Measurement of Conservation Agriculture’s Effect on Nitrogen and Carbon Mineralization Rates for Agricultural Recommendations in Haiti’s Central Plateau." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51620.

Full text
Abstract:
Much of Haitian agriculture is characterized by subsistence farming systems on eroded and nutrient-poor soils. Implementation of Conservation Agriculture systems has proven effective at improving soil quality and crop yield in many areas of the world, including areas similar to those in Haiti. While most Haitian smallholder farmers are highly resource-limited and adoption of new technologies is limited, these farmers are known to adopt new crops and practices if benefits that outweigh risks are demonstrated. Cover crops that help provide soil cover and increase nutrient mineralization are one of the most potentially beneficial changes that could be made on most smallholder farms. However, before specific cover crop recommendations can be made, their potential benefits need to be quantified. One field experiment in the summer of 2013 assessed decomposition rates and nutrient mineralization from common cash crops and two potential cover crops either on the soil surface or buried at 15 cm. The relative difficulty and expense of conducting these types of field trials led to the development and assessment of a laboratory-based system that could be used to simulate plant residue decomposition and nutrient release under controlled conditions. Additional benefits of a laboratory-based study include the ability to test significantly more treatment combinations than would likely be possible under field conditions and to control nearly all other experimental variables, other than the desired treatment comparisons.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
4

Lorenz, Klaus. "The role of microorganisms and organic matter quality for nutrient mineralization of carbon composition of organic layers in forests as influenced by site properties and soil management /." Stuttgart : Inst. für Bodenkunde und Standortslehre, 2001. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=009736028&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Henriques, Hermano José Ribeiro. "Sistemas de manejo do solo para retomada do plantio direto." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/153651.

Full text
Abstract:
Submitted by HERMANO JOSÉ RIBEIRO HENRIQUES (hermano.henriques.hh@gmail.com) on 2018-04-19T02:51:02Z No. of bitstreams: 1 Dissertação Hermano 23-03-18 FINAL.pdf: 675802 bytes, checksum: 998790963004d6f800e75626d999e4c9 (MD5)
Approved for entry into archive by Cristina Alexandra de Godoy null (cristina@adm.feis.unesp.br) on 2018-04-20T16:48:25Z (GMT) No. of bitstreams: 1 henriques_hjr_me_ilha.pdf: 457543 bytes, checksum: ccd8449717ed932372ce579f36b5f1fb (MD5)
Made available in DSpace on 2018-04-20T16:48:25Z (GMT). No. of bitstreams: 1 henriques_hjr_me_ilha.pdf: 457543 bytes, checksum: ccd8449717ed932372ce579f36b5f1fb (MD5) Previous issue date: 2018-02-20
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
A utilização das regiões de cerrado para a produção agrícola se estabeleceu inicialmente pelo uso intensivo do solo proporcionando alterações nos atributos físicos, químicos e biológicos de acordo com o tipo de manejo adotado. O experimento foi realizado na Fazenda de Ensino, Pesquisa e Ensino (FEPE-Cerrado), pertencente à Faculdade de Engenharia de Ilha Solteira, no município de Selvíria- MS, em um LATOSSOLO VERMELHO Distroférrico, de textura argilosa (EMBRAPA, 2013), nos anos de 2016 a 2017 teve como objetivo de comparar os sistemas de manejo do solo a ser adotada em safras seguidas para estabilização do plantio direto (SPD) nas culturas de soja (verão) e do sorgo (outono-inverno). O delineamento experimental foi de blocos ao acaso, com quatro repetições e sete tratamentos: sistema de semeadura direta contínuo (de 23 e 24 anos de implantação), sendo que cultivo mínimo, preparo convencional do solo com grade pesada e arado de aiveca seguida de três gradagens leves e plantio direto sobre cada destes manejos do solo realizados continuamente com o mesmo número de safras seguidas até a 7° e 8° safra. Para comparação de medias foram avaliados os dados biométricos das culturas da soja e do sorgo, atributos físicos do solo e quantidade de carbono orgânico total. Os resultados obtidos indicaram que os sistemas de semeadura direta contínuo apresentaram maior quantidade de estoque de carbono orgânico total. A elevação da produtividade de grãos de soja está diretamente relacionada à maior presença de plantas no estande final quando o solo foi preparado com grade pesada seguida do tempo de implantação como sistema plantio direto, diferentemente dos manejos de preparo do solo com grade pesada e arado de aiveca contínuo terem menor sobrevivência de plantas, refletiu diretamente na queda de produtividades de grãos de soja em razão do maior campo de visão ter facilitado o ataque de pássaros. Os mesmos tratamentos de manejos do solo adotados na cultura do sorgo apresentaram efeito nulo sobre características biométricas, demostrando que independentemente do tempo de implantação do SPD e manejo do solo adotado anteriormente continua sendo a opção mais viável economicamente para a região de Cerrado.
The use of cerrado regions for agricultural production was established initially with intensive use of the soil, providing changes in the physical, chemical and biological attributes according to the type of management adopted. The experiment was carried out at the Fazenda de Ensino, Pesquisa e Ensino (FEPE-Cerrado), belonging to the Faculty of Engineering of Ilha Solteira, in the of Selvíria-MS, in an Oxisol (EMBRAPA, 2013), year period from 2016 to 2017, had the objective of comparing the soil tillage systems to be adopted in crop seasons for stabilization of no-tillage (SPD) in soybean (summer) and sorghum (autumn-winter). The experimental design was a randomized block design, using factorial arrangement with four replications and seven treatments: continuous no-tillage (23 and 24 years of implantation), with minimum tillage, conventional soil tillage with heavy grating, and shisel moldboard pow by three disk plowing followed and no-tillage on each of these soils managed continuously with the same number of harvests followed up to the 7th and 8th harvests. Biometric data from soybean and sorghum cultures, soil physical attributes and amount of total organic carbon were evaluated for comparison of means. The results showed that continuous direct seeding systems presented higher amounts of total organic carbon stock. The increase of soybean grain yield is directly related to the greater presence of plants in the final stand when the soil was prepared with heavy grating followed by the time of implantation as no-tillage system, unlike the soil preparation operations with heavy grating and shisel moldboard pow continued to have lower plant survival, directly reflected in the fall in yields of soybeans because the greater field of view facilitated the attack of birds. The same soil management treatments adopted in the sorghum crop showed zero effect on biometric characteristics, showing that regardless of the time of SPD implementation and previously adopted soil management, it remains the most economically viable option in the Cerrado.
APA, Harvard, Vancouver, ISO, and other styles
6

Thothong, Warinya. "Source, storage and mineralization of organic matter in a tropical water reservoir (Thailand) : relationship with soil erosion on the watershed." Paris 6, 2009. http://www.theses.fr/2009PA066231.

Full text
Abstract:
L’étude des flux de C dans une retenue d’eau du nord de la Thaïlande (Mae Thang, 220 ha, 35 x 106 m3) révèle que des facteurs climatiques (intensité des pluies) et anthropiques (mise en culture du bassin versant) caractérisés par des effets seuils, contrôlent les apports et le stockage de C dans les sédiments. Pendant les périodes de faibles debits d’entrée, les caractéristiques de la colonne d’eau sont contrôlées par les processus de production - minéralisation. La source principale de C est représentée par la biomasse aquatique. Pendant les périodes de forts débits, les apports de C sont essentiellement terrestres (plus de ca. 90 %). Bien que des concentrations élevées en CH4 dissous (jusqu’à 1650 µmol. L-1) ont pu être mesurées dans l’hypolimnion pendant la saison des pluies, les processus d’oxydation, renforcés au niveau de la thermocline et en relation avec la circulation d’eau profonde, réduisent considérablement l’exportation de CH4 dans l’épilimnion et son émission vers l’atmosphère. L’ensemble de ces données montre que le barrage peut être considéré comme un “puits” de C pour l’atmosphère avec une forte capacité de stockage (23,8 tC. Ha-1. Yr-1) et de faibles emissions de CH4.
APA, Harvard, Vancouver, ISO, and other styles
7

Rigby, Deborah Monique. "Microbial Responses to Coarse Woody Debris in Juniperus and Pinus Woodlands." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3515.

Full text
Abstract:
The ecological significance of coarse woody debris (CWD) is usually highlighted in forests where CWD constitutes much of an ecosystem's carbon (C) source and stores. However, a unique addition of CWD is occurring in semi-deserts for which there is no ecological analog. To stem catastrophic wildfires and create firebreaks, whole Juniperus osteosperma (Torr.) and Pinus edulis (Engelm.) trees are being mechanically shredded into CWD fragments and deposited on soils previously exposed to decades of tree-induced changes that encourage "tree islands of fertility." To investigate consequences of CWD on C and nitrogen (N) cycling, we evaluated microbial metabolic activity and N transformation rates in Juniperus and Pinus surface and subsurface soils that were either shredded or left untreated. We sampled three categories of tree cover on over 40 tree cover encroachment sites. Tree cover categories (LOW = 0-15%, MID ≥ 15-45%, HIGH ≥ 45%) were used to indicate tree island development at time of treatment. In conjunction with our microbial measurements, we evaluated the frequency of three exotic grasses, and thirty-five native perennial grasses to identify links between belowground and aboveground processes. The addition of CWD increased microbial biomass by almost two-fold and increased microbial efficiency, measured as the microbial quotient, at LOW Juniperus cover. C mineralization was enhanced by CWD only in Pinus soils at the edge of tree canopies. The addition of CWD had little impact on microbial activity in subsurface soils. CWD enhanced the availability of dissolved organic C (DOC) and phosphorus (P) but tended to decrease the overall quality of labile DOC, measured as the ratio of soil microbial biomass to DOC. This suggested that the increase in DOC alone or other environmental factors novel to CWD additions lead to the increase in biomass and efficiency. P concentrations were consistently higher following CWD additions for all encroachment levels. The CWD additions decreased N mineralization and nitrification in Juniperus and Pinus soils at LOW and MID tree cover but only in surface soils, suggesting that less inorganic N was available to establishing or residual plants. The frequency of native perennial grasses, especially Elymus elymoides (Raf.), was at least 65% higher under CWD additions for all categories of tree cover, while the frequencies of exotic annual and perennial grasses were not impacted by CWD. The frequency of all perennial grasses ranged from 10-27%. Our results suggest that CWD enhanced microbial activity even when the quality of C substrates declined requiring microbes to immobilize more N. The reduction in inorganic N may promote the establishment and growth of native perennial grasses. Ultimately, the addition of CWD improved soil conditions for microbes in tree islands of fertility.
APA, Harvard, Vancouver, ISO, and other styles
8

Leão, Ricardo Elso. "Estabilização do carbono de resíduos culturais no solo com o uso de xisto retortado." Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/5590.

Full text
Abstract:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
The impact of retorted oil shale (ROS) addition on the dynamics of carbon (C) of crop residues (CR) in the soil is little known. Under laboratory conditions, the present study aimed to evaluate the residual and immediate effects of ROS on C mineralization of CR, water stability aggregates and storage C in the particulate (>53 μm) and associated minerals fractions (<53μm) of organic matter (OM) of a Hapludalf. In experiment 1, treatments consisted of soil samples from plots that received four additions of ROS, totaling 0, 6,000 and 12,000 kg ha-1. In experiment 2, treatments consisted of soil with no history of application of ROS (0 kg ha-1), that in the laboratory received three doses of ROS (0, 1,500 and 3,000 kg ha-1). In both experiments, the treatments were evaluated in the presence (3,000 kg ha-1) and absence of leaves and stalks of soybeans. The release of C-CO2 was evaluated for 80 days and at the end of the experiment determined the aggregate stability and C storage in different OM fractions. The addition of CR in soil with a history of ROS addition did not alter the release of C-CO2 and also did not reduce the apparent mineralization of C of RC compared to addition of these residues in soil with no history. In experiment 2, there was a reduction in the release of C-CO2 compared to the control only the treatment with stalks + 3000 kg ROS ha-1. In experiment 2, the treatment stalks + 3000 kg ROS ha-1 provided an increase in aggregate stability compared with treatment with only stalks. In experiment 1, the ROS addition tended to higher retention of C stalks and leaves in the soil. In experiment 2, the application of CR + ROS promoted greater retention of soil C only in the treatment with leaves. Under laboratory conditions, the soil with a history of ROS addition did not affect mineralization and retention of crop residue C added to soil. Besides, the ROS showed an immediate effect, reducing C mineralization from stalks and increasing retention of C from leaves added to the soil.
O impacto da adição de xisto retortado (XR) sobre a dinâmica do carbono (C) de resíduos culturais (RC) no solo é pouco conhecido. Em condições de laboratório, o presente estudo objetivou avaliar o efeito residual e imediato do XR sobre a mineralização do C de RC, estabilidade de agregados em água e armazenamento de C nas frações particulada (>53 μm) e associada aos minerais (<53 μm) da matéria orgânica (MO) de um Argissolo Vermelho Distrófico arênico. No experimento 1, os tratamentos foram compostos por amostras de solo de parcelas que receberam quatro aplicações de XR, totalizando 0, 6.000 e 12.000 kg ha-1. Já no experimento 2, os tratamentos foram constituídos com solo somente da parcela sem histórico de aplicação de XR (0 kg ha-1), que no laboratório recebeu três doses de XR equivalentes a 0, 1.500 e 3.000 kg ha-1. Em ambos os experimentos os tratamentos foram avaliados na presença (3.000 kg ha-1) e ausência de folhas e talos de soja. A liberação de C-CO2 foi avaliada durante 80 dias e ao final do experimento determinados a estabilidade de agregados e o armazenamento de C nas diferentes frações da MO. A adição de RC no solo com histórico de adição de XR não alterou a liberação de C-CO2 e também não reduziu a mineralização aparente do C dos RC comparado a adição desses resíduos em solo sem histórico. No experimento 2, houve redução na liberação de C-CO2 em relação ao controle somente no tratamento com talos + 3.000 kg de XR ha-1. No experimento 2, o tratamento talos + 3.000 kg de XR ha-1 proporcionou incremento na estabilidade de agregados em comparação com o tratamento somente com talos. No experimento 1, a adição de XR apresentou tendência de maior retenção de C dos talos e folhas no solo. No experimento 2, a aplicação conjunta de resíduos e XR promoveu maior retenção de C no solo apenas no tratamento com folhas. Em condições de laboratório, o solo com histórico de aplicação de XR não afetou a mineralização e a retenção do C de resíduos culturais adicionados ao solo. Além disso, o XR apresentou efeito imediato, reduzindo a mineralização do C de talos e aumentando a retenção do C de folhas adicionadas ao solo.
APA, Harvard, Vancouver, ISO, and other styles
9

Perveen, Nazia. "Intégration de l'écologie microbienne dans les modèles biogéochimiques : conséquences pour les prévisions du stockage du Carbone et la fertilité des sols." Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066340.

Full text
Abstract:
La prise en compte du priming effect * (PE) dans les modèles biogéochimiques est essentielle afin de mieux prévoir les conséquences du changement global sur le cycle du C (C) dans les écosystèmes et les interactions avec le climat. Au cours de la dernière décennie, de nombreux travaux ont été réalisés afin de modéliser le PE. Cependant, quelques connaissances de base nécessaires à cette modélisation du PE manquent tels que la relation entre le taux de décomposition des matières organique du sol (MOS) et la biomasse des décomposeurs (MB). En outre, le PE n'a jamais été inséré dans un modèle sol-plante afin de déterminer son rôle dans les interactions plante-sol. Dans ce contexte, les principaux objectifs de la thèse sont 1) d’intégrer l'activité, de la biomasse et de la diversité des microorganismes du sol dans les modèles de dynamique du C et de l’azote (N) des écosystèmes afin de simuler le PE, et 2) de déterminer les conséquences de cette intégration pour le fonctionnement des écosystèmes et la réponse au changement global. Ces objectifs ont été atteints grâce à la combinaison de la diverses approches telle que la modélisation, l’expérimentation et les analyses statistiques. Dans une expérience de laboratoire, je montre que le taux de décomposition des MOS augmente 1) linéairement avec la MB et 2) avec un effet de saturation avec la teneur en MOS. La réponse linéaire de décomposition des MOS à la MB s'explique par la colonisation très limitée du sol et des réserves des MOS par les microorganismes. Cependant, la limitation de la décomposition par la teneur en MOS montre que la disponibilité locale des MOS peut être un facteur limitatif pour la minéralisation microbienne. La co-limitation observée de la décomposition des MOS est correctement modélisée avec l'équation de Michaelis-Menten. L'intégration de cette équation dans un modèle simple de dynamique des MOS permet d’expliquer comment les MOS s'accumulent souvent continuellement dans les sols non perturbés alors qu'elles stagnent dans les sols cultivés. Cette présente également le premier modèle d’écosystème paramétré incorporant le PE (SYMPHONY). Ce modèle génère des prévisions réalistes sur la production de fourrage, stockage de C dans le sol et lessivage de l'azote pour des prairies permanentes. SYMPHONY montre également que la persistance des plantes dans les écosystèmes dépend d'un réglage fin de la minéralisation microbienne de MOS au besoin en nutriments des plantes. Ce réglage est modélisé par SYMPHONY en considérant la destruction de MOS par le PE et les interactions entre deux groupes fonctionnels microbiens: les décomposeurs des MOS et les stockeurs de MOS. Enfin, conformément aux récentes observations, SYMPHONY explique comment l’augmentation du CO2 atmosphérique induit une modification des communautés microbiennes du sol conduisant à une intensification de la minéralisation microbienne et à une diminution du stock des MOS dans le sol
Integration of the priming effect* (PE) in ecosystem models is crucial to better predict the consequences of global change on ecosystem carbon (C) dynamics and its feedbacks on climate. Over the last decade, many attempts have been made to model PE in soil. However, some basic knowledge to model the PE is lacking such as the relationship between decomposition rate of soil organic matter (SOM) and microbial biomass (MB). Moreover, the PE has never been inserted in a plant-soil model to analyze its role on plant-soil interactions. The main objectives of this thesis were to 1) integrate the activity, biomass and diversity of soil microorganisms in models of ecosystem C and nitrogen (N) dynamics in order to simulate the PE, and 2) determine the consequence of this integration for ecosystem functioning and response to global change. These objectives were achieved thanks to the combination of diverse approaches such as modeling, experimentation and statistical. In a lab experiment, I show that the rate of SOM decomposition increases 1) linearly with MB, and 2) with a saturating effect with SOM content. The linear response of SOM decomposition to MB is explained by the very limited microbial colonization of SOM reserves. However, the positive effect of SOM content on decomposition rate indicates that the local availability of SOM may be limiting for microbial mineralization. The observed co-limitation of SOM decomposition was accurately modeled with the Michaelis-Menten equation. Finally, incorporating this equation in a simple model of soil C dynamics explained how carbon often continuously accumulates in undisturbed soils whereas it reaches steady state in cultivated soils. Moreover, I present the first parameterized PE embedding plant-soil model (SYMPHONY) which provides realistic predictions on forage production, soil C storage and N leaching for a permanent grassland. SYMPHONY also shows that plant persistence depends on a fine adjustment of microbial mineralization of SOM to plant nutrient uptake. This fine adjustment was modeled by considering the destruction of SOM through PE and the interactions between two microbial functional groups: SOM-decomposers and SOM-builders. Moreover, consistent with recent observations, SYMPHONY explains how elevated CO2 induce modification of soil microbial communities leading to an intensification of SOM mineralization and a decrease in the soil C stock
APA, Harvard, Vancouver, ISO, and other styles
10

Yemadje, Pierrot Lionel. "Influence des cycles humectation-dessiccation sur la minéralisation du carbone : cas de la zone cotonnière du Nord Cameroun." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS209/document.

Full text
Abstract:
Le sol est un compartiment majeur de stockage du carbone (C) organique de l’écosystème terrestre. Il joue un rôle important dans la régulation du climat. Toute variation des flux de carbone entre l’atmosphère et l’écosystème terrestre pourrait avoir un impact important sur l’augmentation de CO2 dans l’atmosphère, mais aussi sur la diminution des teneurs en matière organique du sol et donc sur la fertilité des sols. Au Nord Cameroun, les sols sont exposés à de longues périodes sèches (5 à 6 mois par an) qui alternent avec une saison humide. La période de transition entre ces deux saisons, peut durer de mi-avril à fin juin et est caractérisée par des pluies très irrégulières. Ces cycles d’humectation-dessiccation pourraient selon la littérature accentuer la minéralisation du carbone organique du sol et le cycle des éléments nutritifs. L’objectif de cette étude est de quantifier l’impact des cycles humectation-dessiccation sur la minéralisation du carbone dans un contexte soudano-sahélien. Pour faire des mesures représentatives sur le terrain, il est nécessaire d’étudier la variation sur 24 heures de la respiration du sol après humectation suite à une période sèche. Cette mise au point méthodologique a montré que la respiration du sol présente une courbe quadratique au cours de la journée, devenant presque linéaire au cours de la nuit. La température et l’humidité du sol ont permis d’expliquer au moins 73% des variations sur 24 heures. Ces observations ont été utilisées pour proposer une méthode pour estimer la respiration moyenne diurne et nocturne après humectation des sols. La méthode proposée dans cette étude a l’avantage d’être basée sur un nombre réduit de mesures et est par conséquent plus facile à mettre en œuvre pour suivre la respiration du sol sur 24 heures après les premières pluies. Une première étude expérimentale de terrain a permis de montrer que la ré-humectation des sols et le mode de gestion des pailles ont augmenté la minéralisation du carbone de ces sols. En revanche, la fréquence des cycles humectation-dessiccation des sols sur une période de 50 jours n’a pas augmenté la minéralisation cumulée du carbone des sols. Au Nord Cameroun, la minéralisation rapide des pailles rend difficile l’augmentation des stocks de carbone du sol par conservation des pailles des cultures précédentes à la surface du sol. Dans une seconde expérimentation de laboratoire, en conditions contrôlées, les cycles humectation-dessiccation n’ont pas augmenté la minéralisation du carbone organique du sol et de l’azote (N) par rapport aux sols maintenus humides. Cependant, les émissions de CO2 ont augmenté avec l’addition de paille enrichie en carbone-13. Cette addition de la paille marquée a augmenté la minéralisation de la matière organique du sol (priming effect). La minéralisation de la paille a diminué avec les cycles humectation-dessiccation et la quantité de paille restante était de 102 µg Cg-1 sol sur les sols ré-humectés contre 48 µg Cg-1 sol sur les sols maintenus humides. L’absence de cette réponse de la minéralisation du carbone et d’azote du sol aux cycles humectation-dessiccation pourrait être liée à une baisse de l’activité microbienne durant les périodes de dessèchement et l’absence d’une augmentation soutenue des taux de minéralisation du carbone avec les cycles ultérieurs d’humectation-dessiccation
Soil as a major storage component for terrestrial ecosystem’s organic carbon plays an important role in regulating climate and agricultural production. Any variation of carbon fluxes between the atmosphere and the terrestrial ecosystem can have a significant impact on the increase of carbon dioxide in the atmosphere but also the decrease in soil organic matter and thus accelarate soil fertility degradation. In northern Cameroon, the transition period between long dry periods with a wet season is characterized by very irregular rainfall that can last several weeks. These wetting-drying cycles can accentuate the mineralization of soil organic carbon and nutrient cycling. The objective of this study is to assess the impact of wet-dry cycles on carbon mineralization in a sudano-sahelian context. From methodological stand field measurements require to study the soil respiration variation over 24 hours after a wet period. This methodological test has shown that soil respiration has a quadratic curve during the day, becoming almost linear during the night. The temperature and soil moisture have explained together the variation over 24 hours (at least 73% ; p< 0.001). These observations have been used to propose a method for estimating the mean daytime and nighttime soil respiration after wetting the soil. Indeed the method proposed in this study has the advantage of being based on a small number of measurements and is, therefore, easier to implement to monitor 24-h soil respiration after the first rains following a long dry period. A first experiment has shown that the wetting of the soil and mulching increased soil carbon mineralization. However, wetting-drying cycles on soil did not increase the cumulative mineralization of soil carbon more than keeping the soil continuously moist. Indeed, in northern Cameroon, the rapid mineralization of crop residues makes it difficult to increase soil carbon stocks by mulching. In a second laboratory experiment, the wetting-drying cycles did not increase organic carbon and nitrogen mineralization from soils added with straw. However, carbon dioxide emissions increased on straw amended soils compared to soils without straw. This addition of the labeled straw increased mineralization of soil organic matter (priming effect). The mineralization of the straw also decreased with the wetting-drying cycles, thus the amount of straw remaining on soils was 102 µg C g-1 soil on re-wetted soils compared to 48 µg C g-1 soil for those with constant moisture. The lack of response for C and N mineralization during wetting-drying cycles may be linked to a decrease of microbial activity during dry periods and the lack of a steady increase in the carbon mineralization rate with subsequent wetting-drying cycles
APA, Harvard, Vancouver, ISO, and other styles
11

Herrmann, Anke. "Predicting nitrogen mineralization from soil organic matter - a chimera? /." Uppsala : Dept. of Soil Sciences, Swedish Univ. of Agricultural Sciences, 2003. http://epsilon.slu.se/a429.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Colocho, Hurtarte Luis Carlos. "Plant Nitrogen status driving soil organic matter mineralization in the rhizosphere." Universidade Federal de Viçosa, 2016. http://www.locus.ufv.br/handle/123456789/10440.

Full text
Abstract:
Submitted by Reginaldo Soares de Freitas (reginaldo.freitas@ufv.br) on 2017-05-30T14:01:02Z No. of bitstreams: 1 texto completo.pdf: 1950608 bytes, checksum: 86ce9edf2ae6c14704b23eea6f458809 (MD5)
Made available in DSpace on 2017-05-30T14:01:02Z (GMT). No. of bitstreams: 1 texto completo.pdf: 1950608 bytes, checksum: 86ce9edf2ae6c14704b23eea6f458809 (MD5) Previous issue date: 2016-01-26
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Os fatores que regulam a dinâmica do Carbono (C) e Nitrogênio (N) do solo na rizosfera são ainda pouco compreendidos. A mineralização de C na rizosfera pode ser fortemente influenciada pelo estado nutricional da planta, a concentração de CO2 na atmosfera e a temperatura do ambiente, entre outros. Em este estudo, avaliamos o status nutricional de N em plantas de Eucalyptus spp. e sua influência na dinâmica do C e do N n a rizosfera. Realizamos um experimento usando um rhizobox dividido em dois compartimentos. No compartimento de cima plantas foram cultivadas e areia lavada e supridas com uma solução nutritiva contendo todos o nutrientes e a mesma solução porém sem N . No compartimento inferior o contato das raízes com o solo foi limitado usando uma membrana de nylon com abertura de 5 μm. Observamos uma maior razão raiz:parte aérea e maiores concentrações de CO2 no solo das plantas com deficiência de N. As raízes das plantas deficientes em N, apresentaram maiores concentrações em relação as plantas não deficientes em N, de citrato e tallose, e menores concentrações de sucrose e aminoácidos. A análise de C e N da fração de matéria orgânica ligada aos minerais , junto com os dados obtidos pela termoquimolise indicam um aumento na mineralização de C e uma modificação na dinâmica do N. Devido a impossibilidade de contato físico direto com o solo, pela presença da membrana de nylon, a única forma de modificar o solo seria então pela exsudação de compostos pelas raízes. O contrastante conteúdo de aminoácidos e açúcares na raiz, junto com os dados do extrato da solução do solo e de mineralização de C, indica que a composição destes exsudatos diferiu em razão da deficiência de N. Enquanto as plantas deficientes em N exsudaram mais ácidos orgânicos, as plantas com ótimo status nutricional foram capazes de exsudar compostos energeticamente ricos. Os dados de δ13C da matéria orgânica ligada aos minerais indica que as plantas deficientes em N afetaram um maior volume de solo que as plantas supridas de N. Tudo isto mostra que, diferentes mecanismos de efeito priming foram dominantes, dependendo do status nutricional da planta. Em plantas deficiente de N, a mineralização de C no solo foi dominada pelo mecanismo chamado de “mineração de N”, enquanto no solo das plantas supridas de N o mecanismo dominante foi a “estequiometria microbiana”. Este trabalho demostra pela primeira vez, ao nosso saber, a atuação de diferentes mecanismos de efeito priming n a mesma planta, sobre diferente status de N . Assim ressaltando, a importância do manejo de nutrientes na dinâmica do C da rizosfera.
The factors that regulate the dynamics of soil Carbon (C) and Nitrogen (N) in the rhizosphere are still poorl y understood. The soil C mineralization in the rhizosphere ca n be heavil y influenced by plant’s nutritional status, atmospheric CO2 concentration and temperature, among others. In this study, we assess the influence of Eucalyptus spp. N status on the C and N dynamics in the rhizosphere. We performed an experiment us ing two compartment rhizobox. In the upper compartment, plants were cultivated in washed sand and supplied with a solution containing all nutrients or all nutrients but N. The lower compartment limited the contact of the roots with the soil using a 5 μm mesh nylon membrane. We observed a higher root-shoot ratio for the N deficient plants and an increase in its soil CO2 concentration. The roots of the –N planted treatment had higher concentrations of citrate and tallose and lower concentration of sucrose and aminoacids, when compared to the +N planted treatment. The C and N anal ysis of the mineral associated organic matter fraction, together with the thermochemol ysis data showed an increase in C mineralization in both planted treatments and changes in N dynamics. As the roots had no physical contact with the soil due to the nylon membrane, the changes in the soil must have been consequence of root exudation. The contrasting sugar and aminoacid root content, together with the citrate concentration in soil solut ion extract and the C mineralization data, indicate that exudate composition changed due to the plants N status. The data indicates that the plants in the –N treatment exudated more organic acids than the plants of the +N treatment. Still the exudate comp osition of the plants with the +N treatment may had a higher energetic content and thus affected differentl y the soil microbial communities. The δ13C data indicate that the N deficient plants affected a higher volume of soil than the plants of the +N treatment. All this together shows different priming mechanisms were dominant due to the plants N status. As the plants were N deficient, the mineralization of soil C was driven by the “N-mining” mechanism while in the soil of the +N planted treatment the dominant mechanism was “microbial stoichiometry”. This work demonstrates, to our knowledge, by the first time using the same plants, different priming mechanisms due to the plants N status. Thus highlighting, the importance of plants nutrient management in the rhizosphere C dynamics.
APA, Harvard, Vancouver, ISO, and other styles
13

Bader, Nicholas E. "Plant control of soil organic carbon accumulation /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2006. http://uclibs.org/PID/11984.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kranabetter, John Marty. "Pulp fibre waste as a soil amendment : rates of net carbon mineralization." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29193.

Full text
Abstract:
The potential for using RMP (refiner mechanical process) pulp mill fibre waste as a soil amendment was investigated by determining levels of net carbon mineralization. Under optimum conditions (laboratory incubation study), the pulp fibre waste, being a relatively homogeneous substrate, was found to mineralize at one rate of -0.0078 d⁻¹. In field applications the rate of net mineralization was slower, with rates of -0.0034 d⁻¹ and -0.0037 d⁻¹, as determined by soil respiration and litter bag trials, respectively. A loading effect was noted for this amendment, where increasing the levels of application was found to cause decreases in the mineralization rate. Using pulp fibre waste in forest landing rehabilitation appears to increase the levels of microbial activity in the surface horizon. The higher levels of productivity should lead to improvements in soil structure, and would be a better alternative to only tilling and fertilizing the soil.
Land and Food Systems, Faculty of
Graduate
APA, Harvard, Vancouver, ISO, and other styles
15

Morillo, Sierra Alberto. "Estudo do comportamento de residuos orgânicos no solo." Master's thesis, ISA/UTL, 2012. http://hdl.handle.net/10400.5/5468.

Full text
Abstract:
Mestrado em Engenharia do Ambiente - Instituto Superior de Agronomia
The food production is not only one of the main pillars of the Society but also, undoubtedly one of the most important. The final consumer is increasingly aware of the importance of food and, as such, requires for their benefit, greater quantity, variety and quality of food, and that food producers have to adapt without fail, innovating and improving their production techniques. Therefore it is necessary to call upon to the use of low-cost techniques which allow a quality and economically profitable sustainable production. Once the environmental degradation is increasing, and intensive crops are known to increase that impact, it is a smart option to resort to the use of organic residues as fertilizers which, in turn, are more environmentally friendly and economically profitable. We conducted a field test in order to study the behavior of different organic materials and its potential as crop fertilizer. The test was conducted using porous capsules and after the waste-filled capsules were buried, adjacent soil sampling was made, and this composition analyzed in order to determine its potential as a fertilizer. The mineralization of organic matter in the soil was also observed during the three months of the test (organic Matter, N, P and K).
APA, Harvard, Vancouver, ISO, and other styles
16

Faulconer, R. Donald. "Organic amendment effects on carbon and nitrogen mineralization in an Appaplachian minesoil." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-03042009-041319/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Zatta, Alessandro <1976&gt. "Soil organic carbon dynamics under perennial energy crops." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5921/.

Full text
Abstract:
The European renewable energy directive 2009/28/EC (E.C. 2009) provides a legislative framework for reducing GHG emissions by 20%, while achieving a 20% share of energy from renewable sources by 2020. Perennial energy crops could significantly contribute to limit GHG emissions through replacing equivalent fossil fuels and by sequestering a considerable amount of carbon into the soil through the large amounts of belowground biomass produced. The objective of this study is to evaluate the effects of land use change that perennial energy crops have on croplands (switchgrass) and marginal grasslands (miscanthus). For that purpose above and belowground biomass, SOC variation and Net Ecosystem Exchange were evaluated after five years of growth. At aboveground level both crops produced high biomass under cropland conditions as well as under marginal soils. At belowground level they also produced large amounts of biomass, but no significant influences on SOC in the upper layer (0-30 cm) were found. This is probably because of the "priming effect" that caused fast carbon substitution. In switchgrass only it was found a significant SOC increase in deeper layers (30-60 cm), while in the whole soil profile (0-60 cm) SOC increased from 42 to 51 ha-1. However, the short experimental periods (for both switchgrass and miscanthus), in which land use change was evaluated, do not permit to determine the real capacity of perennial energy crops to accumulate SOC. In conclusion the large amounts of belowground biomass enhanced the SOC dynamic through the priming effect resulting in increased SOC in cropland but not in marginal grassland.
APA, Harvard, Vancouver, ISO, and other styles
18

Zakharova, Anna. "Soil organic matter dynamics: influence of soil disturbance on labile pools." Thesis, University of Canterbury. School of Biological Sciences, 2014. http://hdl.handle.net/10092/9944.

Full text
Abstract:
Soils are the largest pool of carbon (C) in terrestrial ecosystems and store 1500 Gt of C in their soil organic matter (SOM). SOM is a dynamic, complex and heterogeneous mixture, which influences soil quality through a wide range of soil properties. Labile SOM comprises a small fraction of total SOM (approximately 5%), but due to its rapid turnover has been suggested to be most vulnerable to loss following soil disturbance. This research was undertaken to examine the consequences of soil disturbance on labile SOM, its availability and protection in soils using the isotopic analysis of soil-respired CO₂ (δ¹³CO₂). A range of soils were incubated in both the short- (minutes) and long-term (months) to assess changes in labile SOM. Shifts in soil-respired δ¹³CO₂ over the course of soil incubations were found to reflect changes in labile substrate utilisation. There was a rapid depletion of δ¹³CO₂ (from a starting range between -22.5 and -23.9‰, to between -25.8 and -27.5‰) immediately after soil sampling. These initial changes in δ¹³CO₂ indicated an increased availability of labile SOM following the disturbance of coring the soil and starting the incubations. Subsequently δ¹³CO₂ reverted back to the initial, relatively enriched starting values, but this took several months and was due to labile SOM pools becoming exhausted. A subsequent study was undertaken to test if soil-respired δ¹³CO₂ values are a direct function of the amount of labile SOM and soil physical conditions. A range of pasture soils were incubated in the short-term (300 minutes), and changes in soil-respired δ¹³CO₂ were measured along with physical and chemical soil properties. Equilibrium soil-respired δ¹³CO₂, observed after the initial rapid depletion and stabilisation, was a function of the amount of labile SOM (measured as hot water extractable C, HWEC), total soil C and soil protection capacity (measured as specific soil surface area, SSA). An independent experimental approach to assess the effect of SSA, where labile SOM was immobilised onto allophane – a clay mineral with large, active surface area – indicated limited availability of labile SOM through more enriched δ¹³CO₂ (in a range between -20.5 and -20.6 ‰) and a significant (up to three times) reduction in HWEC. In the third study, isotopic measurements were coupled with CO₂ evolution rates to directly test whether equilibrium soil-respired δ¹³CO₂ can reflect labile SOM vulnerability to loss. Soils were sampled from an experimental tillage trial with different management treatments (chemical fallow, arable cropping and permanent pasture) with a range of C inputs and soil disturbance regimes. Soils were incubated in the short- (300 minutes) and long-term (600 days) and changes in δ¹³CO₂ and respiration rates measured. Physical and chemical fractionation methods were used to quantify the amount of labile SOM. Pasture soils were characterised by higher labile SOM estimates (HWEC; sand-sized C; labile C respired during long-term incubations) than the other soils. Long-term absence of plant inputs in fallow soils resulted in a significant depletion of labile SOM (close to 50% based on sand-sized C and HWEC estimates) compared with pasture soils. The values of δ¹³CO₂ became more depleted in 13C from fallow to pasture soils (from -26.3 ‰ to -28.1 ‰) and, when standardised (against the isotopic composition of the solid soil material), Δ¹³CO₂ values also showed a decrease from fallow to pasture soils (from -0.3 ‰ to -1.1 ‰). Moreover, these patterns in isotopic measures were in strong agreement with the amount of labile SOM and its availability across the soils, and were best explained by the isotopic values of the labile HWEC fraction. Collectively, these results confirm that labile SOM availability and utilisation change immediately after soil disturbance. Moreover, isotopic analysis of soil-respired CO₂ is a powerful technique, which enables us to probe mechanisms and examine the consequences of soil disturbance on labile SOM by reflecting its availability and the degree of SOM protection.
APA, Harvard, Vancouver, ISO, and other styles
19

Beniston, Joshua W. "Soil Organic Carbon Dynamics and Tallgrass Prairie Land Management." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253558307.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Singh, Mamta Hari Om. "Soil organic carbon pools in turfgrass systems of Ohio." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187117113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Mfombep, Priscilla M. "Soil carbon sequestration: factors influencing mechanisms, allocation and vulnerability." Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16981.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
Charles W. Rice
Increasing atmospheric CO2 concentrations and other greenhouse gases have been linked to global climate change. Soil organic C (SOC) sequestration in both agricultural and native ecosystems is a plausible option to mitigate increasing atmospheric CO2 in the short term. Laboratory and field studies were conducted to (1) understand the influence of soil water content on the temperature response of SOC mineralization (2) investigate burn and nutrient amendment effects on biogeochemical properties of tallgrass prairie and (3) assess perennial and annual plant management practices on biophysical controls on SOC dynamics. The laboratory study was conducted using soils collected from an agricultural field, currently planted to corn (C4 crop), but previously planted to small grain (C3) crops. The changes in cultivated crops resulted in a δ¹³C isotopic signature that was useful in distinguishing older from younger soil derived CO2-C during SOC mineralization. Soils were incubated at 15, 25 and 35 oC, under soil water potentials of -1, -0.03 and -0.01 MPa. Soil water content influenced the effect of temperature on SOC mineralization. The impact of soil water on temperature effect on SOC mineralization was greater under wetter soil conditions. Both young and older SOC were temperature sensitive, but SOC loss depended on the magnitude of temperature change, soil water content and experiment duration. Microbial biomass was reduced with increasing soil water content. The first field experiment investigated burn and nutrient amendment effects on soil OC in a tallgrass prairie ecosystem. The main plots were burned (B) and unburned (UB) tallgrass prairie and split plots were nutrient amendments (N, P or N+P including controls). Vegetation was significantly altered by burning and nutrient amendment. Treatment effects on either TN or SOC were depth-specific with no impact at the cumulative 0-30 cm depth. The P amendment increased microbial biomass at 0-5 cm which was higher in unburned than burned. However, at 5-15 cm depth N amendment increased microbial biomass which was higher in burned than unburned. In conclusion, soil OC in both burned and unburned tallgrass prairie may have a similar trajectory however; the belowground dynamics of the burned and unburned tallgrass prairie are apparently different. Another field experiment assessed SOC dynamics under perennial and annual plant management practices. The main plots were grain sorghum (Sorghum bicolor) planted in no-tillage (NT) or continuous tillage (CT), and replanted native prairie grass, (Andropogon gerardii) (RP). The spit plots were phosphorus (+P) and control without P (-P). The P amendment was used to repress arbuscular mycorrhizal fungi (AMF), known to influence soil aggregation. The macroaggregate >250 µm, SOC and TN were higher in RP and NT than CT. The relative abundances of AMF and saprophytic fungi were greater with less soil disturbance in RP and NT than in CT. Therefore, less soil disturbance in RP and NT increased AMF and fungal biomasses. The higher relative abundances of AMF and fungi with less soil disturbance increased macroaggregate formation in RP and NT, which resulted in higher SOC sequestration in RP and NT than CT.
APA, Harvard, Vancouver, ISO, and other styles
22

Pereira, Osvaldo José Ribeiro. "Mapping soil organic carbon storage in deep soil horizons of Amazonian Podzols." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/64/64135/tde-14062016-113621/.

Full text
Abstract:
The Podzols of the world are divided into intra-zonal and zonal according to then location. Zonal Podzols are typical for boreal and taiga zone associated to climate conditions. Intra-zonal podzols are not necessarily limited by climate and are typical for mineral poor substrates. The Intra-zonal Podzols of the Brazilian Amazon cover important surfaces of the upper Amazon basin. Their formation is attributed to perched groundwater associated to organic matter and metals accumulations in reducing/acidic environments. Podzols have a great capacity of storing important amounts of soil organic carbon in deep thick spodic horizons (Bh), in soil depths ranging from 1.5 to 5m. Previous research concerning the soil carbon stock in Amazon soils have not taken into account the deep carbon stock (below 1 m soil depth) of Podzols. Given this, the main goal of this research was to quantify and to map the soil organic carbon stock in the region of Rio Negro basin, considering the carbon stored in the first soil meter as well as the carbon stored in deep soil horizons up to 3m. The amount of soil organic carbon stored in soils of Rio Negro basin was evaluated in different map scales, from local surveys, to the scale of the basin. High spatial and spectral resolution remote sensing images were necessary in order to map the soil types of the studied areas and to estimate the soil carbon stock in local and regional scale. Therefore, a multi-sensor analysis was applied with the aim of generating a series of biophysical attributes that can be indirectly related to lateral variation of soil types. The soil organic carbon stock was also estimated for the area of the Brazilian portion of the Rio Negro basin, based on geostatistical analysis (multiple regression kriging), remote sensing images and legacy data. We observed that Podzols store an average carbon stock of 18 kg C m-2 on the first soil meter. Similar amount was observed in adjacent soils (mainly Ferralsols and Acrisols) with an average carbon stock of 15 kg C m-2. However if we take into account a 3 m soil depth, the amount of carbon stored in Podzols is significantly higher with values ranging from 55 kg C m-2 to 82 kg C m-2, which is higher than the one stored in adjacent soils (18 kg C m-2 to 25 kg C m-2). Given this, the amount of carbon stored in deep soil horizons of Podzols should be considered as an important carbon reservoir, face a scenario of global climate change
Os Espodossolos podem ser divididos em zonais e intrazonais de acordo com área onde ocorrem. Os Espodossolos zonais são típicos de áreas boreais e taiga, delimitados por condições climáticas. Já os intrazonais não são condicionados pelo clima. Os Espodossolo intrazonais brasileiros ocupam uma grande extensão da alta bacia amazônica, tendo sua formação atribuída à ocorrência de lençóis freáticos suspensos associados à acumulação de complexos organometálicos em ambientes ácidos redutores. Esses solos tem a capacidade de estocar grandes quantidades de carbono orgânico em horizontes espódicos profundos (Bh), em profundidades que podem variar de 1,5m a 5m. Pesquisas atuais relacionadas ao estoque de carbono em solos amazônicos, não levam em consideração os estoques encontrados no horizonte Bh (abaixo de 1m de profundidade). Sendo assim, o principal objetivo da presente pesquisa foi quantificar e mapear o estoque de carbono nos solos da bacia do Rio Negro, tendo-se em vista aquele estocado no primeiro metro de solo, bem como o carbono armazenado em até 3m de profundidade. A quantidade de carbono orgânico estocado nos solos da bacia do Rio Negro foi estimada em diferentes escalas de mapeamento, desde mapas locais até a escala da bacia do Rio Negro. Imagens de sensoriamento remoto de alta resolução espacial e espectral foram essenciais para viabilizar o mapeamento dos solos nas áreas estudadas e permitir a estimativa do estoque de carbono. Uma análise multisensor foi adotada buscando-se gerar informações biofísicas indiretamente associadas à variação lateral dos tipos de solo. Após o mapeamento do estoque de carbono em escala regional, partiu-se para a estimativa na escala da bacia do Rio Negro, com base em análise geoestatística (krigagem por regressão linear), imagens de sensoriamento remoto e base de dados de domínio público. Após o mapeamento do estoque de carbono na escala da bacia, constatou-se que os Espodossolos têm um estoque médio de 18 kg C m-2, para 1m de profundidade, valor similar ao observado em solos adjacentes (Latossolos e Argissolos) os quais tem um estoque de 15 kg C m-2. Quando são considerados os estoques profundos, até 3m, a quantidade de carbono dos Espodossolos é superior com valores variando de 55 kg C m-2 a 82 kg C m-2. Estoque relativamente maior que aquele observado em solos adjacentes para esta profundidade (18 kg C m-2 a 25 kg C m-2). Portanto, o estoque de carbono profundo dos Espodossolos, não deve ser negligenciado levando-se em conta cenários futuros de mudanças climáticas
APA, Harvard, Vancouver, ISO, and other styles
23

Nilsson, K. Sofia. "Modelling soil organic matter turnover /." Uppsala : Dept. of Ecology and Environmental Research, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/s326.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Falloon, Peter Daniel. "Large scale spatial modelling of soil organic carbon dynamics." Thesis, University of Nottingham, 2001. http://eprints.nottingham.ac.uk/12338/.

Full text
Abstract:
Under the Kyoto Protocol, participating nations are required to reduce National CO₂emissions according to their 'reduction commitment' or 'quantified emissions limitation', over the first commitment period, 2008-2012. One way in which nations could achieve this would be by increasing soil carbon storage through different management practices. Most former estimates of regional scale C sequestration potential have made use of either linear regressions based on long-term experimental data, whilst some have used dynamic soil organic matter (SOM) models linked to spatial databases. Few studies have compared these two methods, and none have compared regressions with two different SOM models. This thesis presents a case study investigation of the potential of different land management practices to sequester carbon in soil in arable land, and preliminary estimates of other potential C savings. Two dynamic SOM models were chosen for this study, RothC (a soil process model) and CENTURY (a general ecosystem model). RothC and CENTURY are the two most widely used and validated SOM models world-wide. Methods were developed to enhance use and comparability of the models in a predictive mode. These methods included a) estimation of the IOM pool for RothC, b) estimation of C inputs to soil, c) investigation of pool size distributions in CENTURY, and d) creation of a program to allow use of C inputs derived from CENTURY with the RothC model. This thesis has also investigated the importance of errors in C inputs to soil for predictive SOM modelling, and performed sensitivity analyses to investigate how errors in setting the size refractory SOM pools might affect predictions of SOC. RothC and CENTURY were compared at the site scale using datasets from seven European long-term experiments, in order to a) verify their ability to predict SOC changes under changes in land use and management relevant to studies of C sequestration potential, b) evaluate model performance under European climatic conditions, and c) compare the performance of the two models. Finally, a Geographic Information System (GIS) containing soil, land use and climate layers, was assembled for a case study region in Central Hungary. GIS interfaces were developed for the RothC and CENTURY models, thus linking them to spatial datasets at the regional level. This allowed a comparison of estimates of the C sequestration potential of different land management practices obtained using the two models and using regression-based estimates. Although estimates obtained by the different approaches were of the same order of magnitude, differences were observed. Encouragingly, some of the land management scenarios studied here showed sufficient C mitigation potential to meet Hungarian CO₂reduction commitments.
APA, Harvard, Vancouver, ISO, and other styles
25

Sajedi, Toktam. "The effects of excessive moisture on soil carbon and nitrogen mineralization and forest productivity." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/27030.

Full text
Abstract:
Conifers of regenerating cedar-hemlock (CH) forests exhibit slow growth and nutrient deficiencies (N and P), which are not observed on adjacent cutovers of hemlock-amabilis fir (HA) forests. I test the theory that excessive moisture and resulting low oxygen availability in CH sites create the low N supply and poor growth in these ecosystems. A field experiment determined: 1) whether CH and HA forests differ in soil moisture and aeration, 2) whether decomposition rate and soil C stores differ in CH and HA forests, 3) whether composition of plant communities are related to soil moisture and aeration, and 4) the impact of harvesting CH and HA forests on moisture and aeration conditions. A laboratory experiment investigated the effects of moisture levels, from field capacity to saturation level, on C and N mineralization rates. Lastly, a field trial was carried out to assess drainage as a potential forest management solution in wetland forests by comparing C dynamics in drained and un-drained sites. As hypothesized, CH forests were wetter, less aerated, had shallower aerated depth and higher frequency of anaerobic conditions compared with HA forests. Composition of plant species was related to soil moisture and aeration, however plant diversity was not. Soil aeration was the most important factor, explaining 25% of the variability of species within plant communities. Compared with HA forests with well-aerated soils, soils in HA clearcuts were anaerobic, had slower decomposition rate and shallower rooting depth. Microbial biomass, C mineralization and the soluble inorganic N: soluble organic N (SIN:SON) ratio all declined under water-saturated conditions. Concentrations of SIN increased with increasing moisture in HA soils; whereas in CH humus and soil, the SIN pool was small and decreased with increasing moisture. The results indicate that the low N availability on CH sites results from synergistic effects of litter quality and greater frequency of waterlogging. Drainage could be a useful silvicultural practice for improving the productivity of cedar-swamp ecosystems without stimulating loss of soil C, provided that redox levels are maintained at less than +300 mV, at which level oxygen is sufficient for plant growth but not for aerobic microbial decomposition.
APA, Harvard, Vancouver, ISO, and other styles
26

Gottschalk, Pia. "Modelling soil organic carbon dynamics under land use and climate change." Thesis, University of Aberdeen, 2012. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=186643.

Full text
Abstract:
Soil organic matter (SOM) models simplify the complex turnover dynamics of organic matter in soils. Stabilization mechanisms are currently thought to play a dominant role in SOM turnover but they are not explicitly accounted for in most SOM models. One study addresses the implementation of an approach to account for the stabilization mechanism of physical protection in the SOC model RothC using 13C abundance measurements in conjunction with soil size fractionation data. SOM models are increasingly used to support policy decisions on carbon (C) mitigation and credibility of model predictions move into the focus of research. A site scale, Monte Carlo based model uncertainty analysis of a SOM model was carried out. One of the major results was that uncertainty and factor importance depend on the combination of external drivers. A different approach was used with the SOM ECOSSE model to estimate uncertainties in soil organic carbon (SOC) stock changes of mineral and organic soils in Scotland. The average statistical model error from site scale evaluation was transferred to regional scale uncertainty to give an indication of the uncertainty in national scale predictions. National scale simulations were carried out subsequently to quantify SOC stock changes differentiating between organic and mineral soils and land use change types. Organic soils turned out to be most vulnerable to SOC losses in the last decades. The final study of this thesis emplyed the RothC model to simulate possible futures of global SOC stock changes under land use change and ten different climate scenarios. Land use change turned out to be of minor importance. The regionally balance between soil C inputs and decomposition leads to a diverse map of regional C gains and losses with different degrees of certainty.
APA, Harvard, Vancouver, ISO, and other styles
27

Bowen, Susan. "Biologically relevant characteristics of dissolved organic carbon (DOC) from soil." Thesis, University of Stirling, 2006. http://hdl.handle.net/1893/115.

Full text
Abstract:
Of the organic matter in soils typically < 1% by weight is dissolved in the soil solution (dissolved organic matter; DOM). DOM is a continuum of molecules of various sizes and chemical structures which has largely been operationally defined as the fraction of total organic carbon in an aqueous solution that passes through a 0.45 µm filter. Although only representing a relatively small proportion, it represents the most mobile part of soil organic carbon and is probably enriched with highly labile compounds. DOM acts as a source of nutrients for both soil and aquatic micro-organisms, influences the fate and transport of organic and inorganic contaminants, presents a potential water treatment problem and may indicate the mobilisation rate of key terrestrial carbon stores. The objective of this research was to ascertain some of the biologically relevant characteristics of soil DOM and specifically to determine: (1) the influence of method and time of extraction of DOM from the soil on its biochemical composition and concentration; (2) the dynamics of DOM biodegradation; and, (3) the effects of repeated applications of trace amounts of DOM on the rate of soil carbon mineralization. To examine the influence of method and time of extraction on the composition and concentration of DOM, soil solution was collected from a raised peat bog in Central Scotland using water extraction, field suction lysimetry, and centrifugation techniques on a bimonthly basis over the period of a year (Aug 2003 – Jun 2004). Samples were analysed for dissolved organic carbon (DOC), dissolved organic nitrogen (DON), protein, carbohydrate and amino acid content. For all of the sampled months except June the biochemical composition of DOC varied with extraction method, suggesting the biological, chemical and/or physical influences on DOC production and loss are different within the differently sized soil pores. Water-extractable DOC generally contained the greatest proportion of carbohydrate, protein and/or amino acid of the three extraction methods. Time of extraction had a significant effect on the composition of water- and suction-extracted DOC: the total % carbohydrate + protein + amino acid C was significantly higher in Oct than Dec, Feb and Jun for water-extracted DOC and significantly greater in Dec than Aug, Apr and Jun for suction-extracted DOC. There was no significant change in the total % carbohydrate + protein + amino acid C of centrifuge-extracted DOC during the sampled year. Time of extraction also had a significant effect on the % protein + amino acid N in water- and centrifuge-extracted DON: Oct levels were significantly higher than Feb for water-extracted DON and significantly higher in Aug and Apr for centrifuge-extracted DON. Concentrations of total DOC and total DON were also found to be dependent on time of extraction. DOC concentrations showed a similar pattern of variation over the year for all methods of extraction, with concentrations relatively constant for most of the year, rising in April to reach a peak in Jun. DON concentrations in water- and centrifuge-extracted DON peaked later, in Aug. There were no significant seasonal changes in the concentration of suction-extracted DON. A lack of correlation between DOC and DON concentrations suggested that DOC and DON production and/or loss are under different controls. Laboratory-based incubation experiments were carried out to examine the dynamics of DOC biodegradation. Over a 70 day incubation period at 20oC, the DOM from two types of peat (raised and blanket) and four samples of a mineral soil (calcaric gleysol), each previously exposed to a different management strategy, were found to be comprised of a rapidly degradable pools (half-life: 3 – 8 days) and a more stable pool (half-life: 0.4 to 6 years). For all soil types/treatments, excepting raised peat, the total net loss of DOC from the culture medium was greater than could be accounted for by the process of mineralization alone. A comparison between net loss of DOC and loss of DOC to CO2 and microbial biomass determined by direct microscopy suggested that at least some of the differences between DOC mineralised and net DOC loss were due to microbial assimilation and release. Changes in the microbial biomass during the decomposition process showed proliferation followed by decline over 15 days. The protein and carbohydrate fractions showed a complex pattern of both degradation and production throughout the incubation. The effects of repeated applications of trace amounts of litter-derived DOC on the rate of carbon mineralization over a 35 day period were investigated in a laboratory based incubation experiment. The addition of trace amounts of litter-derived DOC every 7 and 10.5 days appeared to ‘trigger’ microbial activity causing an increase in CO2 mineralisation such that extra C mineralised exceeded DOC additions by more than 2 fold. Acceleration in the rate of extra C mineralised 7 days after the second addition suggested that either the microbial production of enzymes responsible for biodegradation and/or an increase in microbial biomass, are only initiated once a critical concentration of a specific substrate or substrates has been achieved. The addition of ‘DOC + nutrients’ every 3.5 days had no effect on the total rate of mineralization. To date DOC has tended to be operationally defined according to its chemical and physical properties. An understanding of the composition, production and loss of DOC from a biological perspective is essential if we are to be able to predict the effects of environmental change on the rate of mineralization of soil organic matter. This research has shown that the pools of DOC extracted, using three different methods commonly used in current research, are biochemically distinct and respond differently to the seasons. This suggests some degree of compartmentalisation of biological processes within the soil matrix. The observed similarities between the characteristics of the decomposition dynamics of both peatland and agricultural DOC suggests that either there is little difference in substrate quality between the two systems or that the microbial community have adapted in each case to maximise their utilisation of the available substrate. The dependency of the concentration and biochemical composition of DOC on the seasons requires further work to ascertain which biotic and/or abiotic factors are exerting control. Published research has focussed on factors such as temperature, wet/dry cycles, and freeze/thawing. The effect of the frequency of doses of trace amounts of DOC on increasing the rate of soil organic C mineralization, evident from this research, suggests that the interval between periods of rainfall may be relevant. It also emphasises how it can be useful to use knowledge of a biological process as the starting point in determining which factors may be exerting control on DOC production and loss.
APA, Harvard, Vancouver, ISO, and other styles
28

Uddin, Jashim. "Soil organic carbon dynamics in two major alluviums of Bangladesh." Thesis, Kingston University, 2016. http://eprints.kingston.ac.uk/35756/.

Full text
Abstract:
This study was designed to evaluate the status, distribution, spatial variability, controlling factors, storage, and change in the levels of soil organic carbon (SOC) in two major alluviums of Bangladesh. The two alluviums the Brahmaputra and the Ganges were selected because they occupy a large area of Bangladesh with a wide diversity of agro-ecosystems. SOC levels were studied across the four sub-sites in the aforementioned alluviums at 0-30 cm depths to evaluate their spatial and temporal variability. The sub-sites, Delduar and Melandah, are in the Brahmaputra alluvium. The other two sub-sites, Mirpur and Fultala, are in the Ganges alluvium. Additionally, SOC and total nitrogen (TN) distribution were studied across eight soil profiles (0-120 cm depths) under the two alluviums. The results revealed that the SOC contents were very low in all the sites. The classical statistics showed that the variability of the SOC was moderate across the four sub-sites. The SOC distribution was positively skewed across all the sub-sites except Fultala. A semivariogram model showed there was generally a weak spatial correlation (R2 < 0.5) of SOC in the study sites. A relatively large sampling grid (1600m) and intensive soil management were perhaps responsible for the observed weak spatial dependency. SOC variability is lower across the highland (HL) and medium highland (MHL) sites than the medium lowland (MLL) and lowland (LL) sites. Changes in land use and land cover were also more intensive in the HL and MHL sites than the MLL and LL sites. The reason for low SOC in the HL and MHL sites may be due to their lower inundation level, e.g., land levels in relation to flooding depths, together with greater intensity of use. Temporal variability of SOC datasets revealed that SOC has declined across all the sites during the last 20-25 years due to the intensive land use with little or no crop residue inputs. It is plausible that SOC has declined to an equilibrium level, and further decline may not occur unless land use intensity changes further. The findings show that SOC is positively related to the TN and clay contents in the soils. This is not surprising as SOC is a major pool of TN, and soil clay fraction is known to protect SOC degradation. SOC and TN storage is higher in the surface soil horizon (0-20 cm) than the sub surface soils. Topsoil horizon is tilled and receives greater crop residue inputs which are subsequently mineralized resulting in higher accumulation of SOC and TN. It appears that inundation land types and land management practices may be the major driving factors of SOC storage and distribution across the study sites.
APA, Harvard, Vancouver, ISO, and other styles
29

Deiss, Leonardo. "Soil Organic Phosphorus and carbon on agricultural and natural ecosystems." reponame:Repositório Institucional da UFPR, 2016. http://hdl.handle.net/1884/46044.

Full text
Abstract:
Orientador : Dr. Anibal de Moraes, Dr Jeferson Dieckow e Dr. Alan J. Franzluebbers
Tese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Agrárias, Programa de Pós-Graduação em Agronomia. Defesa: Curitiba, 24/10/2016
Inclui referências: f. 47-50;72-77;97-101
Área de concentração: Produção vegetal
Resumo: A disponibilidade de solos e seus recursos está reduzindo com a evolução da humanidade e os impactos negativos, decorrentes do mau uso dos solos, estão afetando o desenvolvimento sustentável da agropecuária mundial. Portanto, se faz necessário o desenvolvimento de alternativas que permitam um uso mais sustentável dos solos, para atender as demandas no setor de produção agropecuária do século 21. O objetivo geral desta tese foi estudar solos de sistemas de produção agropecuária que buscam a intensificação de uso sustentável, ou de ecossistemas naturais, como uma etapa para melhor entender dinâmicas complexas de nutrientes. Foram estudados a composição de fósforo (P) no solo em sistemas integrados de produção agropecuária (SIPA) no subtrópico brasileiro, bem como em ecossistemas naturais em escala global e por fim, a dinâmica do carbono (C) orgânico em um sistema agroflorestal localizado na Carolina do Norte, Estados Unidos da América. O primeiro objetivo específico foi determinar a composição de P no solo de agroecossitemas com baixa e alta complexidade trófica. Especificamente, objetivou-se qualificar e quantificar os componentes orgânicos e inorgânicos de P usando extratos de NaOH-EDTA e espectroscopia de ressonância magnética nuclear, para posteriormente caracterizar a ciclagem de P em resposta ao aumento da complexidade trófica com SIPA no subtrópico brasileiro. A presença do pastejo resultou em maior concentração de ortofosfato total e biodisponível (i.e., Mehlich-I) e também diminuiu a concentração de P orgânico, incluindo os inositol fosfatos. O pastejo aumentou a biodisponibilidade de P e reduziu a concentração de P orgânico recalcitrante (i.e., inositol fosfatos), portanto, concluiu-se que a integração entre lavoura e pecuária pode ser uma alternativa sustentável para aumentar o uso do P nos sistemas de produção no subtrópico brasileiro. O segundo objetivo específico foi analisar com meta-regressão (meta-análise), a dinâmica do P em diferentes texturas de solo e de clima em escala global, relacionando os grupos funcionais de P com o pH, concentração de C, relação CN e relação CP do solo em ecossistemas naturais. A composição de P orgânico teve uma resposta complexa à estas características do solo. A relação de monoesteres para o P orgânico aumentou com o aumento do pH, e diminuiu com o decréscimo da concentração de C, relação CN e relação CP, sem haver resposta particular para os locais e textura do solo. Em contraste, a relação de diesteres para o P orgânico bem como a relação diesteres para monoesteres teve o comportamento inverso, diminuindo com o aumento do pH, e aumentando com o aumento da concentração de C, relação carbono-nitrogênio (CN) e relação carbono-fósforo (CP). Portanto, concluiu-se que o pH, a concentração de C e as relações CN e CP são importantes fatores na determinação das proporções dos grupos funcionais de P orgânico do solo. O terceiro objetivo específico foi determinar a distribuição espacial de atributos do solo (textura e frações de C orgânico do solo) usando a combinação de espectroscopia de reflectância no infravermelho proximal (NIRS) e geoestatística, em um experimento de sistema agroflorestal localizado na Carolina do Norte, Estados Unidos da América. O NIRS foi uma ferramenta útil para predizer a textura do solo e as frações de C do solo. Na fase de calibração e validação do NIRS, o modelo de máquina de vetores de suporte teve uma performance melhor do que o modelo de mínimos quadrados parciais na predição das características do solo. A geoestatística aumentou os erros em relação àquales obtidos somente com o NIRS. Entretanto, a geoestatística possibilitou realizar a exploração das características espaciais da textura do solo e frações de C. A combinação do NIRS com a geoestatística pode ser utilizada para avaliação de atributos do solo deste sistema agroflorestal e de outros sistemas de produção, permitindo assim aumentar a sustentabilidade dos agroecossistemas através do manejo com agricultura de precisão. Palavras chave: integração lavoura-pecuária, plantio direto, ciclagem de nutrientes.
Abstract: Soil resources are narrowing as human evolution occurs and the negative feedbacks resulting from soil misuse are affecting agriculture's sustainable development worldwide. Therefore, alternatives that allow a more sustainable use of soils are necessary, to fill demands of the 21-century agriculture. The general objective of this thesis was to evaluate soils of agricultural systems that pursue sustainable intensification and natural ecosystems as a step to understand complex nutrient dynamics, which knowledge might help to adapt management by agriculture. It was studied the soil phosphorus compounds on integrated crop-livestock systems in Subtropical Brazil and on natural ecosystems across the world and soil organic carbon (C) dynamics in an agroforestry system on a Coastal Plain in United States of America. The first specific objective was to determine soil P composition from agro-ecosystems with low and high trophic complexity. Specifically, we wanted to qualify and quantify soil organic and inorganic P fractions using NaOH-EDTA extraction and nuclear magnetic resonance spectroscopy, and characterize P cycling in response to increasing complexity with integrated crop-livestock systems in subtropical Brazil. Our results were that in these agro-ecosystems, grazing compared with nograzing had greater soil P content as total and bioavailable (i.e., Mehlich-I) orthophosphate and lower soil organic P and fewer monoesters, including inositol phosphates. Grazing increased P bioavailability and reduced recalcitrant organic P (i.e., inositol phosphates) concentration in soil; therefore, we conclude that integrating crop and livestock systems can be a sustainable alternative to improve P use in farming systems of subtropical Brazil. The second specific objective was to analyze through meta-regression, soil organic phosphorus dynamics among different soil textures and locates at global scale, relating its organic functional groups with soil pH, C concentration, carbon-to-nitrogen (CN) ratio and carbon-to-phosphorus (CP) ratio on natural ecosystems. We found that soil organic P composition had a complex response to those soil characteristics. Monoesters-to-organic P ratio increased as pH increased, and decreased as C concentration, CN ratio and CP ratio increased, with no particular response among locates and soil textures. In contrast, diesters-to-organic P ratio as well as diesters-to-monoesters ratio had the opposite behavior, decreasing its concentrations as pH increased, and increasing as soil C concentration, CN ratio and CP ratio increased. Therefore we concluded that soil pH, C concentration, CN ratio and CP ratio are important factors in determining proportions of soil organic P functional groups. The third specific objective was to determine the spatial distribution soil properties (soil texture and organic C fractions) using a combination of near infrared spectroscopy and geostatistics, in an emerging agroforestry system experiment on a Coastal Plain site in North Carolina. Nearinfrared spectroscopy was a useful tool to predict soil texture and soil organic carbon (SOC) fractions. Using chemometrics to calibrate NIRS, a support vector machine model performed better than a partial least squares model to predict soil texture (sand and clay) and SOC fractions (total, particulate, and mineralizable C determined as the flush of CO2-C following rewetting of dried soil). Geostatistics increased errors of soil properties compared to those obtained solely by NIRS prediction. Nonetheless, geostatistics was useful to explore spatial patterns of soil texture and SOC fractions. Combining NIRS and geostatistics can be promoted for soil evaluation of this agroforestry system and in other landscapes to increase sustainability of agroecosystems through field-specific precision management. Key words: mixed crop-livestock, no-tillage, nutrient cycling.
APA, Harvard, Vancouver, ISO, and other styles
30

Blumenthal, Kinsey Megan. "Predicting Spatial Variability of Soil Organic Carbon in Delmarva Bays." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/73692.

Full text
Abstract:
Agricultural productivity, ecosystem health, and wetland restoration rely on soil organic carbon (SOC) as vital for microbial activity and plant health. This study assessed: (1) accuracy of topographic-based non-linear models for predicting SOC; and (2) the effect of analytic strategies and soil condition on performance of spectral-based models for predicting SOC. SOC data came from 28 agriculturally converted Delmarva Bays sampled down to 1 meter. R2 was used as an indicator of model performance. For topographic-based modeling, correlation coefficients and condition indices reduced 50 terrain-related values to three datasets of 16, 11, and 7 variables. Five types of non-linear models were examined: Generalized Linear Mondel (GLM) ridge, GLM LASSO, Generalized Additive Model (GAM) non-penalized, GAM cubic splice, and partial least-squares regression. Carbon stocks varied widely, 50 to 219 Mg/ha, with the average around 93 Mg/ha. Topography shared a weak relationship to SOC with most attributes showing a correlation coefficient less than 0.3. GLM ridge and both GAMs achieved moderate accuracy at least once, usually using the 16 or 11 variable datasets. GAMs consistently performed the best. Prior to carbon analysis, hyperspectral signatures were recorded for the topmost soil horizons under different conditions: moist unground, dry unground, and dry ground. Twenty-four math treatment and smoothing technique combinations were run on each hyperspectral dataset. R2 varied greatly within datasets depending on analytic strategy, but all datasets returned an R2 greater than 0.9 at least twice. Moist unground soil models outperformed the others when comparing the best models among datasets.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
31

Dunlap, Thomas M. "Aquatic Priming Effects in the York River Estuary and Implications for Dissolved Organic Carbon Mineralization." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3624.

Full text
Abstract:
The priming effect (PE), characterized as the enhanced microbial processing of bio-recalcitrant organic matter with the addition of labile substrates, has been hypothesized to moderate carbon (C) cycling in aquatic systems. In this study, aquatic PEs were evaluated through bacterial respiration and dissolved organic C consumption in incubations of water collected from three locations along the York River estuary. Incubations from White’s Landing on the Pamunkey River, a tidal freshwater tributary of the York, and from Croaker Landing in the middle of the estuary, displayed positive PEs when amended with labile C. In contrast, amended incubations from Gloucester Point, near the mouth of the estuary, displayed negative PEs, or reduced relative C metabolism, based on our calculations, This study provides empirical evidence for the occurrence of aquatic PEs and serves to elucidate how they may enhance or retard the processing and mineralization of organic C during transport to the ocean.
APA, Harvard, Vancouver, ISO, and other styles
32

Wong, Vanessa, and u2514228@anu edu au. "The effects of salinity and sodicity on soil organic carbon stocks and fluxes." The Australian National University. Faculty of Science, 2007. http://thesis.anu.edu.au./public/adt-ANU20080428.223144.

Full text
Abstract:
Soil is the world’s largest terrestrial carbon (C) sink, and is estimated to contain approximately 1600 Pg of carbon to a depth of one metre. The distribution of soil organic C (SOC) largely follows gradients similar to biomass accumulation, increasing with increasing precipitation and decreasing temperature. As a result, SOC levels are a function of inputs, dominated by plant litter contributions and rhizodeposition, and losses such as leaching, erosion and heterotrophic respiration. Therefore, changes in biomass inputs, or organic matter accumulation, will most likely also alter these levels in soils. Although the soil microbial biomass (SMB) only comprises 1-5% of soil organic matter (SOM), it is critical in organic matter decomposition and can provide an early indicator of SOM dynamics as a whole due to its faster turnover time, and hence, can be used to determine soil C dynamics under changing environmental conditions.¶ Approximately 932 million ha of land worldwide are degraded due to salinity and sodicity, usually coinciding with land available for agriculture, with salinity affecting 23% of arable land while saline-sodic soils affect a further 10%. Soils affected by salinity, that is, those soils high in soluble salts, are characterised by rising watertables and waterlogging of lower-lying areas in the landscape. Sodic soils are high in exchangeable sodium, and slake and disperse upon wetting to form massive hardsetting structures. Upon drying, sodic soils suffer from poor soil-water relations largely related to decreased permeability, low infiltration capacity and the formation of surface crusts. In these degraded areas, SOC levels are likely to be affected by declining vegetation health and hence, decreasing biomass inputs and concomitant lower levels of organic matter accumulation. Moreover, potential SOC losses can also be affected from dispersed aggregates due to sodicity and solubilisation of SOM due to salinity. However, few studies are available that unambiguously demonstrate the effect of increasing salinity and sodicity on C dynamics. This thesis describes a range of laboratory and field investigations on the effects of salinity and sodicity on SOC dynamics.¶ In this research, the effects of a range of salinity and sodicity levels on C dynamics were determined by subjecting a vegetated soil from Bevendale, New South Wales (NSW) to one of six treatments. A low, mid or high salinity solution (EC 0.5, 10 or 30 dS/m) combined with a low or high sodicity solution (SAR 1 or 30) in a factorial design was leached through a non-degraded soil in a controlled environment. Soil respiration and the SMB were measured over a 12-week experimental period. The greatest increases in SMB occurred in treatments of high-salinity high-sodicity, and high-salinity low-sodicity. This was attributed to solubilisation of SOM which provided additional substrate for decomposition for the microbial population. Thus, as salinity and sodicity increase in the field, soil C is likely to be rapidly lost as a result of increased mineralisation.¶ Gypsum is the most commonly-used ameliorant in the rehabilitation of sodic and saline-sodic soils affected by adverse soil environmental conditions. When soils were sampled from two sodic profiles in salt-scalded areas at Bevendale and Young, SMB levels and soil respiration rates measured in the laboratory were found to be low in the sodic soil compared to normal non-degraded soils. When the sodic soils were treated with gypsum, there was no change in the SMB and respiration rates. The low levels of SMB and respiration rates were due to low SOC levels as a result of little or no C input into the soils of these highly degraded landscapes, as the high salinity and high sodicity levels have resulted in vegetation death. However, following the addition of organic material to the scalded soils, in the form of coarsely-ground kangaroo grass, SMB levels and respiration rates increased to levels greater than those found in the non-degraded soil. The addition of gypsum (with organic material) gave no additional increases in the SMB.¶ The level of SOC stocks in salt-scalded, vegetated and revegetated profiles was also determined, so that the amount of SOC lost due to salinisation and sodication, and the increase in SOC following revegetation relative to the amount of SOC in a vegetated profile could be ascertained. Results showed up to three times less SOC in salt-scalded profiles compared to vegetated profiles under native pasture, while revegetation of formerly scalded areas with introduced pasture displayed SOC levels comparable to those under native pasture to a depth of 30 cm. However, SOC stocks can be underestimated in saline and sodic landscapes by setting the lower boundary at 30 cm due to the presence of waterlogging, which commonly occurs at a depth greater than 30 cm in saline and sodic landscapes as a result of the presence of high or perched watertables. These results indicate that successful revegetation of scalded areas has the potential to accumulate SOC stocks similar to those found prior to degradation.¶ The experimental results from this project indicate that in salt-affected landscapes, initial increases in salinity and sodicity result in rapid C mineralisation. Biomass inputs also decrease due to declining vegetation health, followed by further losses as a result of leaching and erosion. The remaining native SOM is then mineralised, until very low SOC stocks remain. However, the C sequestration potential in these degraded areas is high, particularly if rehabilitation efforts are successful in reducing salinity and sodicity. Soil ecosystem functions can then be restored if organic material is available as C stock and for decomposition in the form of either added organic material or inputs from vegetation when these salt-affected landscapes are revegetated.
APA, Harvard, Vancouver, ISO, and other styles
33

Widyastuti, Rahayu. "Soil fauna in rainfed paddy field ecosystems : their role in organic matter decomposition and nitrogen mineralization /." Göttingen : Cuvillier, 2002. http://www.gbv.de/dms/bs/toc/357724208.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Mishra, Umakant. "PREDICTING STORAGE AND DYNAMICS OF SOIL ORGANIC CARBON AT A REGIONAL SCALE." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1243890700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chen, Yujuan. "The Influence of Urban Soil Rehabilitation on Soil Carbon Dynamics, Greenhouse Gas Emission, and Stormwater Mitigation." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/51240.

Full text
Abstract:
Global urbanization has resulted in rapidly increased urban land. Soils are the foundation that supports plant growth and human activities in urban areas. Furthermore, urban soils have potential to provide a carbon sink to mitigate greenhouse gas emission and climate change. However, typical urban land development practices including vegetation clearing, topsoil removal, stockpiling, compaction, grading and building result in degraded soils. In this work, we evaluated an urban soil rehabilitation technique that includes compost incorporation to a 60-cm depth via deep tillage followed by more typical topsoil replacement. Our objectives were to assess the change in soil physical characteristics, soil carbon sequestration, greenhouse gas emissions, and stormwater mitigation after both typical urban land development practices and post-development rehabilitation. We found typical urban land development practices altered soil properties dramatically including increasing bulk density, decreasing aggregation and decreasing soil permeability. In the surface soils, construction activities broke macroaggregates into smaller fractions leading to carbon loss, even in the most stable mineral-bound carbon pool. We evaluated the effects of the soil rehabilitation technique under study, profile rebuilding, on soils exposed to these typical land development practices. Profile rebuilding incorporates compost amendment and deep tillage to address subsoil compaction. In the subsurface soils, profile rebuilding increased carbon storage in available and aggregate-protected carbon pools and microbial biomass which could partially offset soil carbon loss resulting from land development. Yet, urban soil rehabilitation increased greenhouse gas emissions while typical land development resulted in similar greenhouse gas emissions compared to undisturbed soils. Additionally, rehabilitated soils had higher saturated soil hydraulic conductivity in subsurface soils compared to other practices which could help mitigate stormwater runoff in urban areas. In our study, we found urban soil management practices can have a significant impact on urban ecosystem service provision. However, broader study integrating urban soil management practices with other ecosystem elements, such as vegetation, will help further develop effective strategies for sustainable cities.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
36

Siewert, Matthias. "High-­resolution mapping of soil organic carbon storage and soil properties in Siberian periglacial terrain." Licentiate thesis, Stockholms universitet, Institutionen för naturgeografi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-120275.

Full text
Abstract:
In the past years considerable attention has been given to soil organic carbon (SOC) stored in permafrost-affected soils in periglacial terrain. Studies have shown that these soils store around half the global SOC pool, making them a key component of the global carbon cycle. Much of the SOC presently stored in these soils has accumulated since the Pleistocene and is protected from decomposition and erosion by low temperatures close to or below the freezing point. This makes it vulnerable to remobilization under a warming climate. This thesis provides new data on SOC storage in three study areas in Siberian periglacial terrain. A high-resolution land cover classification (LCC) for each study area is used to perform detailed vertical and spatial partitioning of SOC. The results show that the vast majority (>86%) of the ecosystem carbon is stored in the top meter of soil. Low relative storage of carbon in plant phytomass indicates limited uptake potential by vegetation and emphasises the vulnerability of the SOC pool to geomorphic changes. Peat formation as well as cryoturbation are identified as the two main pedogenic processes leading to accumulation of SOC. Presence or absence of ice-rich Yedoma deposits determine soil formation and SOC storage at landscape scale. At local scale, periglacial landforms dominate SOC allocation in the tundra, while forest ecosystem dynamics and catenary position control SOC storage in the taiga. A large diversity of soil types is found in these environments and soil properties within pedons can be highly variable with depth. High-resolution satellite imagery allows upscaling of the SOC storage at unprecedented detail, but replication of soil pedons is a limiting factor for mapping of SOC in remote periglacial regions. Future research must look beyond traditional LCC approaches and investigate additional data-sources such as digital elevation models. The concept of state factors of soil formation is advocated as a framework to investigate present day and future SOC allocation in periglacial terrain.
APA, Harvard, Vancouver, ISO, and other styles
37

Harney, Pawel. "Hydrological carbon transport in the Abiskojokka catchment area : The relationship between soil organic carbon content and dissolved organic carbon concentrations in stream water." Thesis, Stockholms universitet, Institutionen för naturgeografi och kvartärgeologi (INK), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-108485.

Full text
Abstract:
Soils in permafrost regions hold substantial amounts of carbon, much of which has accumulated due to processes that are related to cold temperatures. A warming climate will alter the dynamics governing the fluxes of carbon within a system and consequently the pools of carbon therein. Of particular concern is whether previously stored carbon will be released to the atmosphere contributing to the pool of greenhouse gases and creating a feedback effect. At the moment the International Panel of Climate Change (IPCC) does not include carbon dynamics of the Arctic in their forecast models due to a lack of adequate scientific understanding in the area. Understanding the controls which govern the fluxes of carbon between the land, the atmosphere and the aquatic systems is important in evaluating the transient state of the carbon cycle. This study investigates the potential relationship between terrestrial soil organic carbon (SOC) pools and the dissolved organic carbon (DOC) concentrations in streams observed at the beginning of August 2012 in the Abiskojokka catchment in the sub-arctic region of northern Sweden. The results show that soil organic carbon pools could tentatively explain between 24 % and 44 % of the variation in DOC concentrations in streams. This is only a fraction of the variation explained compared to regions where peatlands are the single most important indicator of DOC concentrations. In the absence of peatland, which covers less than 2 % of the Abiskojokka catchment area, heath vegetation and the associated soil forming processes were shown to be an important indicator of stream water DOC concentrations.
APA, Harvard, Vancouver, ISO, and other styles
38

Kolodziej, Scott Michael. "Management effects on labile organic carbon pools." Texas A&M University, 2005. http://hdl.handle.net/1969.1/2424.

Full text
Abstract:
It is well documented that increases in soil organic matter (SOM) improve soil physical properties and increase the overall fertility and sustainability of the soil. Research in SOM storage has recently amplified following the proposal that agricultural soils may provide a significant carbon (C) sink that may aid in the mitigation of increasing atmospheric carbon dioxide. Observed differences in lint yield and nitrogen response from a cotton performance study at the Texas A&M University Experimental Farm near College Station, TX prompted us to examine the effects of tillage and rotation on soil organic C (SOC), soil microbial biomass C (SMBC), 38-day cumulative C mineralization (38-day CMIN), hot-water extractable organic C (hot-WEOC), carbohydrate C, and total glomalin. The treatments examined included conventional-till continuous cotton (CT), reduced-till continuous cotton (RT), and conventional-till cotton after corn rotation (CC) treatments. In pre-plant soil samples, SOC, SMBC, and 38-day CMIN in the top 5 cm were 33, 58, and 79 % greater in RT and 29, 32, and 36 % greater in CC vs. CT. Comparable differences were observed for hot-WEOC and carbohydrate C. Little seasonal variation was observed for labile-C pools throughout the growing season, suggesting minimal C input from cotton roots. Water-stable aggregation was not significantly affected by management, and did not correlate with labile-C pools or total glomalin. Labile-C pools were generally more responsive to management vs. SOC and were strongly correlated with one another. Carbohydrate C of hot-water extracts exhibited the strongest relationships with SMBC and 38-day CMIN, even though it comprised only 3 and 5 % of these pools, respectively. Our data suggest that increasing SOC in Texas cotton-cropping systems through conservation management is possible. Long-term data are still needed to fully address SOC storage potentials in Texas, but increases in labile-C pools resulting from conservation management are attainable and have the potential to positively impact soil fertility.
APA, Harvard, Vancouver, ISO, and other styles
39

Kang, Misun. "Quantification of soil organic carbon using mid- and near- DRIFT spectroscopy." Texas A&M University, 2002. http://hdl.handle.net/1969/462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Mewes, Paul. "Persistence of exogenous organic carbon in soil as a cultivation property." Doctoral thesis, Humboldt-Universität zu Berlin, 2017. http://dx.doi.org/10.18452/18143.

Full text
Abstract:
Eine biochemische Indikation des Anteils exogener organischer Kohlenstoffquellen (EOC), der nach dem Eintrag potenziell im Boden verbleibt (Cpot) wurde entwickelt. Haupthypothese dieser Studie war, dass der Abbau von EOC durch die biochemische Zusammensetzung vorhergesagt werden kann, welche bei Pflanzenrückständen von der Kulturart, dem Pflanzenrückstandstyp sowie dem Anbausystem und im Allgemeinen vom Ausgangssubstrat organischer Düngestoffe und der EOC-Kategorie (pyrogen , mikrobiell und pflanzlich) beeinflusst wird. Zunächst wurden Pflanzenrückstände im Energiepflanzenanbau zur Biogasgewinnung (Restpflanze / Stroh, Stoppeln, Grobwurzeln, Feinwurzeln, natürlicher Bestandsabfall) von Mais, Sorghum, Sudangras, Wintergetreide, Hafer, Erbse in Einzel-, Zwei- und Mischkultursystemen betrachtet. In einem zweiten Schritt wurden Pflanzenrückstände im Allgemeinen mit organischen Düngern, Komposten, Rückständen aus anaerober Vergärung in der Biogasproduktion (Gärrückstände) und Biokohlen verglichen. Die biochemische Zusammensetzung von EOC wurde durch die Konzentrationen von Kohlenstoff- (C), Stickstoff (N), wasserlöslicher Kohlehydrate (WSC), Hemizellulose (HEM), Zellulose (CEL) und Lignin (LIC) in g pro kg Trockenmasse dargestellt. In Inkubationsversuchen wurde EOC gleichmäßig mit Boden vermischt und über 310 Tage die Zugabe-induzierte Kohlendioxid-Freisetzung gemessen. Cpot wurde als Grenzwert der Modellschätzung für die Inkubationsdaten bestimmt. Die Beziehung zwischen biochemischer Zusammensetzung und Cpot wurde durch die Partial-Least-Squares-Regression-Methode abgeleitet. Cpot unterschied sich stärker zwischen verschiedenen organischen Düngestoffen, als speziell zwischen verschiedenen Pflanzenrückständen und konnte durch die biochemische Zusammensetzung vorhergesagt werden. Der Indikator für Cpot (in g C pro kg EOC) wurde als Ipot = 269 + 13 N – 0.5 WSC + 0.7 CEL + 1.5 LIC für Pflanzenrückstände und im Allgemeinen als Ipot = 924 – 1.9 C + 2.0 LIC vorgeschlagen.
A biochemical indication for the fraction of exogenous organic carbon (EOC), potentially remaining in soil after application (Cpot) has been developed. Main hypothesis of this study was that decomposition of EOC can be predicted by the biochemical composition, which in case of plant residues is influenced by the crop residue type, crop species and agricultural management and in general depends on the original substrate and category (pyrogen, microbial, and plant-derived EOC) of organic materials. A first set of EOC was created, containing plant residues in energy crop cultivation for biogas production (shoot / straw, stubble, coarse root, fine root, and litter) of maize, sorghum, sudan grass, winter cereal, pea, and oats in single-, double- and intercropping systems. In a second set of EOC, plant residues in general were compared with other organic fertilisers, urban composts, residues of anaerobic fermentation in biogas production (digestates), and biochar. The biochemical composition of EOC was characterised by the concentrations of carbon (C), nitrogen (N), water-soluble carbohydrates (WSC), hemicelluloses (HEM), cellulose (CEL), and lignin (LIC) in g per kg dry matter. In incubation experiments, EOC was homogeneously incorporated into soil and EOC-induced carbon dioxide-release was measured for 310 d. Cpot was determined as modelled limit for the incubation results. Finally, the relation between biochemical composition and Cpot of EOC was evaluated by the partial least squares regression method. Cpot largely varied between different types and categories of EOC, while less variation was obtained between different plant residues. The biochemical composition was predictive for Cpot (expressed as g C per kg EOC), proposing the biochemical indicator as Ipot = 269 + 13 N – 0.5 WSC + 0.7 CEL + 1.5 LIC specifically for plant residues and as Ipot = 924 – 1.9 C + 2.0 LIC for EOC in general.
APA, Harvard, Vancouver, ISO, and other styles
41

Wordell-Dietrich, Patrick [Verfasser]. "Stability of soil organic carbon in the subsoil / Patrick Wordell-Dietrich." Hannover : Gottfried Wilhelm Leibniz Universität Hannover, 2021. http://d-nb.info/1227577613/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Olaya, Adriana Marcela Silva. "Soil organic carbon dynamics in sugarcane crop in south-central Brazil." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-12082014-144101/.

Full text
Abstract:
Sugarcane cropping is an important component of the Brazil´s economy. As the main feedstock used to produce ethanol, the area occupied with this crop has meaningfully increased in the last years and continues to expand in order to attend to the national and international demand of this biofuel. Despite that it has been demonstrated that land-use transition into sugarcane can negatively impact the soil carbon (C) dynamics, little is known about the effect of those land use changes (LUC) processes on the distribution of soil organic carbon (SOC) within particle-size classes, and how management practices in sugarcane can contribute to the C restoration. In this sense the main objective of this study was to evaluate through a modelling application the SOC dynamics in the sugarcane crop in response to LUC and different management scenarios. For a better understanding of LUC impact on C content in both particulate organic matter and mineral-associated fraction, we performed physical soil C fractionation in 34 study areas involving the three major land-use systems affected by sugarcane expansion. Also, biometric measurements were executed in sugarcane plant and ratoon crop in order to use those data in the model parameterization as well as to recalculate the payback time of the C debt through C conversion ratio reported in the literature. Finally, we parameterized and validate the CENTURY ecosystem model for sugarcane, pastures and annual cropland by using a data-set previously collected by the Laboratório de Biogeoquímica Ambiental (CENA-USP); then different scenarios of sugarcane management were simulated: i) SC1 - Green harvesting; ii) SC2 - Green harvesting plus organic amendments and iii) Green harvesting + low N inputs. Our results showed that the C content depletion for conversion from native vegetation and pastures to sugarcane is caused by C losses in the labile fraction (37%) as wells as in the stabilized pool associated to the mineral fraction (30%). Above and belowground biomass quantification indicated a total sugarcane carbon inputs ranging from 29.6 Mg C ha-1 to 30.6 Mg C ha-1. Considering a C retention rate of 13% we estimated net carbon changes of 0.58 to 0.6 Mg C ha-1 year-1, which contribute to reduce the payback times for sugarcane biofuel carbon debts in 3.3 and 1.2 years for Cerrado wooded and pasture conversions into sugarcane respectively. The modelling study supported the Century model as a tool to access the SOC dynamics following land-use conversion and different soil management in in sugarcane. Long-term simulations suggested that changes in the sugarcane harvest from burning to green harvesting increase the soil C stock in an average of 0.21 Mg ha-1 year-1; however the potential of C accumulation is still higher when organic amendments as vinasse and filter cake are add to the soil, with mean values varying between 0.34 and 0.37 Mg ha-1 year-1 in SC2 and SC1 respectively. By analyzing the SOC dynamic at each scenario simulated, we estimated a time span of 17 and 24 years for soil C restoration in clay and sandy soils under pastures with priority suitability (SC3). The number of years was projected to be higher in clay soils with regular suitability (40 years).
A cultura da cana-de-açúcar é uma comodity importante para a economia no Brasil. Como a principal matéria prima para a produção de etanol, a área plantada com esta cultura tem incrementado significativamente nos últimos anos e a tendência é de continuar se expandindo para atender a demanda nacional e internacional deste biocombustível. Embora tenha sido demostrado que a mudança de uso da terra (MUT) para cana-de-açúcar pode afetar negativamente a dinâmica do carbono (C) no solo, há pouca informação disponível acerca do impacto dessa MUT na distribuição do C nas frações da matéria orgânica do solo, e como as praticas de manejo da cana-de-açúcar podem contribuir para o acumulo de C no solo. Nesse contexto o principal objetivo desta pesquisa foi avaliar, através da modelagem matemática, a dinâmica do carbono orgânico do solo (COS) na cultura da cana-de-açúcar em resposta a mudança de uso da terra e diferentes cenários de manejo agrícola. Fracionamento físico para separar o C associado à matéria orgânica partícula (POM) do C ligado à fração mineral do solo (<53 um) foi realizado em amostras de solo de 34 áreas de estudo envolvendo os três principais sistemas de uso da terra afetados pela expansão da cana-de-açúcar. Adicionalmente, foram realizadas avaliações biométricas da cana-de-açúcar (cana planta e soca) que objetivaram a parametrização do modelo matemático assim como recalcular o tempo de reposição do debito de C gerado. Finalmente, o modelo CENTURY foi parametrizado e devidamente validado, para posteriormente proceder à simulação de diferentes cenários futuros de manejo da cana de açúcar: i) SC1 - Colheita de cana crua (sem queima); ii) SC2 - Colheita de cana crua e adição de adubos orgânicos (vinhaça e torta de filtro); iii) Colheita de cana crua e redução da adubação nitrogenada. Os resultados indicaram que a redução do conteúdo de C devido à conversão de vegetação nativa e pastagem para cana-de-açúcar foi causada pela perda de C tanto na fração lábil (37%) quanto na fração mais estável associada a fração mineral do solo (30%). A quantificação da biomassa aérea e radicular indicou entradas de C variando de 29,6 Mg C ha-1 a 30,6 Mg C ha-1, os quais resultariam em uma taxa de acumulo liquido de 0,58 a 0,6 Mg C ha-1 ano-1, que quando considerado contribui a redução do \"payback time\" do debito de C do etanol causado pela conversão de Cerrado e pastagem em 3,3 e 2 anos respectivamente. Os resultados obtidos no estudo de modelagem matemática suportaram o uso do modelo CENTURY como uma ferramenta para avaliar a influencia da MUT e das práticas de manejo na dinâmica do COS. As simulações em longo prazo sugeriram que a supressão da queima na colheita incrementa o estoque de C em 0,21 Mg ha-1 ano-1. No entanto o potencial de acúmulo de C é ainda maior quando adubação orgânica é realizada, com valores entre 0,34 e 0,37 Mg ha-1 ano-1 respectivamente. A análise da dinâmica do COS em cada cenário de manejo simulado permitiu estimar o tempo médio de recuperação do C do solo perdido pela MUT em áreas de pastagens. Os resultados indicaram um período de 17 anos para condições de cultivo sob solos argilosos e 24 anos para solos arenosos (SC3) em áreas de alta aptidão para expansão. O modelo projetou um maior número de anos em solo argiloso sob áreas de pastagem com aptidão média (40 anos).
APA, Harvard, Vancouver, ISO, and other styles
43

Kheir, Beik Louay. "Dynamics of soil organic matter amino acids : a carbon isotope approach." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0098.

Full text
Abstract:
Cette thèse aborde un point clé du couplage entre ces cycles: la dynamique des molécules azotées (AAs) des matières organiques du sol (MOS). Par des expériences d'incubation, nous avons estimé que les flux de biosynthèse des AAs par les micro-organismes du sol lors du processus de décomposition sont de l'ordre de 25% de la biomasse nouvellement formée. Le profil des AAs individuels biosynthétisés de novo est plus dépendant du type de sol que de la nature du substrat. Dans chaque sol, il est très similaire à celui des AAs des MOS. La biodégradation de matériaux végétaux marqués en 13C a révélé la transformation rapide des protéines végétales en matériaux microbiens. Ces résultats montrent que les AAs des MOS sont d'origine microbienne. Nous avons mesuré le renouvellement du C des AAs à long terme dans les horizons de surface de neuf sites présentant des végétations, climats et types de sol variés, en utilisant la technique de traçage par les abondances naturelles en 13C. L'âge moyen du carbone des AAs varie de 50 à 200 ans. Un modèle simple permet de discuter les hypothèses du recyclage des AAs des MOS par les micro-organismes. Les rapports isotopiques stables des AAs individuels ont été mesurés par chromatographie en phase gazeuse couplée à la spectrométrie de masse isotopique. À cette fin, nous avons développé une méthode d'étalonnage générique pour la détermination du rapport isotopique des composés spécifiques, par analyse de cultures microbiennes uniformément marquées. Au-delà des résultats présentés, l'étude apporte un large ensemble de données des AAs et examine les variations de l'abondance naturelle en 13C entre les AAs individuels
We analyzed the coupled dynamics of C and N in Soil Organic Matter (SOM) through the dynamics of N-containing soil organic compounds (amino acids (AAs)) by tracing their carbon atoms. Stable isotope ratios of individual amino acids were measured by gas chromatography coupled with isotope ratio mass spectrometry. For this purpose, we developed a generic calibration method for compound-specific stable isotope ratio analysis, based on the analysis of uniformly labelled microbial cultures. We quantified the biosynthesis of AAs associated with the biodegradation process in four contrasted topsoils through short-term incubation experiments of 13C-labelled substrates. Amino acids-C accounts for ca. 25% of the newly-formed microbial biomass-C. The composition of the de novo biosynthesized individual amino acids was dependent on the soil type, and in each soil was similar to that of SOM amino acids. Biodegradation of 13C-labelled plant materials revealed the rapid conversion of plant proteins into microbial materials. These results together demonstrate that SOM amino acids are of microbial origin. We measured the dynamics of amino acids-C on the long term (decades to centuries) in nine sites using the natural 13C-labelling technique. On average, the age of AAs was equal or slightly inferior to that of bulk soil organic carbon, with mean ages ranging from 50 to 200 years. We built a conceptual model of AAs dynamics to discuss various hypotheses of AAs stabilization. Beyond these perspectives on C and N coupling in soil processes, the overall study brings a broad dataset of amino acids, as well as discuses variations of 13C natural abundance (δ13C) in-between individual amino acids
APA, Harvard, Vancouver, ISO, and other styles
44

Hammoudi, Alaaeddine. "Modeling and mathematical analysis of the dynamics of soil organic carbon." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS205/document.

Full text
Abstract:
La compréhension du cycle de la matière organique du sol (MOS) est un outil majeur dans la lutte contre le réchauffement climatique, la préservation de la biodiversité ainsi que dans la consolidation de la sécurité alimentaire. Dans ce contexte, cette thèse porte sur la modélisation et l'analyse mathématique de modèles de la dynamique du carbone organique dans le sol.Dans le chapitre 2, nous avons étudié la robustesse et les propriétés mathématiques d'un modèle non linéaire (MOMOS). Nous avons montré que si les données sont périodiques nous obtenons l'existence d'une solution périodique attractive. Le chapitre3 est consacré à la validation mathématique d'un modèle spatialisé basé sur les équations de MOMOS, auxquels nous avons ajouté des opérateurs de diffusion et de transport. L'effet de l'hétérogénéité spatiale sur ce modèle est étudié dans le chapitre4 en utilisant des techniques d'homogénéisation. Suivant la méthodologie de Bosattaet Agren, nous dérivons un autre modèle à qualité continue, qui prend en compte l'effet de l'âge sur la décomposition de la MOS. Le chapitre 5 contient la validation mathématique et expérimentale du modèle. Enfin, nous considérons dans les chapitres6 et 7, un modèle incluant l'effet de la chemotaxie. Nous montrons l'existence, la positivité et l'unicité des solutions dans des domaines suffisamment réguliers de dimension inférieure ou égale à 3
Understanding the soil organic matter (SOM) cycle is a major tool in the effort toreduce global warming, to preserve biodiversity and to improve food safety strategies.In this context, this thesis is about modelling and mathematical analysis of thedynamics of the organic carbon in soil.In chapter 2, we validate mathematically a nonlinear soil organic carbon model(MOMOS) and we prove that, if data is periodic, then there is a unique attractiveperiodic solution. In chapter 3, we focus on the mathematical validation of a spatialmodel derived from MOMOS and where we used diffusion and transport operators.We prove also the existence of a periodic solution. In addition, the effect of soilheterogeneities on the model is studied in chapter 4 using homogenization techniques.Moreover, following the Bosatta and Agren methodology, we derive a continuousquality model taking in consideration the effect of age on the quality of SOM. Wevalidate the model mathematically and experimentally in chapter 5. Finally, weconsider in chapters 6 and 7 another model that takes into account the chemotaxismovement of soil microorganisms. We prove mainly the existence and uniqueness of apositive solution in a regular spatial domain of dimension less or equal to 3
APA, Harvard, Vancouver, ISO, and other styles
45

Akala, Vasant Arul. "Soil organic carbon sequestration in a reclaimed mineland chronosequence in Ohio." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1371219427.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Ghee, Claire. "Mechanistic controls on the mineralisation and stabilisation of soil organic carbon." Thesis, University of Aberdeen, 2015. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=227956.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pereira, Magnum de Sousa. "Evaluation of carbon mineralization rates and nitrogen organic compound from housing and dispossession of small ruminants." Universidade Federal do CearÃ, 2015. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=16925.

Full text
Abstract:
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico
The determination of the mineralization rate of organic compost is necessary for planning the most efficient way to use them. Thus, this study aimed to determine the carbon and nitrogen mineralization rate from organic compost produced from sheep and goat carcasses and its slaughtering spoils. Chromic Inceptisol (Luvisols) samples were incubated at an average temperature of 30.5 Â C with doses of 0; 3.75; 7.5; 15 and 30 Mg ha-1 of organic compost. To evaluate the carbon mineralization were used 100 g of soil incubated with these doses arranged in a completely randomized design (CRD) distributed in a split plot scheme. Samples were kept in glass containers tightly closed and the C-CO2 measurements were performed during periods of 0; 1; 2; 3; 4; 5; 6; 7; 9; 11; 14; 17; 20; 23; 26; 29; 33; 37; 41; 48; 55; 69; 83; 97; 112 and 126 days after the start of incubation. To determine the nitrogen mineralization rate (N), the doses of compost were incubated with 100 g of soil and distributed in a CRD with a 5 x 10 factorial arrangement. The assessment of inorganic N were performed at 7; 14; 28; 42; 56; 70; 84; 98; 112 and 126 days after the incubation beginning. Both models, the simple exponential and the double exponential, were not efficient to explain the dynamics of C mineralization for not consider the interactions that occurs when the compost is applied to the soil. A model that considers the soil C labile and recalcitrant compartments (ls and rs), protected and unprotected compartments of the applied organic matter (OM) (pc and dc) and a p factor that modifies the rate of mineralization of soil organic matter (SOM) when the compost is applied (C0 = Cls e-kltp + Crs.e-krstp + Cpc .e-kpst + Coc .e-kdct) was more efficient to explain the dynamics of C, considering the interactions with the SOM and the OM added. The suggested model has demonstrated that the rate of SOM decomposition is approximately 10% greater in the presence of the compost and the compost mineralization rate is 0.012 day-1, explaining the 97.95% of the variability in the data. The N mineralization was very fast since 40% of the standard dose of 7.5 Mg h-1 was found in the mineral form 14 days after the incubation. However, due to losses of inorganic nitrogen by NH3 volatilization, it was not possible to estimate the actual N mineralization rate.
A determinaÃÃo da taxa de mineralizaÃÃo de compostos orgÃnicos se faz necessÃria para o planejamento da forma mais eficiente de sua utilizaÃÃo. Deste modo, objetivou-se determinar a taxa de mineralizaÃÃo de carbono e nitrogÃnio de composto orgÃnico produzido a partir de carcaÃas e despojos de abate de ovinos e caprinos. Amostras de Luvissolo CrÃmico foram incubadas à temperatura mÃdia de 30,5 ÂC com doses equivalentes a 0; 3,75; 7,5; 15 e 30 Mg ha-1 de composto orgÃnico. Para avaliaÃÃo da mineralizaÃÃo do carbono foram utilizados 100 g de solo incubados com as referidas doses dispostas em um delineamento inteiramente casualisado (DIC) distribuÃdos em esquema de parcela subdividida. As amostras foram mantidas em recipientes de vidro hermeticamente fechados sendo as mensuraÃÃes de C-CO2 realizadas nos perÃodos de 0; 1; 2; 3; 4; 5; 6; 7; 9; 11; 14; 17; 20; 23; 26; 29; 33; 37; 41; 48; 55; 69; 83; 97; 112 e 126 dias apÃs o inÃcio da incubaÃÃo. Para a determinaÃÃo da taxa de mineralizaÃÃo do nitrogÃnio (N), as doses de composto foram incubadas com 100 g de solo e distribuÃdas em um DIC dispostas em um arranjo fatorial de 5 x 10. As avaliaÃÃes do N inorgÃnicoforam realizadas aos7; 14; 28; 42; 56; 70; 84; 98; 112 e 126 dias apÃs o inÃcio da incubaÃÃo. Tanto o modelo simples exponencial quanto o modelo duplo exponencial nÃo foram eficientes para explicar a dinÃmica de mineralizaÃÃo do C por nÃo considerarem as interaÃÃes que ocorrem quando o composto à aplicado ao solo. Um modelo que considera os compartimentos de C lÃbil e recalcitrante no solo (ls e rs), compartimentos protegido e desprotegidos da MO aplicada (pc e dc) e um fator p que modifica a taxa de mineralizaÃÃo da MO do solo quando o composto à aplicado (C0 = Cls e-kltp + Crs.e-krstp + Cpc .e-kpst + Cdc .e-kdct) se mostrou mais eficiente para explicar a dinÃmica do C, considerando as interaÃÃes da MO do solo com a MO adicionada. O modelo sugerido demonstrou que a taxa de decomposiÃÃo da MO do solo à aproximadamente 10% maior na presenÃa do composto e a taxa de mineralizaÃÃo do composto à de 0,012 dia-1, explicando 97,95% da variabilidade dos dados. A mineralizaÃÃo do N mostrou-se bastante rÃpida visto que 40% da dose padrÃo de 7,5 Mg ha-1 foi encontrado na forma mineral 14 dias apÃs a incubaÃÃo. No entanto, devido Ãs perdas de nitrogÃnio inorgÃnico por volatilizaÃÃo de NH3, nÃo foi possÃvel se estimar as reais taxas de mineralizaÃÃo do N.
APA, Harvard, Vancouver, ISO, and other styles
48

Kroll, Jeffrey T. "LANDUSE AND SOIL ORGANIC CARBON VARIABILITY IN THE OLD WOMAN CREEK WATERSHED OF NORTH CENTRAL OHIO." Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1165431813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Jung, Ji Young. "Nitrogen Fertilization Impacts on Soil Organic Carbon and Structural Properties under Switchgrass." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284983372.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Sequeira, Cleiton Henrique. "Soil Organic Matter Dynamics in Cropping Systems of Virginia's Valley Region." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37381.

Full text
Abstract:
Soil organic matter (SOM) is a well known indicator of soil quality due to its direct influence on soil properties such as structure, soil stability, water availability, cation exchange capacity, nutrient cycling, and pH buffering and amelioration. Study sites were selected in the Valley region of Virginia with the study objectives to: i) compare the efficiency of density solutions used in recovering free-light fraction (FLF) organic matter; ii) compare different soil organic fractions as sensitive indices of short-term changes in SOM due to management practices; iii) investigate on-farm effects of tillage management on soil organic carbon (SOC) and soil organic nitrogen (SON) stocks; and iv) evaluate the role of SOM in controlling soil available nitrogen (N) for corn uptake. The efficiency of the density solutions sodium iodide (NaI) and sodium polytungstate (SPT) in recovering FLF was the same at densities of 1.6 and 1.8 g cm⁻³, with both chemicals presenting less variability at 1.8 g cm⁻³. The sensitivity of SOM fractions in response to crop and soil management depended on the variable tested with particulate organic matter (POM) being the most sensitive when only tillage was tested, and FLF being the most sensitive when crop rotation and cover crop management were added. The on-farm investigation of tillage management on stocks of SOC and total soil N (TSN) indicated significant increases at 0–15 cm depth by increasing the duration (0 to 10 years) of no-tillage (NT) management (0.59 ± 0.14 Mg C ha⁻¹ yr⁻¹ and 0.05 ± 0.02 Mg N ha⁻¹ yr⁻¹). However, duration of NT had no significant effect on SOC and TSN stocks at 0–60 cm depth. Soil available N as controlled by SOM was modeled using corn (Zea mays L.) plant uptake as response and several soil N fractions as explanatory variables. The final model developed for 0–30 cm depth had 6 regressors representing the different SOM pools (active, intermediate, and stable) and a 𝑅² value of 65%. In summary, this study provides information about on-farm management affects on SOM levels; measurement of such effects in the short-term; and estimation of soil available N as related to different soil organic fractions.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography