Academic literature on the topic 'Soil organic carbon (SOC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil organic carbon (SOC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Soil organic carbon (SOC)"
Yang, Xueqin, Mingxiang Xu, Yunge Zhao, Liqian Gao, and Shanshan Wang. "Moss-dominated biological soil crusts improve stability of soil organic carbon on the Loess Plateau, China." Plant, Soil and Environment 65, No. 2 (February 1, 2019): 104–9. http://dx.doi.org/10.17221/473/2018-pse.
Full textSalazar, María Paz, Rafael Villarreal, Luis Alberto Lozano, María Florencia Otero, Nicolás Guillermo Polich, Guido Lautaro Bellora, and Carlos Germán Soracco. "Soil organic carbon." Revista de la Facultad de Agronomía 119, no. 2 (December 7, 2020): 053. http://dx.doi.org/10.24215/16699513e053.
Full textWang, Z. M., B. Zhang, K. S. Song, D. W. Liu, F. Li, Z. X. Guo, and S. M. Zhang. "Soil organic carbon under different landscape attributes in croplands of Northeast China." Plant, Soil and Environment 54, No. 10 (October 24, 2008): 420–27. http://dx.doi.org/10.17221/402-pse.
Full textCienciala, E., Z. Exnerová, J. Macků, and V. Henžlík. "Foresttopsoil organic carbon content inSouthwest Bohemiaregion." Journal of Forest Science 52, No. 9 (January 9, 2012): 387–98. http://dx.doi.org/10.17221/4519-jfs.
Full textLiu, Man, Guilin Han, Zichuan Li, Qian Zhang, and Zhaoliang Song. "Soil organic carbon sequestration in soil aggregates in the karst Critical Zone Observatory, Southwest China." Plant, Soil and Environment 65, No. 5 (May 27, 2019): 253–59. http://dx.doi.org/10.17221/602/2018-pse.
Full textWang, Qiuju, Xin Liu, Jingyang Li, Xiaoyu Yang, and Zhenhua Guo. "Straw application and soil organic carbon change: A meta-analysis." Soil and Water Research 16, No. 2 (April 9, 2021): 112–20. http://dx.doi.org/10.17221/155/2020-swr.
Full textShi, Y., F. Baumann, Y. Ma, C. Song, P. Kühn, T. Scholten, and J. S. He. "Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications." Biogeosciences 9, no. 6 (June 27, 2012): 2287–99. http://dx.doi.org/10.5194/bg-9-2287-2012.
Full textShi, Y., F. Baumann, Y. Ma, C. Song, P. Kühn, T. Scholten, and J. S. He. "Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications." Biogeosciences Discussions 9, no. 2 (February 15, 2012): 1869–98. http://dx.doi.org/10.5194/bgd-9-1869-2012.
Full textBarančíková, G., J. Halás, M. Gutteková, J. Makovníková, M. Nováková, R. Skalský, and Z. Tarasovičová. "Application of RothC model to predict soil organic carbon stock on agricultural soils of Slovakia." Soil and Water Research 5, No. 1 (February 26, 2010): 1–9. http://dx.doi.org/10.17221/23/2009-swr.
Full textBarančíková, G., J. Makovníková, R. Skalský, Z. Tarasovičová, M. Nováková, J. Halás, M. Gutteková, and Š. Koco. "Simulation of soil organic carbon changes in Slovak arable land and their environmental aspects." Soil and Water Research 7, No. 2 (May 18, 2012): 45–51. http://dx.doi.org/10.17221/38/2011-swr.
Full textDissertations / Theses on the topic "Soil organic carbon (SOC)"
Nemoto, Rie. "Soil organic carbon (SOC) now and in the future. Effect of soil characteristics and agricultural management on SOC and model initialisation methods using recent SOC data." Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00973853.
Full textBeniston, Joshua W. "Soil Organic Carbon Dynamics and Tallgrass Prairie Land Management." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1253558307.
Full textHeckman, Katherine Ann. "Pedogenesis & Carbon Dynamics Across a Lithosequence Under Ponderosa Pine." Diss., The University of Arizona, 2010. http://hdl.handle.net/10150/196016.
Full textPowell, Katherine Moore. "Quantifying soil organic carbon (SOC) in wetlands impacted by groundwater withdrawals in west-central Florida." [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002590.
Full textJung, Ji Young. "Nitrogen Fertilization Impacts on Soil Organic Carbon and Structural Properties under Switchgrass." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1284983372.
Full textSmith, Katie Elizabeth. "The nature, distribution and significance of organic carbon within structurally intact soils contrasting in total SOC content." Thesis, University of Stirling, 2010. http://hdl.handle.net/1893/2915.
Full textJagadamma, Sindhu. "Stabilization mechanisms of organic carbon in two soils of the Midwestern United States." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1241450699.
Full textAmini, Sevda. "Carbon Dynamics in Salt-Affected Soils." Thesis, Griffith University, 2015. http://hdl.handle.net/10072/366584.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Griffith School of Environment.
Science, Environment, Engineering and Technology
Full Text
Saenger, Anaïs. "Caractérisation et stabilité de la matière organique du sol en contexte montagnard calcaire : proposition d'indicateurs pour le suivi de la qualité des sols à l'échelle du paysage." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENS010/document.
Full textMountain soils are major reservoirs of carbon (C), potentially vulnerable to climate and land use changes that affect them significantly. However, the great variability of these soils, their limited accessibility and the lack of appropriate measurement tools restrict our knowledge. Today, our comprehension of the biogeochemistry of mountain soils remains very incomplete regarding stocks, chemistry and reactivity of soil organic carbon (SOC). Yet this information is necessary to understand the evolution of soil carbon in the current context of global change. The objectives of this work were (i) to gain a better understanding of the nature, stability and vulnerability of SOC in a mosaic of ecosystems in a calcareous massif in the Alps (Vercors massif), (ii) to search for fast and reliable characterization tools, suitable for the study and monitoring of COS at the landscape scale, and (iii) to propose indicators for the assessment and monitoring of soil quality in mountain regions. As a first step, we tested the application of Rock-Eval pyrolysis for the study of COS at large-scale on a set of ecosystem units. Then, we compared the Rock-Eval approach to two conventional techniques for soil organic matter (SOM) study: the particle-size fractionation of SOM, and the mid-infrared spectroscopy. These coupled analytical approaches allowed us to quantify C stocks across the study area, and explain the stability and the vulnerability of COS at various angles. Factors responsible for the patterns observed in the different eco-units are discussed. This work also confirmed the relevance of the Rock-Eval tool to achieve our previous objectives. Biological approaches allowed us to assess the significance of microbial pool in these soils. Finally, indices assessing the status of SOM (SOC storage, soil fertility, vulnerability COS) were proposed and constituted interesting management tools for decision-makers
Freiberger, Mariângela Brito [UNESP]. "Ciclagem de carbono em área sob semeadura direta e aplicação de lodo de esgoto." Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/137756.
Full textApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-04-05T14:11:18Z (GMT) No. of bitstreams: 1 freiberger_mb_dr_bot.pdf: 1663017 bytes, checksum: 79b257695de46e620dc8065c2ad772ce (MD5)
Made available in DSpace on 2016-04-05T14:11:18Z (GMT). No. of bitstreams: 1 freiberger_mb_dr_bot.pdf: 1663017 bytes, checksum: 79b257695de46e620dc8065c2ad772ce (MD5) Previous issue date: 2016-02-22
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
O estudo teve por principal objetivo avaliar o estoque de carbono (C), as alterações na quantidade de C microbiano, a qualidade da matéria orgânica (MO) e a emissão de CO2 em decorrência de aplicações de lodos de esgoto em área sob semeadura direta. A área experimental, que apresenta Latossolo Vermelho de textura argilosa e está localizada em Botucatu, SP, tem sido conduzida com os mesmos tratamentos desde 2002. Os resultados constantes no presente estudo, entretanto, foram obtidos no período de outubro de 2012 a outubro de 2014. O delineamento experimental utilizado foi o de blocos ao acaso em esquema fatorial 2 x 4, com quatro repetições. Os tratamentos correspondem à aplicação bienal de dois resíduos (lodo biodigerido – LB e lodo centrifugado – LC) em quatro doses: 0, 2, 4 e 8 Mg ha-1 (base seca) e o sistema de produção utilizado nesse período foi a sucessão soja / aveia-preta. Em cada um dos cultivos avaliou-se características nutricionais e de produtividade das culturas e a emissão de CO2 a partir do solo. Ao final do estudo foram coletadas amostras de solo para análise química básica, fracionamento da MO, C microbiano e estoque de C. A aplicação continuada de LC promoveu aumento do pH do solo e do teor de macronutrientes, principalmente Ca, bem como maior produção de matéria seca e acúmulo de nutrientes na parte aérea da aveia-preta. O LC também promoveu maior acúmulo de C nas plantas e maior atividade dos microrganismos do solo, o que acarretou em maior teor de C da biomassa microbiana (até 390 mg kg-1 na camada superficial), maior decomposição de MO leve e, consequente maior fluxo de CO2 para atmosfera (de 4,8 a 6,2 µmol m-2 s-1). Aplicações de longa data de lodo de esgoto (LB ou LC) resultam no aumento do teor de micronutrientes no solo, a ponto de Cu, Fe, Mn e Zn se apresentarem em níveis que podem ser prejudiciais às plantas. A produtividade da soja foi maior (até 3.232 kg ha-1) quando do uso de doses de lodos equivalentes a 4,5 a 5,3 Mg ha-1. A aplicação de lodos de esgoto resulta em aumento dos teores de C orgânico total (até 19,8 g kg-1), C da fração particulada (até 0,88 g kg-1) e C associado a minerais (até 19,0 g kg-1) somente na camada superficial do solo. Dentre as substâncias húmicas, a fração humina foi a que mais contribuiu com o estoque de C no solo (até 13,8 g kg-1). Após seis aplicações de lodo de esgoto, independentemente da dose e tipo de lodo, o estoque de C no solo aumentou apenas na camada superficial, e correspondeu a 106,2 Mg ha-1.
The study had as main objective to evaluate carbon (C) stock, changes in the amount of microbial C, quality of the soil organic matter (SOM) and CO2 emission as affected by sewage sludge applications in area under no-till. The experimental area, which shows a clayey Rhodic Ferralsol and is located in Botucatu, SP, has been conducted with the same treatments since 2002. The results of the present study, however, were obtained in the period from October 2012 to October 2014. A complete randomized blocks design arranged in a 2x4 factorial scheme and with four replicates was used. The treatments are represented by biennial application of two sewage sludge types (biodigested sludge - BS and centrifuged sludge - CS) in four rates: 0, 2, 4 and 8 Mg ha-1 (dry basis). The cropping system used in the study was a soybean/black oat succession. Yield and nutritional aspects of crops and CO2 emissions from soil were evaluated in each one of the cultivations. At the end of the study, soil samples were collected for analysis of soil fertility, OM fractionation, microbial C and C stock. The continued application of CS increased the pH and macronutrient levels in the soil, mainly Ca, as well as increased dry matter production and nutrient accumulation in aerial part of black oat. CS application also promoted greater accumulation of C in plants and greater activity of soil microorganisms, which led to a greater level of microbial biomass C (up to 390 mg kg-1 in the superficial layer), greater decomposition of light OM and consequently greater CO2 fluxes to the atmosphere (from 4.8 to 6.2 µmol m-2 s-1). Long time applications of sewage sludge (either BS or CS) resulted in increase of micronutrients levels in the soil, up to the point of Cu, Fe, Mn and Zn reach levels that may be harmful to plants. The soybean yield was higher (up to 3,232 kg ha-1) when sludge rates equivalent to 4.5 to 5.3 Mg ha-1 were used. The long-term application of sewage sludge increases the levels of total organic C (up 19.8 g kg-1), particulate fraction of C (up to 0.88 g kg-1) and C associated with minerals (up 19.0 g kg-1) only in the superficial layers of soil. Among the humic substances, the fraction that most contributed to the soil organic C (up 13.8 g kg-1) was humin. After six sewage sludge applications, regardless of the rate and type of sludge, the soil C stock increased only in the surface layer, and in total corresponded to 106.2 Mg ha-1.
FAPESP: 2011/21276-9
CNPq: 152725/2012-1
Books on the topic "Soil organic carbon (SOC)"
Smith, W. Soil degradation risk indicator: Organic carbon component. Ottawa: Agriculture and Agri-Food Canada, 1997.
Find full textLal, Rattan. Soil Organic Carbon and Feeding the Future. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003243090.
Full textMeena, Ram Swaroop, Cherukumalli Srinivasa Rao, and Arvind Kumar, eds. Plans and Policies for Soil Organic Carbon Management in Agriculture. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6179-3.
Full textLorenz, Klaus, and Rattan Lal. Soil Organic Carbon Sequestration in Terrestrial Biomes of the United States. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95193-1.
Full textLeventhal, Joel S. Soil organic carbon content in rice soils of Arkansas and Louisiana and a comparison to non-agricultural soils, including a bibliography for agricultural soil carbon. [Denver, CO]: U.S. Geological Survey, 1997.
Find full textLeventhal, Joel S. Soil organic carbon content in rice soils of Arkansas and Louisiana and a comparison to non-agricultural soils, including a bibliography for agricultural soil carbon. [Denver, CO]: U.S. Geological Survey, 1997.
Find full textNong tian tu rang you ji tan bian hua yan jiu: Nongtian turang youjitan bianhua yanjiu. Wuhu Shi: Anhui shi fan da xue chu ban she, 2011.
Find full textservice), SpringerLink (Online, ed. Carbon Sequestration in Agricultural Soils: A Multidisciplinary Approach to Innovative Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textR, Carter Martin, and Stewart B. A. 1932-, eds. Structure and organic matter storage in agricultural soils. Boca Raton, FL: Lewis Publishers, 1996.
Find full textRyan, Miriam G. The influence of draught and rewetting on the dynamics of nitrogen, potassium and disolved organic carbon in a coniferous forest ecosystem. Dublin: University College Dublin, 1997.
Find full textBook chapters on the topic "Soil organic carbon (SOC)"
Jjagwe, Aisha, Vincent Kakembo, and Barasa Bernard. "Land Use Cover Types and Forest Management Options for Carbon in Mabira Central Forest Reserve." In African Handbook of Climate Change Adaptation, 2733–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-45106-6_145.
Full textGonzález-Sánchez, Emilio J., Manuel Moreno-Garcia, Amir Kassam, Saidi Mkomwa, Julio Roman-Vazquez, Oscar Veroz-Gonzalez, Rafaela Ordoñez-Fernandez, et al. "Climate smart agriculture for Africa: the potential role of conservation agriculture in climate smart agriculture." In Conservation agriculture in Africa: climate smart agricultural development, 66–84. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0003.
Full textMuzangwa, Lindah, Isaac Gura, Sixolise Mcinga, Pearson Nyari Mnkeni, and Cornelius Chiduza. "Impact of conservation agriculture on soil health: lessons from the university of fort hare trial." In Conservation agriculture in Africa: climate smart agricultural development, 293–304. Wallingford: CABI, 2022. http://dx.doi.org/10.1079/9781789245745.0018.
Full textZaman, M., K. Kleineidam, L. Bakken, J. Berendt, C. Bracken, K. Butterbach-Bahl, Z. Cai, et al. "Climate-Smart Agriculture Practices for Mitigating Greenhouse Gas Emissions." In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques, 303–28. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-55396-8_8.
Full textNandwa, Stephen M. "Soil organic carbon (SOC) management for sustainable productivity of cropping and agro-forestry systems in Eastern and Southern Africa." In Managing Organic Matter in Tropical Soils: Scope and Limitations, 143–58. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-2172-1_14.
Full textMcBratney, Alex B., Uta Stockmann, Denis A. Angers, Budiman Minasny, and Damien J. Field. "Challenges for Soil Organic Carbon Research." In Soil Carbon, 3–16. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_1.
Full textde Brogniez, Delphine, Cristiano Ballabio, Bas van Wesemael, Robert J. A. Jones, Antoine Stevens, and Luca Montanarella. "Topsoil Organic Carbon Map of Europe." In Soil Carbon, 393–405. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_39.
Full textSanford, Gregg R. "Perennial Grasslands Are Essential for Long Term SOC Storage in the Mollisols of the North Central USA." In Soil Carbon, 281–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_29.
Full textPoch, Rosa M., and Iñigo Virto. "Micromorphology Techniques for Soil Organic Carbon Studies." In Soil Carbon, 17–26. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_2.
Full textJakab, Gergely, Klaudia Kiss, Zoltán Szalai, Nóra Zboray, Tibor Németh, and Balázs Madarász. "Soil Organic Carbon Redistribution by Erosion on Arable Fields." In Soil Carbon, 289–96. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04084-4_30.
Full textConference papers on the topic "Soil organic carbon (SOC)"
Denis, Antoine, Bernard Tychon, Antoine Stevens, and Bas van Wesemael. "Improving Soil Organic Carbon (SOC) prediction by field spectrometry in bare cropland by reducing the disturbing effect of soil roughness." In 2009 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2009. http://dx.doi.org/10.1109/igarss.2009.5417660.
Full textMeador, T., J. Niedzwiecka, S. Jabinski, T. Picek, R. Angel, and H. Šantrůčková. "Modes of Soil Organic Carbon Sequestration and Carbon Use Efficiency Determined by Soil Aeration Status." In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134129.
Full textOtero-Fariña, Alba, Helena Brown, Ke-Qing Xiao, Pippa Chapman, Joseph Holden, Steven Banwart, and Caroline Peacock. "The role of soil organic carbon chemistry in soil aggregate formation and carbon preservation." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.9955.
Full textRaines, Eron, Kevin Norton, Anthony Dosseto, Quan Hua, Claire Lukens, Julie Deslippe, and Maia Bellingham. "Chemical Weathering and Organic Carbon Turnover in Soil." In Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2159.
Full textMatarrese, Raffaella, Valeria Ancona, Rosamaria Salvatori, Maria Rita Muolo, Vito Felice Uricchio, and Michele Vurro. "Detecting soil organic carbon by CASI hyperspectral images." In IGARSS 2014 - 2014 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2014. http://dx.doi.org/10.1109/igarss.2014.6947181.
Full textHu, Yunfeng, Jiyuan Liu, Dafang Zhuang, Shaoqiang Wang, Fengting Yang, and Siqing Chen. "Soil erosion effects on soil organic carbon and an assessment within China." In Optical Science and Technology, the SPIE 49th Annual Meeting, edited by Wei Gao and David R. Shaw. SPIE, 2004. http://dx.doi.org/10.1117/12.558631.
Full textWackett, Adrian, Kyungsoo Yoo, Erin Cameron, Nicolas Jelinski, Nathaniel Looker, Carolina Olid, Hanna Jonsson, Saúl Rodríguez-Martínez, Lee Frelich, and Jonatan Klaminder. "Soil fauna and the fate of soil organic carbon in northern forests." In Goldschmidt2022. France: European Association of Geochemistry, 2022. http://dx.doi.org/10.46427/gold2022.12592.
Full textZhichen, Yang, Li Hong, and Bai Jinshun. "Effects on Soil Organic Carbon and Microbial Biomass Carbon of Different Tillage." In 2015 AASRI International Conference on Circuits and Systems (CAS 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/cas-15.2015.6.
Full text"Analysis of the spatiotemporal distribution of soil organic carbon." In 21st International Congress on Modelling and Simulation (MODSIM2015). Modelling and Simulation Society of Australia and New Zealand, 2015. http://dx.doi.org/10.36334/modsim.2015.f6.kunkel.
Full textBobric, Iuliana Gabriela. "SOIL ORGANIC MATTER ASSESSMENT FROM NEAMTU CATCHMENT SOILS THROUGH VARIOUS ORGANIC CARBON METHODS." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/32/s13.066.
Full textReports on the topic "Soil organic carbon (SOC)"
Bar-Tal, Asher, Paul R. Bloom, Pinchas Fine, C. Edward Clapp, Aviva Hadas, Rodney T. Venterea, Dan Zohar, Dong Chen, and Jean-Alex Molina. Effects of soil properties and organic residues management on C sequestration and N losses. United States Department of Agriculture, August 2008. http://dx.doi.org/10.32747/2008.7587729.bard.
Full textLitaor, Iggy, James Ippolito, Iris Zohar, and Michael Massey. Phosphorus capture recycling and utilization for sustainable agriculture using Al/organic composite water treatment residuals. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600037.bard.
Full textBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Full textZinke, P. J., A. G. Stangenberger, W. M. Post, W. R. Emanual, and J. S. Olson. Worldwide organic soil carbon and nitrogen data. Office of Scientific and Technical Information (OSTI), September 1986. http://dx.doi.org/10.2172/543663.
Full textChefetz, Benny, and Baoshan Xing. Sorption of hydrophobic pesticides to aliphatic components of soil organic matter. United States Department of Agriculture, 2003. http://dx.doi.org/10.32747/2003.7587241.bard.
Full textGebhart, Dick L., H. A. Torbert, and Michael Hargrave. Identifying Military Impacts on Archaeological Deposits Based on Differences in Soil Organic Carbon and Chemical Elements at Soil Horizon Interfaces. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada559158.
Full textFirestone, Mary. Mapping soil carbon from cradle to grave: drafting a molecular blueprint for C transformation from roots to stabilized soil organic C. Office of Scientific and Technical Information (OSTI), February 2018. http://dx.doi.org/10.2172/1437612.
Full textBradford, M. A., J. M. Melillo, J. F. Reynolds, K. K. Treseder, and M. D. Wallenstein. Heterotrophic Soil Respiration in Warming Experiments: Using Microbial Indicators to Partition Contributions from Labile and Recalcitrant Soil Organic Carbon. Final Report. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/981713.
Full textKostka, Joel. The response of soil carbon storage and microbially mediated carbon turnover to simulated climatic disturbance in a northern peatland forest. Revisiting the concept of soil organic matter recalcitrance. Office of Scientific and Technical Information (OSTI), September 2015. http://dx.doi.org/10.2172/1330571.
Full textWallenstein, Matthew. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems. Office of Scientific and Technical Information (OSTI), December 2017. http://dx.doi.org/10.2172/1411190.
Full text