Academic literature on the topic 'Soil organic matter modeling'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil organic matter modeling.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Soil organic matter modeling"

1

Wang, Yang, Ronald Amundson, and Susan Trumbore. "Radiocarbon Dating of Soil Organic Matter." Quaternary Research 45, no. 3 (1996): 282–88. http://dx.doi.org/10.1006/qres.1996.0029.

Full text
Abstract:
AbstractRadiocarbon ages of soil organic matter are evaluated with a model which incorporates the dynamics of the 14C content of soil organic matter. Measured 14C ages of soil organic matter or its fractions are always younger than the true ages of soils due to continuous input of organic matter into soils. Differences in soil C dynamics due to climate or soil depth will result in significantly different 14C signatures of soil organic matter for soils of the same age. As a result, the deviation of the measured 14C age from the true age of soil formation could differ significantly among differe
APA, Harvard, Vancouver, ISO, and other styles
2

Sierra, C. A., M. Müller, and S. E. Trumbore. "Modeling radiocarbon dynamics in soils: SoilR version 1.1." Geoscientific Model Development 7, no. 5 (2014): 1919–31. http://dx.doi.org/10.5194/gmd-7-1919-2014.

Full text
Abstract:
Abstract. Radiocarbon is an important tracer of the global carbon cycle that helps to understand carbon dynamics in soils. It is useful to estimate rates of organic matter cycling as well as the mean residence or transit time of carbon in soils. We included a set of functions to model the fate of radiocarbon in soil organic matter within the SoilR package for the R environment for computing. Here we present the main system equations and functions to calculate the transfer and release of radiocarbon from different soil organic matter pools. Similarly, we present functions to calculate the mean
APA, Harvard, Vancouver, ISO, and other styles
3

Sierra, C. A., M. Müller, and S. E. Trumbore. "Modeling radiocarbon dynamics in soils: SoilR version 1.1." Geoscientific Model Development Discussions 7, no. 3 (2014): 3161–92. http://dx.doi.org/10.5194/gmdd-7-3161-2014.

Full text
Abstract:
Abstract. Radiocarbon is an important tracer of the global carbon cycle that helps to understand carbon dynamics in soils. It is useful to estimate rates of organic matter cycling as well as the mean residence or transit time of carbon in soils. We included a set of functions to model the fate of radiocarbon in soil organic matter within the SoilR package for the R environment for computing. Here we present the main system equations and functions to calculate the transfer and release of radiocarbon from different soil organic matter pools. Similarly, we present functions to calculate the mean
APA, Harvard, Vancouver, ISO, and other styles
4

Sierra, C. A., M. Müller, and S. E. Trumbore. "Models of soil organic matter decomposition: the SoilR package, version 1.0." Geoscientific Model Development 5, no. 4 (2012): 1045–60. http://dx.doi.org/10.5194/gmd-5-1045-2012.

Full text
Abstract:
Abstract. Soil organic matter decomposition is a very important process within the Earth system because it controls the rates of mineralization of carbon and other biogeochemical elements, determining their flux to the atmosphere and the hydrosphere. SoilR is a modeling framework that contains a library of functions and tools for modeling soil organic matter decomposition under the R environment for computing. It implements a variety of model structures and tools to represent carbon storage and release from soil organic matter. In SoilR, organic matter decomposition is represented as a linear
APA, Harvard, Vancouver, ISO, and other styles
5

Sierra, C. A., M. Müller, and S. E. Trumbore. "Models of soil organic matter decomposition: the SOILR package, version 1.0." Geoscientific Model Development Discussions 5, no. 2 (2012): 993–1039. http://dx.doi.org/10.5194/gmdd-5-993-2012.

Full text
Abstract:
Abstract. Organic matter decomposition is a very important process within the Earth System because it controls the rates of mineralization of carbon and other biogeochemical elements, determining their flux to the atmosphere and the hydrosphere. SOILR is a modeling framework that contains a library of functions and tools for modeling soil organic matter decomposition under the R environment for computing. It implements a variety of model structures and tools to represent carbon storage and release from soil organic matter. In SOILR organic matter decomposition is represented as a linear system
APA, Harvard, Vancouver, ISO, and other styles
6

Prays, Nadia, Peter Dominik, Anja Sänger, and Uwe Franko. "Biogas residue parameterization for soil organic matter modeling." PLOS ONE 13, no. 10 (2018): e0204121. http://dx.doi.org/10.1371/journal.pone.0204121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Verberne, E. L. J., J. Hassink, P. de Willigen, J. J. R. Groot, and J. A. van Veen. "Modelling organic matter dynamics in different soils." Netherlands Journal of Agricultural Science 38, no. 3A (1990): 221–38. http://dx.doi.org/10.18174/njas.v38i3a.16585.

Full text
Abstract:
A mathematical model was developed to describe carbon (C) and nitrogen (N) cycling in different soil types, e.g. clay and sandy soils. Transformation rates were described by first-order kinetics. Soil organic matter is divided into four fractions (including microbial biomass pool) and three fractions of residues. The fraction of active soil organic matter was assumed to be affected by the extent of physical protection within the soil, as was the soil microbial biomass. The extent of protection influenced the steady state level of the model, and, hence, the mineralization rates. The mineralizat
APA, Harvard, Vancouver, ISO, and other styles
8

Braakhekke, M. C., T. Wutzler, C. Beer, et al. "Modeling the vertical soil organic matter profile using Bayesian parameter estimation." Biogeosciences 10, no. 1 (2013): 399–420. http://dx.doi.org/10.5194/bg-10-399-2013.

Full text
Abstract:
Abstract. The vertical distribution of soil organic matter (SOM) in the profile may constitute an important factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transpor
APA, Harvard, Vancouver, ISO, and other styles
9

Polyakov, V., and R. Lal. "Modeling soil organic matter dynamics as affected by soil water erosion." Environment International 30, no. 4 (2004): 547–56. http://dx.doi.org/10.1016/j.envint.2003.10.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Braakhekke, M. C., T. Wutzler, C. Beer, et al. "Modeling the vertical soil organic matter profile using Bayesian parameter estimation." Biogeosciences Discussions 9, no. 8 (2012): 11239–92. http://dx.doi.org/10.5194/bgd-9-11239-2012.

Full text
Abstract:
Abstract. The vertical distribution of soil organic matter (SOM) in the profile may constitute a significant factor for soil carbon cycling. However, the formation of the SOM profile is currently poorly understood due to equifinality, caused by the entanglement of several processes: input from roots, mixing due to bioturbation, and organic matter leaching. In this study we quantified the contribution of these three processes using Bayesian parameter estimation for the mechanistic SOM profile model SOMPROF. Based on organic carbon measurements, 13 parameters related to decomposition and transpo
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Soil organic matter modeling"

1

Nilsson, K. Sofia. "Modelling soil organic matter turnover /." Uppsala : Dept. of Ecology and Environmental Research, Swedish Univ. of Agricultural Sciences, 2004. http://epsilon.slu.se/s326.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sohi, Saran Paul. "Dynamic modelling of soil organic matter using physically defined fractions." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.251765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hammoudi, Alaaeddine. "Modeling and mathematical analysis of the dynamics of soil organic carbon." Thesis, Montpellier, 2015. http://www.theses.fr/2015MONTS205/document.

Full text
Abstract:
La compréhension du cycle de la matière organique du sol (MOS) est un outil majeur dans la lutte contre le réchauffement climatique, la préservation de la biodiversité ainsi que dans la consolidation de la sécurité alimentaire. Dans ce contexte, cette thèse porte sur la modélisation et l'analyse mathématique de modèles de la dynamique du carbone organique dans le sol.Dans le chapitre 2, nous avons étudié la robustesse et les propriétés mathématiques d'un modèle non linéaire (MOMOS). Nous avons montré que si les données sont périodiques nous obtenons l'existence d'une solution périodique attrac
APA, Harvard, Vancouver, ISO, and other styles
4

Kadono, Atsunobu. "Studies on modelling of soil organic matter decomposition processes under different ecosystems." Kyoto University, 2008. http://hdl.handle.net/2433/136624.

Full text
Abstract:
Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(農学)<br>甲第13897号<br>農博第1712号<br>新制||農||956(附属図書館)<br>学位論文||H20||N4364(農学部図書室)<br>UT51-2008-C813<br>京都大学大学院農学研究科地域環境科学専攻<br>(主査)教授 小﨑 隆, 教授 谷 誠, 教授 縄田 栄治<br>学位規則第4条第1項該当
APA, Harvard, Vancouver, ISO, and other styles
5

Kroll, Jeffrey T. "LANDUSE AND SOIL ORGANIC CARBON VARIABILITY IN THE OLD WOMAN CREEK WATERSHED OF NORTH CENTRAL OHIO." Miami University / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=miami1165431813.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Demyan, Michael Scott [Verfasser], and Georg [Akademischer Betreuer] Cadisch. "Development of coupled mid-infrared spectroscopic and thermal analytical approaches for the characterization and modeling of soil organic matter dynamics of arable soils / Michael Scott Demyan. Betreuer: Georg Cadisch." Hohenheim : Kommunikations-, Informations- und Medienzentrum der Universität Hohenheim, 2014. http://d-nb.info/1049982320/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Georgis, Kidane. "The effect of fertiliser management practices on soil organic matter production in the semi-arid areas : a field and modelling approach." Title page, contents and abstract only, 1997. http://web4.library.adelaide.edu.au/theses/09AFP/09afpg352.pdf.

Full text
Abstract:
Bibliography: leaves 155-169. Studies the effect of nitrogen fertilizer on dry matter production under differing watering regimes. Investigates the accuracy of different crop and soil organic matter models for predicting crop yield, nitrogen uptake and changes in soil organic carbon and nitrogen. Compares the models with data from long-term field experiments on wheat in Australia and sorghum in Ethiopia. Finds that a higher crop yield and better nitrogen and water utilisation can be achieved if addition of nitrogen fertilizer is balanced with soil water.
APA, Harvard, Vancouver, ISO, and other styles
8

Louis, Benjamin. "Prise en compte du rôle de la diversité microbienne dans la simulation de la dynamique de la matière organique du sol (MOS) dans un contexte de transition vers l'agro-écologie." Thesis, Rennes, Agrocampus Ouest, 2016. http://www.theses.fr/2016NSARC126/document.

Full text
Abstract:
La thèse propose et évalue une méthode de prise en compte de la diversité microbienne dans un modèle mécaniste opérationnel de dynamique du carbone (C). Partant d'un modèle classique dont les flux de minéralisation sont décrits par des cinétiques d'ordre 1, nous proposons des fonctions de modulation des paramètres des équations prenant en compte des indices de diversité microbienne. Elle s’appuie sur 2 jeux de données contenant des mesures de diversité microbienne et des cinétiques de minéralisation du C sur 80 jours, en conditions contrôlées, avec et sans apport de blé marqué au 13C, issus d'
APA, Harvard, Vancouver, ISO, and other styles
9

Djae, Tanalou. "Propriétés de complexation de la matière organique dissoute vis-à-vis du cuivre dans les systèmes sol-plante amendés avec des produits résiduaires organiques." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0092.

Full text
Abstract:
La compréhension des déterminants de la biodisponibilité du cuivre (Cu) dans les sols agricoles recevant des apports de produits résiduaires organiques (Pro) est un enjeu écotoxicologique majeur dans l’optique de préserver la fertilité des sols. La spéciation de Cu dans la solution du sol est classiquement considérée en écotoxicologie prédictive comme le principal déterminant chimique de la biodisponibilité de Cu pour les organismes du sol. Étant donné la forte affinité de Cu pour la matière organique dissoute (MOD), la spéciation de Cu dans la solution du sol est fortement conditionnée par la
APA, Harvard, Vancouver, ISO, and other styles
10

Nicoloso, Rodrigo da Silveira. "Dinâmica da matéria orgânica do solo em áreas de integração lavoura-pecuária sob sistema plantio direto." Universidade Federal de Santa Maria, 2005. http://repositorio.ufsm.br/handle/1/5466.

Full text
Abstract:
Conselho Nacional de Desenvolvimento Científico e Tecnológico<br>The cattle breeding and crop production integrated systems in the south of Brazil is based mostly on grain production with summer crops and beef cattle production over winter pastures. This activity have been expanded quickly in the state of Rio Grande do Sul, due the increase of soybean cultivation over native grass fields areas and the requirement to improve the livestock productivity index in that state. However, few research works exists until this moment to show the best management systems to this areas mainly due to its dis
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Soil organic matter modeling"

1

Kumada, Kyōichi. Chemistry of soil organic matter. Japan Scientific Societies Press, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Powlson, David S., Pete Smith, and Jo U. Smith, eds. Evaluation of Soil Organic Matter Models. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61094-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Magdoff, F. R., M. A. Tabatabai, and E. A. Hanlon, eds. Soil Organic Matter: Analysis and Interpretation. Soil Science Society of America, 1996. http://dx.doi.org/10.2136/sssaspecpub46.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rees, R. M., B. C. Ball, C. D. Campbell, and C. A. Watson, eds. Sustainable management of soil organic matter. CABI, 2001. http://dx.doi.org/10.1079/9780851994659.0000.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vaughan, D., and R. E. Malcolm, eds. Soil Organic Matter and Biological Activity. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5105-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Vityakon, Patma. Soil organic matter and soil quality in Northeast Thailand. Department of Plant Science and Agricultural Resources, Faculty of Agriculture, Khon Kaen University, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Soil organic matter: Biological and ecological effects. Krieger, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tate, Robert L. Soil organic matter: Biological and ecological effects. Wiley, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Björklund, Pedro A. Soil organic matter: Ecology, environmental impact, and management. Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Campbell, C. A. Response of soil organic matter to crop management. Agriculture and Agri-Food Canada, Research Branch, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Soil organic matter modeling"

1

Elliott, Edward T., Keith Paustian, and Serita D. Frey. "Modeling the Measurable or Measuring the Modelable: A Hierarchical Approach to Isolating Meaningful Soil Organic Matter Fractionations." In Evaluation of Soil Organic Matter Models. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61094-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Franko, Uwe. "Modelling approaches of soil organic matter turnover within the CANDY system." In Evaluation of Soil Organic Matter Models. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61094-3_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Parton, William J., Dennis S. Ojima, C. Vernon Cole, and David S. Schimel. "A General Model for Soil Organic Matter Dynamics: Sensitivity to Litter Chemistry, Texture and Management." In Quantitative Modeling of Soil Forming Processes. Soil Science Society of America, 2015. http://dx.doi.org/10.2136/sssaspecpub39.c9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

van Keulen, Herman. "(Tropical) soil organic matter modelling: problems and prospects." In Managing Organic Matter in Tropical Soils: Scope and Limitations. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-017-2172-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sanger, L. J., M. J. Whelan, P. Cox, and J. M. Anderson. "Measurement and modelling of soil organic matter decomposition using biochemical indicators." In Progress in Nitrogen Cycling Studies. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-5450-5_73.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Whitmore, A. P., K. W. Coleman, N. J. Bradbury, and T. M. Addiscott. "Simulation of nitrogen in soil and winter wheat crops: modelling nitrogen turnover through organic matter." In Nitrogen Turnover in the Soil-Crop System. Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3434-7_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cole, C. V., J. W. B. Stewart, D. S. Ojima, W. J. Parton, and D. S. Schimel. "Modelling land use effects of soil organic matter dynamics in the North American Great Plains." In Ecology of Arable Land — Perspectives and Challenges. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1021-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reddy, P. Parvatha. "Soil Organic Matter." In Sustainable Intensification of Crop Production. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2702-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Powlson, David, Pete Smith, and Maria De Nobili. "Soil organic matter." In Soil Conditions and Plant Growth. Blackwell Publishing Ltd, 2013. http://dx.doi.org/10.1002/9781118337295.ch4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Blume, Hans-Peter, Gerhard W. Brümmer, Heiner Fleige, et al. "Soil Organic Matter." In Scheffer/SchachtschabelSoil Science. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-30942-7_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Soil organic matter modeling"

1

Thomas, C. L., B. Jansen, E. E. van Loon, and G. L. B. Wiesenberg. "Improved Source Apportionment of Soil and Sediment Organic Matter Using Inverse Modeling of Biomarker Composition (Verhib 2.0)." In 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902996.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lu Qiao, Li-Xin Chen, Wen-Biao Duan, Rui-Qing Song, and Xiu-Feng Wang. "Comparison of three multivariate methods of inferential modeling of soil organic matter using hyper spectra." In 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE). IEEE, 2011. http://dx.doi.org/10.1109/rsete.2011.5964041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wu, Jian, Yaolin Liu, Xican Li, Jing Wang, and Dan Chen. "Comparison of multivariate statistical analysis and fuzzy recognition algorithm for quantitative mapping soil organic matter content with hyperspectral data." In International Symposium on Spatial Analysis, Spatial-temporal Data Modeling, and Data Mining, edited by Yaolin Liu and Xinming Tang. SPIE, 2009. http://dx.doi.org/10.1117/12.837487.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Chen, Richard H., Kazem Bakian-Dogaheh, Alireza Tabatabaeenejad, and Mahta Moghaddam. "Modeling and Retrieving Soil Moisture and Organic Matter Profiles in the Active Layer of Permafrost Soils From P-Band Radar Observations." In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2019. http://dx.doi.org/10.1109/igarss.2019.8899802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gras, A., and M. Ginovart. "INDISIM-SOM, An Individual-Based Model To Study Shortterm Evolutions Of Carbon And Nitrogen Pools Related To Microbial Activity In Soil Organic Matter." In 20th Conference on Modelling and Simulation. ECMS, 2006. http://dx.doi.org/10.7148/2006-0554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kutlakhmedov, Yu, V. Davydchyk, A. Jouve, and N. Grytsiuk. "Evaluation the Efficacy of the Turf-Cutter Soil Decontamination Technology." In ASME 2001 8th International Conference on Radioactive Waste Management and Environmental Remediation. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/icem2001-1167.

Full text
Abstract:
Abstract The testing begun in the framework of the CEC project ECP-4 “Decontamination technologies and strategies” have allowed to develop and to test new technology of the polluted soils decontamination by removal of the thin turf layer by the vibrating blade of the special machine (Turf-Cutter). The experiments were conducted at the radioactively contaminated soils of Ukraine and Belarus during 1992–2000. The machine “TURF HARVESTER” (USA) was used in the experiment. The first testing of the method was conducted on the well turfed radioecological polygon “Buryakovka”, 4 km from the Chernobyl
APA, Harvard, Vancouver, ISO, and other styles
7

Rosero-Vlasova, Olga Alexandra, Daniel Borini-Alves, Lidia Vlassova, Raquel Montorio Llovería, and Fernando Pérez-Cabello. "Modeling soil organic matter (SOM) from satellite data using VISNIR-SWIR spectroscopy and PLS regression with step-down variable selection algorithm: case study of Campos Amazonicos National Park savanna enclave, Brazil." In Remote Sensing for Agriculture, Ecosystems, and Hydrology, edited by Christopher M. Neale and Antonino Maltese. SPIE, 2017. http://dx.doi.org/10.1117/12.2278701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Ouedraogo, F., L. Denaix, M. Sourzac, et al. "DOES TEMPERATURE AFFECT SOIL ORGANIC MATTER DECOMPOSITION AND DISSOLVED ORGANIC MATTER OPTICAL PROPERTIES?" In 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

B K Gelder and R P Anex. "Estimating Soil Organic Matter Using Aerial Imagery and Soil Surveys." In 2009 Reno, Nevada, June 21 - June 24, 2009. American Society of Agricultural and Biological Engineers, 2009. http://dx.doi.org/10.13031/2013.27306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bartlova, Jaroslava. "INFLUENCE OF SOIL ORGANIC MATTER ON ITS WATER STABILITY OF SOIL AGGREGATES." In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/32/s13.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Soil organic matter modeling"

1

Serkiz, S. M., and J. L. Myers. Additional Information for E-Area Vault Performance Assessment, Appendix I `Suspect Soil Performance` - Results of Modeling the Effects of Organic Matter on the Mobility of Radionuclides as it Relates to the Disposal of Wood Products in E-Area Slit Trenches. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/626421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santschi, Peter H., Kathleen A. Schwehr, Chen Xu, et al. Plutonium Immobilization and Mobilization by Soil Organic Matter. Office of Scientific and Technical Information (OSTI), 2016. http://dx.doi.org/10.2172/1240745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Wright, Alan L., and Edward A. Hanlon. Organic matter and soil structure in the Everglades Agricultural Area. Office of Scientific and Technical Information (OSTI), 2013. http://dx.doi.org/10.2172/1337170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dillon, Megan. A Study of Soil Organic Matter and Its Controlling Factors in Portland, Oregon. Portland State University Library, 2000. http://dx.doi.org/10.15760/etd.155.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lesschen, Jan Peter, Theun Vellinga, Sanne Dekker, Annelotte van der Linden, and Rene Schils. Possibilities for monitoring CO2 sequestration and decomposition of soil organic matter on dairy farms. Wageningen Environmental Research, 2020. http://dx.doi.org/10.18174/526420.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Knoepp, Jennifer D., Larry L. Tieszen, and Glen G. Fredlund. Assessing the vegetation history of three Southern Appalachian balds through soil organic matter analysis. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1998. http://dx.doi.org/10.2737/srs-rp-013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Knoepp, Jennifer D., Larry L. Tieszen, and Glen G. Fredlund. Assessing the vegetation history of three Southern Appalachian balds through soil organic matter analysis. U.S. Department of Agriculture, Forest Service, Southern Research Station, 1998. http://dx.doi.org/10.2737/srs-rp-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jarvis, Stacey, Thomas Douglas, Karen Foley, et al. Spectral assessment of soil properties : standoff quantification of soil organic matter content in surface mineral soils and Alaskan peat. Engineer Research and Development Center (U.S.), 2017. http://dx.doi.org/10.21079/11681/22904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Amaranthus, Michael P., Debbie Page-Dumroese, Al Harvey, Efren Cazares, and Larry F. Bednar. Soil compaction and organic matter affect conifer seedling nonmycorrhizal and ectomycorrhizal root tip abundance and diversity. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 1996. http://dx.doi.org/10.2737/pnw-rp-494.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

DUDKINA, T. A. INCORPORATION OF ORGANIC MATTER INTO THE SOIL IN CROP ROTATIONS WITH DIFFERENT RATIOS OF CROP GROUPS. Ljournal, 2019. http://dx.doi.org/10.18411/issn1997-0749.2019-08-38-41.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!