Academic literature on the topic 'Soil-structure interaction. Structural dynamics. Finite element method'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Soil-structure interaction. Structural dynamics. Finite element method.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Soil-structure interaction. Structural dynamics. Finite element method"

1

Rong, Yao, Yang Sun, LiQing Zhu, and Xiao Xiao. "Analysis of the Three-Dimensional Dynamic Problems by Using a New Numerical Method." Advances in Civil Engineering 2021 (May 4, 2021): 1–12. http://dx.doi.org/10.1155/2021/5555575.

Full text
Abstract:
The problems of the consolidation of saturated soil under dynamic loading are very complex. At present, numerical methods are widely used in the research. However, some traditional methods, such as the finite element method, involve more degrees of freedom, resulting in low computational efficiency. In this paper, the scaled boundary element method (SBFEM) is used to analyze the displacement and pore pressure response of saturated soil due to consolidation under dynamic load. The partial differential equations of linear problems are transformed into ordinary differential equations and solved along the radial direction. The coefficients in the equations are determined by approximate finite elements on the circumference. As a semianalytical method, the application of scaled boundary element method in soil-structure interaction is extended. Dealing with complex structures and structural nonlinearity, it can simulate two-phase saturated soil-structure dynamic interaction in infinite and finite domain, which has an important engineering practical value. Through the research, some conclusions are obtained. The dimension of the analytical problem can be reduced by one dimension if only the boundary surface is discretized. The SBFEM can automatically satisfy the radiation conditions at infinite distances. The 3D scaled boundary finite element equation for dynamic consolidation of saturated soils is not only accurate in finite element sense but also convenient in mathematical processing.
APA, Harvard, Vancouver, ISO, and other styles
2

Horr, A. M., and M. Safi. "Full Dynamic Analysis of Large Concrete Cooling Towers: Soil-Structure Interaction." International Journal of Space Structures 17, no. 4 (December 2002): 301–12. http://dx.doi.org/10.1260/026635102321049565.

Full text
Abstract:
Based on the complex spectral element method and the theory of fractional calculus, a hybrid complex damped spectral element method is developed. The new method is capable of making accurate predictions of the full dynamic behaviour of reinforced concrete cooling tower structures including soil-structure interaction effects. The dynamic soil-structure interaction of large space shell structures can be analysed using hybrid spectral-finite element method where the seismic wave propagation in the soil media has been modelled using the spectral element method. The frequency-dependent damping characteristic of soil materials can also be modelled accurately using the fractional derivative model. It is shown that the proposed method can be extended to develop a frequency domain dynamical method to analyse damped large space structures under earthquake excitation. The soil-structure dynamical solution is shown graphically, and the consistency of method is investigated. Using a computer program, the proposed formulation has been used to derive the dynamic response of a large concrete cooling tower with the soil media.
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Nan, and Hui Fang Zhao. "Research on Horizontal Displacement and Torsion Coupling Effect of Structure-Soil System." Applied Mechanics and Materials 275-277 (January 2013): 1107–10. http://dx.doi.org/10.4028/www.scientific.net/amm.275-277.1107.

Full text
Abstract:
In this paper, the vibration equation of the structure-soil nonlinear interaction system was qualitatively analyzed by using the modern dynamic theory. Based on the multilinear kinematic hardening mode, the nonlinear finite element method was applied for the solution of the horizontal and torsional stiffness between the foundation and soil interaction system. And a mechanical model of the structure-soil nonlinear interaction system was established. The Lagrange energy method is used to build the coupling vibration equation of the structural horizontal displacement and torsion. The Primary resonance of the structure-soil nonlinear interaction system was studied by using the multiple scales method. By analyzing the nonlinear coupling interaction between different structures and soil, the coupling effect of structure system was revealed by appearing energy transfer from high order horizontal vibration to low order torsional vibration, and also the vibration characteristics and the behavior of energy transfer were obtained.
APA, Harvard, Vancouver, ISO, and other styles
4

Çelebi, E., F. Göktepe, and N. Karahan. "Non-linear finite element analysis for prediction of seismic response of buildings considering soil-structure interaction." Natural Hazards and Earth System Sciences 12, no. 11 (November 26, 2012): 3495–505. http://dx.doi.org/10.5194/nhess-12-3495-2012.

Full text
Abstract:
Abstract. The objective of this paper focuses primarily on the numerical approach based on two-dimensional (2-D) finite element method for analysis of the seismic response of infinite soil-structure interaction (SSI) system. This study is performed by a series of different scenarios that involved comprehensive parametric analyses including the effects of realistic material properties of the underlying soil on the structural response quantities. Viscous artificial boundaries, simulating the process of wave transmission along the truncated interface of the semi-infinite space, are adopted in the non-linear finite element formulation in the time domain along with Newmark's integration. The slenderness ratio of the superstructure and the local soil conditions as well as the characteristics of input excitations are important parameters for the numerical simulation in this research. The mechanical behavior of the underlying soil medium considered in this prediction model is simulated by an undrained elasto-plastic Mohr-Coulomb model under plane-strain conditions. To emphasize the important findings of this type of problems to civil engineers, systematic calculations with different controlling parameters are accomplished to evaluate directly the structural response of the vibrating soil-structure system. When the underlying soil becomes stiffer, the frequency content of the seismic motion has a major role in altering the seismic response. The sudden increase of the dynamic response is more pronounced for resonance case, when the frequency content of the seismic ground motion is close to that of the SSI system. The SSI effects under different seismic inputs are different for all considered soil conditions and structural types.
APA, Harvard, Vancouver, ISO, and other styles
5

AI-Khoury, Rafid, Athanassios Scarpas, Cor Kasbergen, and Johan Blaauwendraad. "Dynamic Interpretation of Falling Weight Deflectometer Test Results: Spectral Element Method." Transportation Research Record: Journal of the Transportation Research Board 1716, no. 1 (January 2000): 49–54. http://dx.doi.org/10.3141/1716-06.

Full text
Abstract:
The use of spectral analysis as a means of analyzing the dynamic impact of falling weight deflectometer (FWD) load pulses on pavements is covered. The spectral element technique is utilized. Only forward analyses of pavement dynamics are presented, with the emphasis on the suitability of the method for solving inverse problems. LAMDA (layered media dynamic analysis), a newly developed spectral element program, is utilized for the simulation of the interaction between the FWD load pulse and the pavement structure. In LAMDA, the formulation of the wave propagation, reflection, and refraction in a layer is done in a closed form. The assembling of the elements (in the multilayer system) is carried out in a manner similar to that in the finite element method. Consequently, the size of the mesh of a pavement structure is as large as the number of the layers involved. This reduces the computational requirements substantially and hence enables utilization of LAMDA in iterative algorithms for backcalculation purposes.
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Piguang, Yifu Chang, Mi Zhao, and Junyan Han. "Earthquake and Wave Analysis of Circular Cylinder considering Water-Structure-Soil Interaction." Advances in Civil Engineering 2020 (July 28, 2020): 1–18. http://dx.doi.org/10.1155/2020/4271378.

Full text
Abstract:
Offshore structures in zones of active seismicity are under a potential threat caused by the combined action of earthquakes and waves. Taking a submerged circular cylinder as the prototype and considering water-structure-soil interaction, the present study is devoted to the investigation of the combined action of earthquakes and waves. Water-cylinder interaction and soil-structure interaction are simulated by added mass and rigid circular massless foundations, respectively. Based on the radiation and diffraction wave theory, the scaled boundary finite element method is utilized to determine the earthquake-induced and wave-induced pressure on a circular cylinder. Then, a closed-form expression for the natural frequencies and mode shapes of the system is derived by using the transfer matrix method, where the transfer matrix is obtained based on Euler–Bernoulli’s beam differential equation. Furthermore, the dynamic response of the system under the combined action of earthquakes and waves is derived by using the mode superposition method. Finally, the effects of the hydrodynamic force, wave force, and soil-structure interaction on the dynamic response of the submerged cylinder are investigated. The results indicate that the wave forces can substantially increase the dynamic responses of the cylinder and that the influence increases as the stiffness ratio increases and the width-depth ratio decreases. It is necessary to consider the combined action of earthquakes and waves in the seismic design of offshore structures.
APA, Harvard, Vancouver, ISO, and other styles
7

Haussmann, Marc, Peter Reinshaus, Stephan Simonis, Hermann Nirschl, and Mathias J. Krause. "Fluid–Structure Interaction Simulation of a Coriolis Mass Flowmeter Using a Lattice Boltzmann Method." Fluids 6, no. 4 (April 20, 2021): 167. http://dx.doi.org/10.3390/fluids6040167.

Full text
Abstract:
In this paper, we use a fluid–structure interaction (FSI) approach to simulate a Coriolis mass flowmeter (CMF). The fluid dynamics is calculated by the open-source framework OpenLB, based on the lattice Boltzmann method (LBM). For the structural dynamics we employ the open-source software Elmer, an implementation of the finite element method (FEM). A staggered coupling approach between the two software packages is presented. The finite element mesh is created by the mesh generator Gmsh to ensure a complete open source workflow. The Eigenmodes of the CMF, which are calculated by modal analysis, are compared with measurement data. Using the estimated excitation frequency, a fully coupled, partitioned, FSI simulation is applied to simulate the phase shift of the investigated CMF design. The calculated phase shift values are in good agreement to the measurement data and verify the suitability of the model to numerically describe the working principle of a CMF.
APA, Harvard, Vancouver, ISO, and other styles
8

Messioud, Salah, Badreddine Sbartai, and Daniel Dias. "Estimation of Dynamic Impedance of the Soil–Pile–Slab and Soil–Pile–Mattress–Slab Systems." International Journal of Structural Stability and Dynamics 17, no. 06 (August 2017): 1750057. http://dx.doi.org/10.1142/s0219455417500572.

Full text
Abstract:
A 3D finite-element model for the dynamic analysis of soil–pile–slab is presented, with the soil–pile–mattress–slab interaction included in studying the dynamic behavior of the rigid–pile–reinforced soils. The soil, piles, and mattress are represented as continuum solids, and the slab is represented by structural plate elements. Quiet boundaries are placed at the boundaries of the model to avoid wave reflection. The formulation is based on the sub-structure method. Different geometric configurations are studied in terms of dynamic impedance. The numerical results are presented to show the influence of the mattress stiffness and the pile–soil contact conditions on the dynamic response of the foundation system. The horizontal and vertical impedances of the pile foundations are presented with the results compared with those available in previous studies.
APA, Harvard, Vancouver, ISO, and other styles
9

Doiphode, Dr G. S., and Pratik Saraiya. "Dynamic Behaviour of Raft Foundation for Tall building with Variable Subsoil." International Journal of Engineering and Advanced Technology 10, no. 2 (December 30, 2020): 230–35. http://dx.doi.org/10.35940/ijeat.b2099.1210220.

Full text
Abstract:
Structures are often constructed on layers of soil unless bedrock is very close to the ground surface. When the ground is stiff enough, the dynamic response of the structure will not be influenced significantly by the soil properties during the earthquake, and the structure can be analysed under the fixed base condition. When the structure is resting on a flexible medium, the dynamic response of the complete structure will be different from the fixed base condition, where the interaction between the soil and the structure has to be incorporate. This behavioural difference because of the phenomenon commonly referred to as Soil-Structure Interaction (SSI), which if not considered in analysis and design properly; the accuracy in assessing the structural safety, response for earthquake excitation could not be reliable solution. Hence evaluation of the site, specific effect of soil stiffness on structure becomes important to understand behaviour of structure. Flexibility of soil increases natural period of structure, which basically turn changes the seismic response of structure. The interaction among structure, their foundation and soil media below foundation alter the actual behaviour of structure. Here G+25 storey building is modelled and analysed, employing Finite Element Method adopting Commercial code SAP2000 V19 under fixed base (no soil-structure interaction) and flexible base considering soil-structure interaction. An attempt has been made to evaluate the effect of soil structure interaction of super structure by considering the systematic parameters like time period, lateral displacement, storey drift, bending moment in dual global structural axis i.e., X-X and Y-Y direction.
APA, Harvard, Vancouver, ISO, and other styles
10

Park, Gun, Jongwon Jung, and Hyungchul Yoon. "Development of FE Model Updating for Three-Story Building considering Soil-Structure Interaction." Journal of the Korean Society of Hazard Mitigation 20, no. 6 (December 31, 2020): 261–70. http://dx.doi.org/10.9798/kosham.2020.20.6.261.

Full text
Abstract:
Owing to the development of construction technology, structures are becoming increasingly taller. Furthermore, with the improvement in construction materials, the service life of the structures is also increasing. The increased service life of large structures has highlighted the importance of structure maintenance and performance evaluation; thus, the need for an accurate model development for performance evaluation is increasing. This study predicts the structural characteristics through finite element (FE) model updating using a genetic algorithm (GA). The GA was applied to determine whether the structural member was damaged. In particular, it is intended to improve the reliability of the FE model updating during a seismic load by considering the soil-structure interaction effect that has been overlooked in the existing model updating study. The results of this study show that the model that considers the soil-structure interaction can estimate the dynamic characteristics of the structure more accurately compared to the model that does not consider the soil-structure interaction. The accuracy of the updated parameters by the proposed method was found to be over 90%.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Soil-structure interaction. Structural dynamics. Finite element method"

1

Tee, Chee Heong. "Dynamic response of plates and buried structures." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://etd.wvu.edu/etd/controller.jsp?moduleName=documentdata&jsp%5FetdId=3803.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2005.
Title from document title page. Document formatted into pages; contains xi, 87 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 76-78).
APA, Harvard, Vancouver, ISO, and other styles
2

Almeida, Francisco Patrick Araujo. "Aplicação do acoplamento entre o MEC e o MEF para o estudo da interação dinâmica elastoplástica entre o solo e estruturas." Universidade de São Paulo, 2003. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-20062006-154024/.

Full text
Abstract:
O objetivo do presente trabalho é o desenvolvimento de um código computacional que possibilite a análise dinâmica de estruturas tridimensionais em regime elástico-linear acopladas ao solo, tratado como meio infinito elastoplástico. As superestruturas são tratadas por elementos finitos simples de casca e de barra geral, as estruturas de fundações são tratadas por elementos de casca que simulam o contato com o solo, modelando radiers, túneis e reservatórios enterrados. Blocos são modelados por elementos de contorno tridimensionais. O solo é modelado de duas maneiras distintas: na região plastificada emprega-se a solução fundamental de Kelvin (estática) e na região não plastificada (elástica) adota-se a solução fundamental do problema de Stokes. O acoplamento entre os meios é feito aplicando-se a técnica de subregiões. Deve ficar claro que todo procedimento estático equivalente foi implementado. Vários exemplos numéricos são apresentados, onde se percebe a eficiência do código computacional desenvolvido
The objective of the present work is the development of a computational code that makes possible dynamic analyses of three-dimensional structures in elastic-linear behavior coupled to the soil, modeled as elastoplastic infinite medium. Simple finite elements, shell and general bars, are used to model elastic structures. The structures of foundations are modeled by shell’s elements which simulate the contact with the soil, modeling radiers, tunnels and buried reservoirs. Blocks are modeled by three-dimensional boundary elements. The soil is modeled in two different ways: in the plastic region Kelvin’s fundamental solution (static) is used and in the elastic region the fundamental solution of the Stoke’s problem is adopted. The coupling among the media is done applying the sub-region technique. It is important to note that the equivalent static procedure has been implemented. Several numerical examples are presented, demonstrating the efficiency of the developed computational code
APA, Harvard, Vancouver, ISO, and other styles
3

Taylor, Richard. "Finite element modelling of three dimensional fluid-structure interaction." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42308.

Full text
Abstract:
This work is focused on the numerical modelling of fluid-structure interaction in three dimensions. Both internal and external laminar flow around flexible bodies are considered. The fluid flow simulated is based on the incompressible Navier-Stokes equations and the general focus is on laminar Newtonian flow. The streamline upwind/ pressure stabilising Petrov-Galerkin (SUPG/PSPG) method is employed to achieve a stable low order finite element discretisation of the fluid, while the solid is discretised spatially by a standard Galerkin finite element approach. The behavior of the solid is governed by Neo-Hooke elasticity. For temporal discretisation the discrete implicit generalised-alpha method is employed for both the fluid and the solid domains. The motion of the fluid mesh is solved using an arbitrary Lagrangian-Eulerian (ALE) scheme employing a nonlinear pseudo-elastic mesh update method. The fluid-solid interface is modelled using a finite element interpolation method that allows for non-matching meshes and satisfies the required conservation laws. The resulting sets of fully implicit strongly coupled nonlinear equations are then decomposed into a general framework consisting of fluid, interface and solid domains. These equations are then solved using different solution techniques consisting of strongly coupled monolithic Newton and block Gauss-Seidel methods as well as a weakly coupled novel staggered scheme. These solvers are employed to solve a number of three dimensional numerical examples consisting of: External flow: o a soft elastic beam fixed at both ends o a thin cantilever plate.
APA, Harvard, Vancouver, ISO, and other styles
4

Antonio, Leonardo Machado. "Análise da interação solo-estrutura aplicada a riser rígido em catenária através da formulação co-rotacional." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265171.

Full text
Abstract:
Orientador: Renato Pavanello
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-18T13:26:34Z (GMT). No. of bitstreams: 1 Antonio_LeonardoMachado_M.pdf: 4297559 bytes, checksum: 9607067525a5f1e234ed72d8bcef64ef (MD5) Previous issue date: 2011
Resumo: A explotação de petróleo em ambientes off-shore possui inúmeras dificuldades, dentre as quais lâminas d'águas cada vez mais profundas. Neste contexto, as linhas submarinas são componentes de grande importância nesta atividade, pois estabelecem a comunicação entre as unidades de produção e os equipamentos submarinos. Este trabalho estuda a interação solo-estrutura de risers rígidos em catenária utilizando a formulação co-rotacional através de abordagens estática e dinâmica. A abordagem estática trata do equílibrio estático de estruturas não-lineares, no qual utiliza-se a estratégia de controle por carregamento;enquanto a abordagem dinâmica utiliza a discretização temporal de Newmark para resolução do equílibrio dinâmico de estruturas não-lineares. Este estudo mostra a implementação de modelos com um e dois parâmetros baseados das hipóteses de Winkler, Filonenko-Borodich e Pasternak no contexto interação da estrutura do riser com o leito marinho
Abstract: The petroleum explotation on off-shore enviorments has differents dificulties, for example deeper water deths. In this context, the marine pipes are components of extreme importance, since they are the comunication between the production units and the subsea equipaments. This work studies the soil-structure interaction of steel cathenary risers using corotational formulation within static and dynamic approaches of structural calculation. The static approach focus on the non-linear static equilibrium of structures using the load control strategy. On the other side, the dynamic approach uses the Newmark time discretization to solve the non-linear dynamic equilibrium equation. This study shows the implementation of foundation with one and two parameter based on hipotheses of Winkler, Filonenko-Borodich and Pasternak in the riser structure and soil interaction context
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
APA, Harvard, Vancouver, ISO, and other styles
5

Hussein, Ahmed Abd Elmonem Ahmed. "Dynamical System Representation and Analysis of Unsteady Flow and Fluid-Structure Interactions." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85626.

Full text
Abstract:
A dynamical system approach is utilized to reduce the representation order of unsteady fluid flows and fluid-structure interaction systems. This approach allows for significant reduction in the computational cost of their numerical simulations, implementation of optimization and control methodologies and assessment of their dynamic stability. In the first chapter, I present a new Lagrangian function to derive the equations of motion of unsteady point vortices. This representation is a reconciliation between Newtonian and Lagrangian mechanics yielding a new approach to model the dynamics of these vortices. In the second chapter, I investigate the flutter of a helicopter rotor blade using finite-state time approximation of the unsteady aerodynamics. The analysis showed a new stability region that could not be determined under the assumption of a quasi-steady flow. In the third chapter, I implement the unsteady vortex lattice method to quantify the effects of tail flexibility on the propulsive efficiency of a fish. I determine that flexibility enhances the propulsion. In the fourth chapter, I consider the stability of a flapping micro air vehicle and use different approaches to design the transition from hovering to forward flight. I determine that first order averaging is not suitable and that time periodic dynamics are required for the controller to achieve this transition. In the fifth chapter, I derive a mathematical model for the free motion of a two-body planar system representing a fish under the action of coupled dynamics and hydrodynamics loads. I conclude that the psicform fish family are inherently stable under certain conditions that depend on the location of the center of mass.
Ph. D.
We present modeling approaches of the interaction between flying or swimming bodies and the surrounding fluids. We consider their stability as they perform special maneuvers. The approaches are applied to rotating blades of helicopters, fish-like robots, and micro-air vehicles. We develop and validate a new mathematical representation for the flow generated by moving or deforming elements. We also assess the effects of fast variations in the flow on the stability of a rotating helicopter blade. The results point to a new stable regime for their operation. In other words, the fast flow variations could stabilize the rotating blades. These results can also be applied to the analysis of stability of rotating blades of wind turbines. We consider the effects of flexing a tail on the propulsive force of fish-like robots. The results show that adding flexibility enhances the efficiency of the fish propulsion. Inspired by the ability of some birds and insects to transition from hovering to forward motion, we thoroughly investigate different approaches to model and realize this transition. We determine that no simplification should be applied to the rigorous model representing the flapping flight in order to model transition phenomena correctly. Finally, we model the forward-swim dynamics of psciform and determine the condition on the center of mass for which a robotic fish can maintain its stability. This condition could help in designing fish-like robots that perform stable underwater maneuvers.
APA, Harvard, Vancouver, ISO, and other styles
6

Sánchez, Jesús Antonio García. "Uma formulação em elementos finitos para a análise dinâmica e estática não linear de risers incluindo o contato com o leito do mar." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-27052015-144345/.

Full text
Abstract:
Aplica-se uma formulação Lagrangeana total do Método dos elementos Finitos (MEF) baseada em posições para obter a resposta dinâmica não linear de risers bidimensionais em contato com o leito do mar. Os elementos finitos adaptados e aplicados nas soluções são de barras curvas de pórtico com cinemática de Reissner. Os risers são estruturas cilíndricas e esbeltas utilizadas na indústria offshore para transportar desde o fundo do mar até a plataforma gases, óleos, minerais ou lodo, entre outros produtos. Na modelagem dessas estruturas, destacam-se três problemas de imediato, são eles: a determinação da catenária inicial da tubulação, o comportamento estrutural após a aplicação de deslocamentos severos no topo do riser quando ancorado à plataforma ou embarcação flutuante e o contato do riser com o leito do mar. Estes problemas resultam ou são agravados pela forte instabilidade presente nessas estruturas em razão da grande relação entre a extensão dos dutos e sua rigidez transversal. Para obter a configuração inicial, três técnicas de penalização foram desenvolvidas e comparadas. A primeira utiliza a redução progressiva da rigidez da seção transversal do riser, a segunda aplica a penalização direta nos deslocamentos nodais do riser e a terceira emprega uma solução dinâmica amortecida com redução progressiva da massa e do amortecimento. As técnicas são comparadas entre si e com resultados das bibliografias. A metodologia desenvolvida para a aplicação de deslocamentos severos no topo do riser é fundamentada na suavização da posição tentativa, através de fórmula empírica baseada na remodelagem de malhas da mecânica dos fluidos. Discretiza-se o solo com molas distribuídas, de comportamento linear e não linear físico, cuja influência nodal é desenvolvida consistentemente. De forma geral a introdução dessas molas é feita através da técnica da penalização da energia potencial total. Descreve-se o comportamento não linear, comumente utilizado para solos coesivos argilosos, com um modelo P-y que considera a penetração inicial, a elevação, assim como a repenetração e alguns ciclos de carregamento e descarregamento delimitados pelas curvas das cargas extremas. Uma técnica de moderação das penalidades é utilizada para auxiliar no problema de contato entre o solo e o riser. Além desses aspectos específicos do trabalho, implementaram-se na formulação do MEF as ações decorrentes de carregamentos de flutuação, peso próprio, forças das correntes do mar e condições de contorno (forças e deslocamentos) devidas às ondas do mar. Realiza-se a integração temporal pelo método clássico de Newmark. A formulação desenvolvida junto com as estratégias implementadas mostram-se adequadas e precisas para o tratamento de risers.
A total Lagrangian Finite Element Method (FEM) formulation based on positions is applied to achieve the static and dynamic responses of two dimensional risers that touch the seabed. The adapted finite elements to model risers are curved frame elements based on the Reissner kinematics. Risers are cylindrical slender structures used in the offshore industry to transport from the underground mineral resources (gas, petroleum, mud etc) to the platforms or vessels. In the analysis of this kind of structure three problems immediately arise, that are: the determination of the initial static position (catenary) of the riser, its dynamic behavior when subjected to severe loads or displacements at the top (floating platforms or vessels) and the interaction among the riser and the seabed. These problems come from or are worsened by the strong instability resulting from the large rate between the extension and the transverse dimension of the riser. In order to solve the initial position three techniques are developed and compared. The first uses a progressive reduction of the transverse stiffness of the riser, the second applies a direct penalization on the nodal displacements of the riser and the third employs a dynamic solution with mass and damping reduction. The achieved results are compared with the ones available in literature. The developed methodology to apply severe displacements at the top of risers is a smoothing procedure of the first trial position, based on a strategy of remeshing used in fluid-structure interaction analysis. The soil (seabed), with linear or non-linear behavior is represented by distributed springs and their nodal influence is consistently developed. In a general way the introduction of these springs is done penalizing the total potential energy function. The non-linear behavior, commonly used for cohesive and clayey soil, is done by a P-y model that takes into account the initial penetration, the elevation, as well as some cyclical loads established by extreme curves. A moderation technique of penalty is used to improve the convergence of the soil-structure interaction process. In addition to these specific aspects of the thesis, there are implemented actions resulting from floating, selfweight, sea streams, and waive forces. The time integration is performed by the Newmark method. Examples reveal that the developed formulation and the proposed strategies are adequate to model submersed risers in contact with the seabed.
APA, Harvard, Vancouver, ISO, and other styles
7

Song, Yangkun. "Development of Comprehensive Dynamic Damage Assessment Methodology for High-Bypass Air Breathing Propulsion Subject to Foreign Object Ingestion." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/93960.

Full text
Abstract:
Foreign object ingestion (FOI) into jet engines is a recurring scenario during the operation life of aircraft. Objects can range from as small as a pebble on the tarmac to the size of a large bird. Among the potential ingestion scenarios, damage caused by smaller objects may be considered to be negligible. Alternatively, larger objects can initiate progressive damage, potentially leading to catastrophic failure, compromising the integrity of the structure, and endangering the safety of passengers. Considering the dramatic increase in air traffic, FOI represents a crucial safety hazard, and must be better understood to minimize possible damage and structural failure. The main purpose of this study is to develop a unique methodology to assess the response and dynamic damage progression of an advanced, high-bypass propulsion system in the event of an FOI during operation. Using a finite element framework, a unique modeling methodology has been proposed in order to characterize the FOI response of the system. In order to demonstrate versatility of the computational analysis, the impact characteristics of two most common foreign object materials, bird and ice, were investigated. These materials were then defined in finite element domain, verified computationally, and then validated against the existing physical experiments. In addition to the mechanics of the two FOI materials, other material definitions, used to characterize the structures of the high-bypass propulsion system, were also explored. Both composite materials and rate dependent definitions for metal alloys were investigated to represent the damage mechanics in the event of an FOI. Subsequently, damage sequence of high-bypass propulsion systems subject to FOI was developed and assessed, using a uniquely devised Fluid-Structure Interaction (FSI) technique. Using advanced finite element formulation, this approach enabled the accurate simulation of the comprehensive damage progression of the propulsion systems by including aerodynamic interaction. Through this strategy, fluid mechanics was combined with structural mechanics in order to simulate the mutual interaction between both continua, allowing the interpretation of both the additional damage caused by the fluid flow and disrupted aerodynamics induced by the dynamic deformation of the fan blade. Subsequently, this multidisciplinary-multiphysics computational approach, in the framework of the comprehensive analysis methodology introduced, enabled the effective determination of details on the overall progressive impact damage, not traditionally available to propulsion designers.
PHD
APA, Harvard, Vancouver, ISO, and other styles
8

Kučera, Martin. "Dynamické vlastnosti rotoru kmitajícího v tekutině." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228818.

Full text
Abstract:
This thesis deals with dynamic behavior of rotor dynamics system vibrating in a liquid. Work is factually oriented on influence of the liquid to natural frequences of rotor of vortex turbine. There is described the creation of geometric and computational model of the system and the results of natural frequences and damping in dependence on environment are presen-ted. There are compared variations in natural frequences of the rotor system, which are caused of the interaction of the various level of the water environment. The step of integration are tested and compared for choise solving method. Problem is solved by computational simulation in commercial software ANSYS 11.0 There is used software tools Multiphysics/FSI.
APA, Harvard, Vancouver, ISO, and other styles
9

Gomes, Henrique Campelo. "Método dos elementos finitos com fronteiras imersas aplicado a problemas de dinâmica dos fluidos e interação fluido-estrutura." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3144/tde-26122013-150059/.

Full text
Abstract:
Este trabalho pode ser dividido em três etapas principais. Inicialmente é proposta uma formulação estabilizada do método dos elementos finitos (MEF) para solução de problemas de escoamento incompressível governado pela equação de Navier-Stokes. Esta formulação foi implementada em um código computacional e testada através de diversos exemplos numéricos. Alguns elementos finitos com diferentes pares de função de interpolação da velocidade e pressão, consagrados na literatura, e também elementos finitos menos populares, foram investigados e seus resultados e performance comparados. A segunda etapa consiste na formulação do problema estrutural. Buscou-se por uma formulação dinâmica, não linear, capaz de simular movimentos complexos de estruturas sujeitas a grandes deslocamentos e grandes deformações durante longos intervalos de tempo. A etapa final deste trabalho é a proposição de um método para solução de problemas de Interação Fluido Estrutura (IFE) que utiliza o conceito de fronteiras imersas como alternativa a abordagens ALE (Arbitrary Lagrangian Eulerian) clássicas. Elementos Finitos Generalizados, juntamente com Multiplicadores de Lagrange, são utilizados para prover descontinuidade nos campos de velocidade e pressão do fluido ao longo da interface com a estrutura. O acoplamento dos dois problemas é realizado utilizando um método implícito e alternado (staggered scheme), que possui a vantagem de permitir, facilmente, a implementação de códigos computacionais desenvolvidos para resolver isoladamente o problema fluido e/ou estrutural.
This work is divided in three parts. Initially, it is presented a stabilized Finite Element Method formulation to solve fluid flow problems governed by the incompressible Navier-Stokes Equations. This formulation was implemented in a computer code and validated throughout several numeric simulations. Some well-known finite elements with different pairs of velocity/pressure approximations, as well as some other less popular elements, were investigated and their performance compared. The second part describes the Structural Problem formulation. This formulation is able to simulate nonlinear dynamic problems involving large displacements and finite strains during long period of time. In the final part of this work, it is proposed a Fluid-Structure Interaction method based on an immersed interface approach in opposition to classical ALE (Arbitrary Lagrangian Eulerian) approaches. Generalized Finite Elements, together with Lagrange Multipliers, are used to provide velocity and pressure discontinuities on the fluid domain across the immersed interface. To couple both fluid and structural problems, an implicit staggered scheme is adopted, which allows the easy implementation of already developed black box computer codes.
APA, Harvard, Vancouver, ISO, and other styles
10

Sanches, Rodolfo André Kuche. "Análise bidimensional de interação fluido-estrutura: desenvolvimento de código computacional." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-06112006-145215/.

Full text
Abstract:
O presente trabalho consiste no desenvolvimento de um código computacional baseado no método dos elementos finitos (MEF), para análise bidimensional de interação fluido-estrutura. Desenvolve-se um código bidimensional para dinâmica de fluidos compressíveis, viscosos ou não, em formulação Euleriana, com base no algoritmo CBS – characteristic based split. Então o código desenvolvido é adaptado para poder ser acoplado a um programa de formulação Lagrangeana para análise dinâmica de estruturas, o que é feito através do emprego da descrição Lagrangeana - Euleriana arbitrária (ALE). Por fim procede-se o acoplamento com um código para análise de estruturas, de formulação posicional e não linear geométrica, baseado no método dos elementos finitos.
The present work consists of the development of a computational code based on the element finite method for fluid-structure interaction analysis. A two-dimensional fluid dynamic Eulerian code is developed based on the CBS algorithm – characteristic based split. Then, the computational code is modified to be coupled with a Lagrangean structures dynamical code by using the arbitrary Lagrangean – Eulerian description (ALE). At the end, the coupling is made with a positional nonlinear geometrical structural dynamics code based on the finite element method.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Soil-structure interaction. Structural dynamics. Finite element method"

1

Shen, Jie. Soil-machine interactions: A finite element perspective. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shen, Jie. Soil-machine interactions: A finite element perspective. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jie, Shen. Soil-machine interactions: A finite element perspective. New York: Marcel Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amini, S. Coupled boundary and finite element methods for the solution of the dynamic fluid-structure interaction problem. Berlin: Springer-Verlag, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chargin, Mladen. A finite element procedure for calculating fluid-structure interaction using MSC/NASTRAN. Moffett Field, Calif: NASA Ames Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amini, Siamak, Paul John Harris, and David T. Wilton. Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Takayuki, Shibamoto, ed. Chromatographic analysis of environmental and food toxicants. New York: M. Dekker, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Otto, Gartmeier, and Ames Research Center, eds. A finite element procedure for calculating fluid-structure interaction using MSC/NASTRAN. Moffett Field, Calif: NASA Ames Research Center, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Soil-structure interaction. Structural dynamics. Finite element method"

1

Desai, C. S. "Dynamic Soil-Structure Interaction with Constitutive Modelling for Soils and Interfaces." In Finite Element Methods for Nonlinear Problems, 191–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82704-4_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amini, Siamak, Paul John Harris, and David T. Wilton. "The Dynamic Fluid-Structure Interaction Problem." In Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, 57–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Amini, Siamak, Paul John Harris, and David T. Wilton. "Introduction." In Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Amini, Siamak, Paul John Harris, and David T. Wilton. "Integral Equation Formulations of the Exterior Helmholtz Problem." In Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, 3–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Amini, Siamak, Paul John Harris, and David T. Wilton. "Numerical Solution of the Exterior Helmholtz Problem." In Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, 25–56. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Amini, Siamak, Paul John Harris, and David T. Wilton. "The Determination of the Response from Sonar Transducers." In Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem, 84–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-51727-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Zienkiewicz, O. C., R. L. Taylor, and P. Nithiarasu. "Fluid–Structure Interaction." In The Finite Element Method for Fluid Dynamics, 423–49. Elsevier, 2014. http://dx.doi.org/10.1016/b978-1-85617-635-4.00013-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mamaghani, Iraj H. P. "Discrete Finite Element Method for Analysis of Masonry Structures." In Computational Modeling of Masonry Structures Using the Discrete Element Method, 393–415. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-5225-0231-9.ch015.

Full text
Abstract:
Masonry structures are comprised of a finite number of distinct interacting rock blocks that have a length scale relatively comparable to the structure. Therefore, they are ideal candidates for modeling as discrete systems. This chapter covers the Discrete Finite Element Method (DFEM) developed by the author to model discontinuous media consisting of blocks of arbitrary shapes. The DFEM is based on the finite element method incorporating contact elements. The DFEM considers blocks as sub-domains and represents them as solid elements. Contact elements are used to model block interactions such as sliding or separation. In this chapter, through some illustrative examples, the applicability of the DFEM to static and dynamic analysis of masonry structures, including arch bridges, walls, slopes, and underground openings, is discussed. The DFEM provides an efficient tool for researchers and practical engineers in designing, analyzing, and studying the behavior of masonry structures under static and dynamic loadings.
APA, Harvard, Vancouver, ISO, and other styles
9

Biancolini, Marco Evangelos. "Mesh Morphing and Smoothing by Means of Radial Basis Functions (RBF)." In Handbook of Research on Computational Science and Engineering, 347–80. IGI Global, 2012. http://dx.doi.org/10.4018/978-1-61350-116-0.ch015.

Full text
Abstract:
Radial Basis Functions (RBF) mesh morphing, its theoretical basis, its numerical implementation, and its use for the solution of industrial problems, mainly in Computer Aided Engineering (CAE), are introduced. RBF theory is presented showing the mathematical framework for a basic RBF fit, its MathCAD implementation, and its usage. The equations required for a 2D case comparing RBF smoothing and pseudosolid smoothing based on Finite Elements Method (FEM) structural solution are given; RBF exhibits excellent performance and produces high quality meshes even for very large deformations. The industrial application of RBF morphing to Computational Fluid Dynamics (CFD) is covered presenting the RBF Morph software, its implementation, and a description of its working principles and performance. Practical examples include: physical problems that use CFD, shape parameterisation strategy, and modelling guidelines for setting-up a well posed RBF problem. Future directions explored are: transient shape evolution, fluid structure interaction modelling, and shape parameterization in multi-physics, multi-objective design optimization.
APA, Harvard, Vancouver, ISO, and other styles
10

Hosseinzadeh, Saeed, and Kristjan Tabri. "Numerical Investigation of Hydroelastic Response of a Three-Dimensional Deformable Hydrofoil." In Progress in Marine Science and Technology. IOS Press, 2020. http://dx.doi.org/10.3233/pmst200029.

Full text
Abstract:
The present study is concerned with the numerical simulation of Fluid-Structure Interaction (FSI) on a deformable three-dimensional hydrofoil in a turbulent flow. The aim of this work is to develop a strongly coupled two-way fluid-structure interaction methodology with a sufficiently high spatial accuracy to examine the effect of turbulent and cavitating flow on the hydroelastic response of a flexible hydrofoil. A 3-D cantilevered hydrofoil with two degrees-of-freedom is considered to simulate the plunging and pitching motion at the foil tip due to bending and twisting deformation. The defined problem is numerically investigated by coupled Finite Volume Method (FVM) and Finite Element Method (FEM) under a two-way coupling method. In order to find a better understanding of the dynamic FSI response and stability of flexible lifting bodies, the fluid flow is modeled in the different turbulence models and cavitation conditions. The flow-induced deformation and elastic response of both rigid and flexible hydrofoils at various angles of attack are studied. The effect of three-dimension body, pressure coefficient at different locations of the hydrofoil, leading-edge and trailing-edge deformation are presented and the results show that because of elastic deformation, the angle of attack increases and it lead to higher lift and drag coefficients. In addition, the deformations are generally limited by stall condition and because of unsteady vortex shedding, the post-stall condition should be considered in FSI simulation of deformable hydrofoil. To evaluate the accuracy of the numerical model, the present results are compared and validated against published experimental data and showed good agreement.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Soil-structure interaction. Structural dynamics. Finite element method"

1

Xu, B., H. Tsang, and S. H. Lo. "3-D CONVOLUTIONAL PERFECTLY MATCHED LAYER MODELS FOR DYNAMIC SOIL-STRUCTURE INTERACTION ANALYSIS IN THE FINITE ELEMENT TIME-DOMAIN." In 4th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2014. http://dx.doi.org/10.7712/120113.4694.c1058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kwon, Y. W., and J. C. Jo. "Coupled Finite Element Based Lattice Boltzmann Equation and Structural Finite Elements for Fluid-Structure Interaction Application." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61023.

Full text
Abstract:
A computational technique was developed for analysis of fluid-structure interaction. The fluid flow was solved using the lattice Boltzmann method which found to be computationally simple and efficient. In order to apply the lattice Boltzmann method to irregular shapes of fluid domains, the finite element based lattice Boltzmann method was developed. In addition, the turbulent model was also implemented into the lattice Boltzmann formulation. Structures were analyzed using either beam or shell elements depending of the nature of the structures. Then, coupled transient fluid flow and structural dynamics were solved one after another for each time step. Numerical examples for both 2-D and 3-D fluid-structure interaction problems were presented to demonstrate the developed techniques.
APA, Harvard, Vancouver, ISO, and other styles
3

Kwon, Y. W. "Coupling of Lattice Boltzmann and Finite Element Methods for Fluid-Structure Interaction Application." In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93212.

Full text
Abstract:
In order to analyze the Fluid-Structure Interaction (FSI) between a flow and a flexible structure, an algorithm was presented to couple the Lattice Boltzmann Method (LBM) and the Finite Element Method (FEM). The LBM was applied to the fluid dynamics while the FEM was applied to the structural dynamics. The two solution techniques were solved in a staggered manner, i.e. one solver after another. Continuity of the velocity and traction was applied at the interface boundaries between the fluid and structural domains. Furthermore, so as to make the fluid-structure interface boundary more flexible in terms of the computational modeling perspective, a technique was also developed for the LBM so that the interface boundary might not coincide with the fluid lattice mesh. Some example problems were presented to demonstrate the developed techniques.
APA, Harvard, Vancouver, ISO, and other styles
4

Thompson, Lonny L. "A Multi-Field Space-Time Finite Element Method for Structural Acoustics." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0395.

Full text
Abstract:
Abstract A Computational Structural Acoustics (CSA) capability for solving scattering, radiation, and other problems related to the acoustics of submerged structures has been developed by employing some of the recent algorithmic trends in Computational Fluid Dynamics (CFD), namely time-discontinuous Galerkin Least-Squares finite element methods. Traditional computational methods toward simulation of acoustic radiation and scattering from submerged elastic bodies have been primarily based on frequency domain formulations. These classical time-harmonic approaches (including boundary element, finite element, and finite difference methods) have been successful for problems involving a limited range of frequencies (narrow band response) and scales (wavelengths) that are large compared to the characteristic dimensions of the elastic structure. Attempts at solving large-scale structural acoustic systems with dimensions that are much larger than the operating wavelengths and which are complex, consisting of many different components with different scales and broadband frequencies, has revealed limitations of many of the classical methods. As a result, there has been renewed interest in new innovative approaches, including time-domain approaches. This paper describes recent advances in the development of a new class of high-order accurate and unconditionally stable space-time methods for structural acoustics which employ finite element discretization of the time domain as well as the usual discretization of the spatial domain. The formulation is based on a space-time variational equation for both the acoustic fluid and elastic structure together with their interaction. Topics to be discussed include the development and implementation of higher-order accurate non-reflecting boundary conditions based on the exact impedance relation through the. Dirichlet-to-Neumann (DtN) map, and a multi-field representation for the acoustic fluid based on independent pressure and velocity potential variables. Numerical examples involving radiation and scattering of acoustic waves are presented to illustrate the high-order accuracy achieved by the new methodology for CSA.
APA, Harvard, Vancouver, ISO, and other styles
5

Dale, Jason J., and A. E. Holdo̸. "Fluid Structure Interaction Modelling." In ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2858.

Full text
Abstract:
Numerical modeling of fluid/structure interaction (FSI) falls into the multi-physics domain and has significant importance in many engineering problems. It is an active research area in the field of computational mechanics and examples are found in diverse applications such as aeronautics, biomechanics and the offshore industries. As such, Computational Fluid Dynamics (CFD) and Finite Element (FE) analysis techniques have continuously evolved into this field. This paper presents one such technique and focuses on the further developments of a displacement based finite volume method previously presented by the author, in particular, its ability to now predict fixed displacement, normal, shear and thermal stresses and strains within a single CFD program. An advantage of this method is that a single solution procedure has the potential to be employed to predict both fluid, structural and fluid/structure interaction effects simultaneously.
APA, Harvard, Vancouver, ISO, and other styles
6

Asgarian, Behrouz, Alireza Fiouz, and Ali Shakeri Talarposhti. "Incremental Dynamic Analysis Considering Pile-Soil-Structure Interaction for the Jacket Type Offshore Platforms." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57273.

Full text
Abstract:
Nonlinear response of piles is the most important source of potentially nonlinear behavior of offshore platforms due to earthquake excitations. It is often necessary to perform dynamic analysis of offshore platforms that accounts for soil nonlinearity, discontinuity condition at pile soil interfaces, energy dissipation through soil radiation damping and structural nonlinear behaviors of the piles. Incremental dynamic analysis is an analysis method that has recently emerged as a promising tool for thoroughly evaluating the seismic performance of structures. It involves subjecting a structural model to a suite of ground motion records, each scaled to several intensities and recording the responses at each level to form IDA curves of response versus intensity. In this paper, jacket and soil-pile system is modeled and the effects of Soil-Pile-Structure Interaction (SPSI) are considered, and the Incremental Dynamic Analysis (IDA) is used to investigate nonlinear behavior of offshore platforms. An attempt is made to introduce a practical BNWF (Beam on Nonlinear Winkler Foundation) model for estimating the lateral response of flexible piles embedded in layered soil deposits subjected to seismic loading. This model was incorporated into a Finite Element program (OpenSees). All the analyses are performed in two directions and the results are compared with each others. A computer program for Nonlinear Earthquake site Response Analyses of layered soil deposits (NERA) is used for analysis nonlinear response of soil layers. Limit state of the jacket is calculated from incremental dynamic analysis of the jacket using fiber elements for the nonlinear modeling of the system.
APA, Harvard, Vancouver, ISO, and other styles
7

Lee, Jinmo, and Donghyun You. "Computational Methodology for Integrated CFD-CSD Simulations of Fluid-Structure Interaction Problems." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-31199.

Full text
Abstract:
A newly developed computational methodology for high-fidelity prediction of fluid and structure dynamics and their unsteady interaction is presented. The present methodology combines an immersed-boundary method, which is capable of simulating flow over non-grid-conforming complex moving bodies and a structural dynamics solver, which is based on a finite-element method and is capable of predicting time-accurate dynamics of deforming solid structures. The pressure and velocity of fluid and geometric information of submerged structures are time-accurately coupled through an integration algorithm. The capability of the present computational fluid dynamics (CFD)–computational structure dynamics (CSD) coupling technique is assessed in a number of validation simulations.
APA, Harvard, Vancouver, ISO, and other styles
8

Mitra, Santanu, Ashutosh Kumar, and K. P. Sinhamahapatra. "A Fluid-Solid Finite Element Method for the Analysis of Reactor Safety Problems." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71604.

Full text
Abstract:
The work presented herein can broadly be categorized as a fluid-structure interaction problem. The response of a circular cylindrical structure subjected to cross flow is examined using the finite element method for both the liquid and the structure domains. The cylindrical tube is mounted elastically at the ends and is free to move under the action of the unsteady flow-induced forces. The fluid is considered to be partially compressible and viscous. The flow field is solved using a finite element method applied to the time-dependent Navier-Stokes equations. The cylinder motion is modeled using a five-degrees of freedom generalized shell element structural dynamics model. The numerical simulations of the response of the calandria tubes/pressure tubes, adjustor rod and shut-off rod of a nuclear reactor are presented. A few typical results are presented to assess the accuracy of the developed modules.
APA, Harvard, Vancouver, ISO, and other styles
9

Ebna Hai, Bhuiyan Shameem Mahmood, and Markus Bause. "Adaptive Finite Elements Simulation Methods and Applications for Monolithic Fluid-Structure Interaction (FSI) Problem." In ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21379.

Full text
Abstract:
Will an aircraft wing have the structural integrity to withstand the forces or fail when it’s racing at a full speed? Fluid-structure interaction (FSI) analysis can help you to answer this question without the need to create costly prototypes. However, combining fluid dynamics with structural analysis traditionally poses a formidable challenge for even the most advanced numerical techniques due to the disconnected, domain-specific nature of analysis tools. In this paper, we present the state-of-the-art in computational FSI methods and techniques that go beyond the fundamentals of computational fluid and solid mechanics. In fact, the fundamental rule require transferring results from the computational fluid dynamics (CFD) analysis as input into the structural analysis and thus can be time-consuming, tedious and error-prone. This work consists of the investigation of different time stepping scheme formulations for a nonlinear fluid-structure interaction problem coupling the incompressible Navier-Stokes equations with a hyperelastic solid based on the well established Arbitrary Lagrangian Eulerian (ALE) framework. Temporal discretization is based on finite differences and a formulation as one step-θ scheme, from which we can extract the implicit euler, crank-nicolson, shifted crank-nicolson and the fractional-step-θ schemes. The ALE approach provides a simple, but powerful procedure to couple fluid flows with solid deformations by a monolithic solution algorithm. In such a setting, the fluid equations are transformed to a fixed reference configuration via the ALE mapping. The goal of this work is the development of concepts for the efficient numerical solution of FSI problem and the analysis of various fluid-mesh motion techniques, a comparison of different second-order time-stepping schemes. The time discretization is based on finite difference schemes whereas the spatial discretization is done with a Galerkin finite element scheme. The nonlinear problem is solved with Newton’s method. To control computational costs, we apply a simplified version of a posteriori error estimation using the dual weighted residual (DWR) method. This method is used for the mesh adaption during the computation. The implementation using the software library package DOpElib and deal.II serves for the computation of different fluid-structure configurations.
APA, Harvard, Vancouver, ISO, and other styles
10

Feng, Zhipeng, Qian Huang, Shuai Liu, Fengchun Cai, Xi Lv, and Xiaozhou Jiang. "Study on Dynamic Characteristics and Flow Induced Vibration of Tube Bundles Based on the Fluid Structure Coupling Method." In 2018 26th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icone26-81342.

Full text
Abstract:
In order to study the dynamic characteristics and fluid structure interactions of tubular structures under the action of fluid in reactor, such as fuel rod bundles and heat transfer tube bundle of steam generator, the dynamic equations and the acoustic wave equations of structures are discretized by finite element method. The acoustic wave equations are simplified from continuity equation and momentum equation of fluid field. Based on the fluid structure coupling method, the dynamic characteristics of the tube under the internal flow, external flow and combined action of internal and external flow are calculated respectively. The influence of flow field domain, element type and grid number on the dynamic characteristics of the tube is also analyzed. Secondly, based on the computational fluid dynamics and computational structural dynamics, the interaction between the two physical fields of fluid and structure is considered simultaneously. The finite volume method is used to discretize the fluid control equations and the turbulent flow is investigated using the large eddy simulation method (LES). The Newmark algorithm is used to solve the structural dynamic equations. Combined with the dynamic mesh control technique, a numerical model for flow induced vibration of three-dimensional flexible tube is established. Finally, the flow induced vibration of a three dimensional flexible single tube and a square arrangement tube bundle is calculated using the numerical model. By comparing with the existing research results, it is found that the numerical simulation results are in good agreement with the experimental results. Thus, the correctness of the model is verified. It is also shown that the numerical model established in this paper can be used to simulate the dynamic characteristics and flow induced vibration of tubular structures.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography